

VRF Market Conditions

NEEP ASHP Workshop

June 2017

Josh Kessler jkessler@masscec.com

Motivation for Clean Heating Programs

GHG Emissions (MA)

MA GHG reduction targets vs. 1990:

- 25% by 2020
- 80% by 2050

HVAC systems typically replaced every 15-20 years

- Often during major renovations
- Only two chances to go renewable by 2050

VRF Market Barriers & Opportunities

When evaluating which technologies to support, and what type of support to provide, MassCEC considers the following factors:

Factors for technology success	VRF Status	MassCEC Level of Influence?
Awareness	Moderate	Moderate
Cost-Effective vs. Alternatives	Varies	High
Reputation for High Performance	Moderate	Moderate
Attractive Business Opportunity	Yes	Moderate
Implementation Hurdles	Low	Limited

*Projects that follow best practices perform effectively, but poorly performing systems have raised questions about the technology. MassCEC's program addresses this through requirements for designer/installer training, system startup, and third-party inspections.

VRF Installation Costs

Estimated Installation Cost

(\$ per 12 kBTU/hr of heating capacity @ 17F)

System Type	No Heat Recovery	Heat Recovery
Installation Cost	\$5,900	\$7,100
Premium vs. Gas Boiler + VAV	+\$900	+\$2,100

- Moderately more expensive than other efficient alternatives (gas-fired boiler + rooftop A/C with VAV distribution).
- There are significantly cheaper alternatives (e.g. four-pipe system).
- If you include heat recovery capability, that increases the cost further.
- Contractors with prior VRF experience often offer lower bid prices after their first 1-2 projects.
- MassCEC is collecting cost data and may be able to provide better estimates in the future.

GHG Savings from Heating

Notes:

- Assumes system perform as rated 47°F and 17°F; interpolation for other temperatures
- Based on Hartford, CT temperature data (design temp. = 7°F)
- Rated capacity matches load at 10°F, which may overstate savings.
- Heating only; does not include cooling or heat recovery

Efficiency Specifications

- ASHRAE 90.1 (2016 building code)
 - Relies on AHRI test data
 - Establishes performance requirements for EER, IEER, COP_{47} , COP_{17}
 - Tiered minimums, based on unit capacity (65-135 KBTU/hr, 135-240, 240+)
- Consortium for Energy Efficiency
 - Aligns with 90.1, but moderately more stringent

MassCEC

VRF rebate program requires ASHRAE 90.1

Efficiency Metrics

Metric	Notes
Energy Efficiency Ratio (EER)	 Helps utilities estimate peak summer demand impact Commercial system sizing often dictated by cooling load Commercial customers often have demand component (kW) in efficiency bills in addition to energy (kWh)
Integrated Energy Efficiency Ratio (IEER)	• Best indicator of overall energy savings from cooling (similar to SEER)
Coefficient of Performance (COP ₄₇ / COP ₁₇)	 No seasonal efficiency rating (like HSPF) No NEEP data available (max/min; no data at 5°F); COP₁₇ may be best measure of efficiency below 32°F Low-temperature performance is important. VRF often (usually?) a sole source of heating Impacts customer's winter electricity demand charge (kW) Winter gas shortages causing spiking electricity prices across New England; if gas is the alternative, the "break-even" COP to reduce that shortage about 2.0*
Simultaneous Cooling and Heating Efficiency (SCHE)	Measures efficiency of heat recovery

*Assumes VRF relies on 45%-efficient gas-fired peaking plant; replacing 90%-efficient gas-fired condensing boiler

Efficiency Metrics

VRF vs. "Mini-Splits"

Characteristic	Mini-splits	VRF
Test standard	AHRI 210/240	AHRI 1230
Level of customization	Low*	High ("Applied product")*
Unit capacity (BTU/hr)	Up to 65,000**	65,001** to 500,000*
Indoor heads per outdoor compressor	Up to 8*	Up to 60*
Variable speed inverter	Not required by AHRI (required by MassCEC)	Required by AHRI
Typical thermostat/control location	On indoor unit*	Central*
Expansion valve location	Outdoor unit*	Indoor unit*
Power type	Single-phase*	Three-phase*
Pipe configuration	Separate pipe for each indoor head	Single pipe network with branches for indoor heads
Simultaneous heating & cooling ("heat recovery")	Not available	Available

*Not required by AHRI standard but reflects actual market

**AHRI classifies all units with <65,000 BTU/hr in single category; manufacturers sees some of these as VRF

Ensuring Project Quality

To ensure project quality, MassCEC's rebate program established the following measures:

- Sizing
 - Systems must meet 100% of both heating and cooling block loads
 - Ensures sufficient capacity for both summer and winter comfort
 - Minimizes use of backup heat, especially electric resistance
 - Applies only to zones conditioned by VRF system; other zones can use alternate HVAC systems
- Controls
 - Central Internet-connected controller for systems >240 kBTU/hr
- Manufacturer-Assisted Start-up
 - Required for all projects
- Designer/Installer Training
 - <u>Designer Training</u>: PE license *or* manufacturer letter recommending that MassCEC waive the PE requirement for the individual designer.
 - <u>Design and Installer Training</u>: At least 8 hours of manufacturer training in past five years (prior to application) on models being installed
 - Each designer/installer will undergo at least one third-party design review/inspection
 - Designer/Installer is an individual but may meet requirements by designating others from project team

Commercial CH&C Awareness Campaign

- Collaborate with key channel partners to promote CH&C technologies (airsource and ground-source heat pumps, biomass heating, and solar thermal):
 - Utility efficiency programs
 - Architecture and engineering firms/trade groups
 - Building owners/developers (public and private)
 - Facilities, energy, sustainability managers and consultants
- Supporting tools we'd like to develop
 - Financial modeling tool
 - Reference guide or case study for exploring CH&C technologies
 - VRF course certified by AIA, ASHRAE, or others so participants can receive continuing education credits
- Outreach venues
 - Meetings, events, conferences
 - Mass communications (newsletters, ads, websites, social media)