NEEP EM&V FORUM ANNUAL MEETING

USING GEOGRAPHICALLY TARGETED ENERGY EFFICIENCY TO DEFER T&D INVESTMENTS

January 14, 2015

Presentation Overview

- 1. The concept of geo-targeting efficiency
- 2. NEEP geo-targeting meta-study overview
 - Case studies examined
 - Lessons learned
 - Policy considerations

The Concept of Geo-Targeting

Efficiency as a T&D Resource

- Only affects growth-related T&D investment
 - Not all T&D investment is growth-related
- Can happen both "passively" and "actively"
 - Passive: by-product of system-wide efficiency programs
- Active: by design, through geo-targeted programs

NOTE: This presentation focuses on the role efficiency can play in deferring T&D investments. However, efficiency can and should be considered in tandem with other demand resources (e.g. Demand Response & Distributed Generation)

Average Hourly CFL Usage Patterns

Source: Nexus Market Research, Residential Lighting Markdown Impact Evaluation, submitted to Markdown and Buydown Program Sponsors in Connecticut, Massachusetts, Rhode Island, and Vermont, January 20, 2009 (from Figures 5-1 and 5-2).

T&D Peak Season & Time Matter

Hypothetical Annual Savings from Different Efficiency Programs (MW)

	Peak		Res.	Res. A/C	HPT8	
	Season	Peak Time	CFLs	Retrofits	Retrofits	Total
Substation A	Summer	3:00 PM	0.4	0.9	0.7	2.0
Substation B	Summer	7:00 PM	0.4	1.4	0.3	2.1
Substation C	Winter	7:00 PM	0.9	0.0	0.4	1.3

Note: savings values are illustrative only.

Level of Savings Matters

Hypothetical scenario:

- existing substation load = 90 MW
- max capacity = 100 MW
- baseline peak load growth = 3% per year

	Net Growth													
Level of Savings	Rate	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
No EE programs	3.0%	90	93	95	98	101	104	107	111	114	117	121	125	128
0.5% savings/year	2.5%	90	92	95	97	99	102	104	107	110	112	115	118	121
1.0% savings/year	2.0%	90	92	94	96	97	99	101	103	105	108	110	112	114
1.5% savings/year	1.5%	90	91	93	94	96	97	98	100	101	103	104	106	108
2.0% savings/year	1.0%	90	91	92	93	94	95	96	96	97	98	99	100	101

Different Geo-Targeting Approaches

- Accelerate uptake of existing programs in target areas
 - More intensive marketing in those areas
 - Higher financial incentives in those areas
- □ New measures/programs
- □ RFPs / Performance contracts
- Combinations (2 or more of the above)

Remember: Efficiency does not have to be 100% of the answer. It can be married with demand response, distributed generation and/or other options as part of a multi-faceted strategy.

9 NEEP Geo-Targeting Study

Case Studies

- □ Bonneville Power Authority (2014 status)
- □ California: PG&E (early 1990s, new 2014 efforts)
- □ Maine (2012 to present)
- Michigan: Indiana & Michigan/AEP (2014)
- □ Nevada: NV Energy (late 2000s)
- □ New York: Con Ed (2003 to present)
- □ New York: LIPA (2014 proposal)
- Oregon: PGE (early 1990s)
- □ Rhode Island: (2012 to present)
- □ Vermont (mid-1990s pilot, statewide 2007 to present)

Note: deeper dive case studies shown in green

Presentations by other panelists

Conclusions (1)

The Big Picture

- Growing number of electric examples
- Growing sophistication of leaders
- Initial results are very promising
 - Deferrals have been successful
 - NWAs often considerably less expensive
 - EE usually cheapest of NWAs...
 - ...but often needs to be paired w/DR, DG, others
- Legislation/regulation was catalyst in almost all cases

Conclusions (2)

Implementation

- Senior Management buy-in is invaluable
- Cross-disciplinary communications & trust is critical
 - EE planners
 - T&D system planners
- ¬ Smaller is easier
- Distribution is easier; transmission is harder
- New analytical tools, big data offer great promise
- Modularity has great value
 - Buys time
 - Allows for calibration of forecasted need

Conclusions (3)

Evaluation

- Results mostly measured at substation (or equiv.)
 - So far, evaluation has primarily been a determination of whether construction could be deferred, or not....
 - Traditional EM&V still has value...but more for informing better planning and implementation in the future

Policy Considerations for States

- 1. Least cost solutions for T&D
 - Consider adopting explicit requirements, or...
 - Consider financial incentives for minimizing T&D costs
- Long-term forecasts of T&D needs (to address lead times)
 - Consider requiring such forecasts (10 years? 20 years?)
- 3. "First cut" screening criteria
 - Consider establishing triggers for detailed assessment of NWAs
- 4. Equitable allocation of non-transmission costs
 - Consider assessing what comparable treatment of Transmission
 NTA options might be
 - Consider advocating for comparable treatment in key venues

Screening Criteria Examples

Current Screening Criteria for Detailed Assessment of NWAs

		Minimum	Maximum		
	Must Be	Years	Load	Minimum	
	Load	Before	Reduction	T&D Project	
	Related	Need	Required	Cost	Source
Transmission					
		1 to 3	15%		
Vermont	Yes	4 to 5	20%	\$2.5 Million	Regulatory policy
		6 to 10	25%		
Maine	Voc			>69 kV or	Logiclativo standard
Maine	Yes			>\$20 Million	Legislative standard
Rhode Island	Yes	3	20%	\$1 Million	Regulatory policy
Pacific Northwest (BPA)	Yes	5		\$3 Million	Internal planning criteria
Distribution					
PG&E (California)	Yes	3	2 MW		Internal planning criteria
Rhode Island	Yes	3	20%	\$1 Million	Regulatory policy
Vermont	Yes		25%	\$0.3 Million	Regulatory policy

Q&A

Chris Neme
Energy Futures Group
cneme@energyfuturesgroup.com

Phone: 802-482-5001 ext. 1

