

Emerging Technology: Opportunities and Challenges Associated with Controls

David Jacobson, Jacobson Energy, Moderator

Why The Focus on Controls?

- Many types, purposes and end uses e.g. lighting, HVAC, building energy management systems (EMS), other
- Relevant for DR and EE programs
- > Useful for evaluation and for savings not limited to just the technology that they control
- "Smart" technologies and the integrated EE/DER environment are both growing; the DER environment needs to understand consumption patterns – both at end use levels and whole building, location-specific information and rapid feedback
- P.s. on accuracy: For a sample of technologies like advanced LED lighting controls and VRF systems feedback is that accurate data acquisition is not a priority or if available not used.
- What information can control technologies provide?
- What are the issues/barriers to successful leveraging of control technologies to provide both additional savings and valuable EM&V data?
- What recommendations do we have for strategies/best practices to make these support success?

Controls: Using EMS for EM&V

Alec Stevens, DMI

NEEP EM&V Annual Public Meeting May 8, 2018 Experience using EMS data in EM&V work

0

Background and definitions

DMI's Role:

- Providing EM&V field work for impact evaluation studies
- Site-level field data collection and analysis
- Not (yet) EM&V 2.0 a/k/a Advanced EM&V

Definition of Data Sources (in DMI's opinion):

Data Type	Equipment Installed By	Type of Equipment	Duration
Trend data	Controls Contractor	Building Energy Management System	Permanent*
Meter data	Evaluation Contractor	Portable dataloggers	Temporary
Interval data	Utility Company	Utility gas or electric meter	Permanent

*May require configuration by evaluator

Using building EMS data for EM&V: Example 1

- CDA (Comprehensive Design Approach) Evaluation Study
- Example of using post-installation/Cx trend data to verify implementation of measures and to calibrate evaluation model
 - ECMs: Condensing Boilers, Heat Recovery, High eff. Chillers, Static Pressure Reset, Low dP filters, VFDs on fume hood exhaust fans, DCV in classrooms, and lighting.
- Specific examples of trend data use to verify and measure ECM performance
 - HW supply temp, AHU static pressure and VFD speed, space CO₂, and OA damper positions
- When analysis of trends is complete, adjust model inputs to reflect actual operations
- Trend data was not the only source of information for this study supplemented other meter data collected by evaluator, such as motor kW, amperage, etc.

Using building EMS data for EM&V: Example 2

- HVAC retrofit measure evaluation-Particle Counters w VFD Control of Fans, Low Pressure Drop Filters
- Trend data was only source of specific ex post measurements no supplemental metering by evaluator at equipment level
 - Site had restricted access to cleanroom areas and site operations did not allow shutdown of AHUs to install meters
- Specific examples of trend data use to verify and measure ECM performance
 - VFD speed, fan motor current, fan status, particle count readings
- Additional sources of data were used
 - Whole building interval data allowed a confirmation of pre / post energy use
 - TA vendor and installing contractor had collected fan current meter data using dataloggers

Pitfalls and shortcomings of using EMS data

• Data Accuracy

- Important to verify accuracy of trended data points
- Some values are more suspect than others
- Can't get make/model of sensors
- Can't verify whether any necessary calibration or maintenance steps were taken
- Can't verify whether the point on the front end screen is actually what it says it is
- Data availability
 - Most building operators will tell you that there are trends available, but "your mileage may vary"
 - Local operators usually unfamiliar with how to set up new trended points or extract data
 - Bringing in trained controls technician to set up trends typically adds cost
 - Not all building equipment connected
 - Site personnel unwilling or unable to share production data or other proprietary information
- Conclusions from field experience:
 - Not (yet) generally feasible to rely solely on EMS data for EM&V
 - Cannot easily rely on accuracy of trend data, but in many cases, trend data, if available, is better than no data
 - EMS trend data not reliable for measuring motor kW accurately, but revenue grade submeters are out there

Some Possible Solutions – How evaluators can help advance the energy efficiency industry

- More Stringent Requirements for Program Participation
 - Require demonstrated trending capabilities of key variable before final rebate payments is made
 - Stress test system to make sure controls measures don't have unintended consequences
- Pre-Installation Trending of Controls Projects
 - For projects over a certain size require some trended data of pre-conditions for controls projects and non-controls projects where trending is needed
 - Consider paying for collection of pre-trending for larger project; part of engineering fee
- Accuracy of EMS sensors
 - Work with major EMS/controls manufacturers to determine accuracy of sensors ahead of time; pre-qualify
- Budget for Acquiring Trending Data in Impact Evaluations
 - If only way to get trend data is for customers to bring in their controls vendor to set up trending at a cost they do not want to bear, offer to reimburse them for reasonable charges to set up needed trending, often less than \$1,000 per site

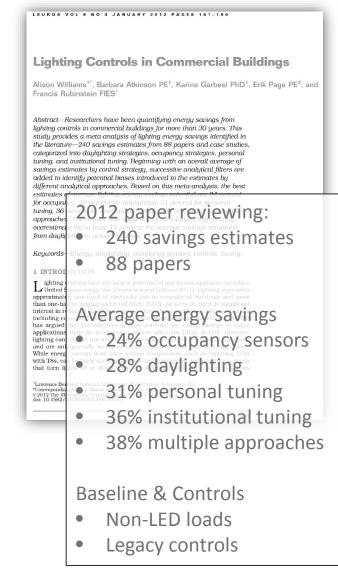
Emerging Technology: Opportunities and Challenges Associated with Controls

Michael Myer, PNNL

Proudly Operated by **Battelle** Since 1965

Controls as an Efficiency Measure: Opportunities and Challenges

MICHAEL MYER


Pacific Northwest National Laboratory EM&V Annual Public Meeting

Lighting Controls in Commercial Buildings

Proudly Operated by **Battelle** Since 1965

Pre-Retrofit Baseline Initial Configuration 1.40 1.22 ■ Final Configuration Density W/ft² 1.20 1.04 0.970.97 1.00 0.82 0.82 0.79 0.77 0.80 Power 0.55 0.51 0.60 0.39 0.37_{0.35} 1 Support 0.40 0.230 20 0.00 Site Weighted... 1.0ne 1... $\overline{\mathbf{A}}$ 20ne' 3 5 6 Dx Govt. Office – Savings by Retrofit Action Percent Savings From Baseline 0% 10% 20% 30% 40% 60% **Occupancy Controls** 12% **Task Tuning** 10% **Fixture Replacement** 41% **Total Annual Savings** 63%

Govt. Office LPD – Total Site and Per Zone

May 10, 2018 **11**

NEEP Field Evaluation Baseline: Existing fluorescent system

Proudly Operated by **Battelle** Since 1965

DLC Advanced Lighting Technology Demonstration	hnology	11/16/2017 COADS BREWING				
This demonstration is one in a series of The software allow advanced lighting de being completed thr between the DesignI (DLC) and the U.S. 1 Additional partners f Earthlight, Energize Roads Brewing. Demonstration Si	FL to LED Only	Occupancy Control	Daylighting Control	Task Tuning	Total: LED with All Controls	Notes
Two Roads Brewing 2012, is a brewery of variety of craft beers 1 - Brewery	50%	10%	6%	*	66%	
Connecticut location 103,000 ft ² building, changed the building scale microbrevery operations, a tasting restrooms, shipping	64%	-2%	5%	**	67%	Pre-retrofit occupancy sensors
storage. The local ut Illumination Compar Roads with a proposi fluorescent lighting t swings. New LED Offfice	29%	24%	9%	***	62%	
communication, and options that allow for light levels and sched application and occur Demonstration Te (Grocery)	30%	3%	~	33%	66%	
The Digital Lumens Lighting System ince fixtures with embedd includes occupancy c controls integrated or new light fixtures. TI	43%	-1%	4%	24%	70%	Pre-retrofit occupancy sensors
LED high-bay and low-bay fixtures were installed in the industrial area, and office minimal disruption	t be conducted with and one benefit of stalled sensors and jeally simplified					

controls. Although Line and the second secon

through long product the strength of the stren

The Digital Lumens L OUTput effectively applying a 12% tuning

*** Task tuning was done at two different steps at this site in direct coordination with both FL to LED replacement and Daylighting Control savings and therefore not separately

NEEP Field Evaluation Baseline: LED fixture

Proudly Operated by **Battelle** Since 1965

DLC Case Studies					
In partnership with the US Department demonstration projects of various netw process in 2015. These projects provid experience, and lessons learned are p	of Energy (DOE) and DLi orked lighting control tech de data and experience u	Site	Occupancy Control	Daylight Control	Task Tuning
图	图	1 - Brewery	19%	13%	~ *
ADVANCED LIGHTING DEMONSTRATION		2 – Office	-5%	16%	12% *
DIGITAL	PHILI	3 – Med Office	34%	12%	34% *
🛓 Download	🛓 Downl	4 – Retail	4%	~	47%
ADVANCED LIGHTING DEMONSTRATION	ADVANCED L DEMONSTR	5 – Office	-2%	7%	43%
current	enlight	* Estimated va	lues		
🛓 Download	🛓 Downle	• Advanced oc in outlier cas	1 7	tually lead to cases o	f negative savings

- Greater sensor resolution / more sensitive?
- Differences in time settings?

Issues/ Barriers that impede successful to leveraging of controls technologies

Proudly Operated by Battelle Since 1965

Costs

- ► LED equipment saves significant energy → limiting cost recoveries from controls
- Commissioning / user expectations / settings
- DesignLights Consortium has standardized report guidelines as part of the Networked Lighting Control Systems
- Energy Efficiency Lighting Program Committee
- Working Groups:
 - Developing data / recommendations for lighting information for TRMs
 - Energy Efficiency Program Design Guide
 - Energy Efficiency Best Practices
 - Energy Efficiency Lighting Quality Metric for Best Project Outcomes

Promising technologies solve current problems with EM&V of control systems?

Proudly Operated by Battelle Since 1965

- Energy Reporting
 - DOE studying energy reporting accuracy
 - Smart power strips
 - Street lights
- Communication
 - No more isolated building systems
 - EMIS
 - Lighting
 - HVAC
 - Plugs
- Standardized data sets / structures
 - Building Energy Data Exchange Specification (BEDES)
 - DesignLights Consortium has standardized report guidelines as part of the Networked Lighting Control Systems

Proudly Operated by **Baffelle** Since 1965

- Industry moving from widgets to systems
- The increase of systems leads to more complex M&V and controls
- Other Energy Benefits (OEBs) beyond the specific system
 - Example occupancy sensors part of lighting system interacting with HVAC and plug loads
- Non-energy benefits
 - Space utilization using occupancy sensors to detect which spaces are used more / less frequently
 - Asset tracking RFID tags on track occupancy for better space utilization and possibly greater energy savings
 - Many other non-energy related applications

Advanced Measurement and Veritication Methods (M&V 2.0)

Proudly Operated by **Battelle** Since 1965

Home » Assessment of Advanced Measurement and Verification Methods (M&V 2.0)

