

Cost-Effectiveness and Non-energy Impacts: Valuing Efficiency

Don Kreis, NH OCA, Moderator
Julie Michals, E4TheFuture
Samantha Caputo, NEEP
Greg Clendenning, NMR Group
Nathan Caron, DNV GL

National Standard Practice Manual: Update and Plans

Julie Michals, E4TheFuture

National Standard Practice Manual (NSPM): A Year Post-Publication

Julie Michals – E4TheFuture

NEEP EM&V Annual Public Meeting: Advancing EM&V in the Region and the Industry

May 8, 2018

About E4TheFuture

Energy - Economy - Equity - Environment

A nonprofit dedicated to *bringing clean, efficient* energy home for every American. E4 goals include:

- Advance clean energy and efficiency policies and best practices at state and national levels
- 2. Build a vibrant residential energy efficiency and clean energy industry sector
- 3. Support clean energy integrated solutions for communities

Sharing with you today...

- NSPM 101
- 2. NSPM referencing and application to date
- Cost-benefit impact resources data, methods and tools
- 4. Expanding NSPM to other DERs

NSPM 101

Overview of the NSPM Process

NESP:

- Group working to improve cost-effectiveness analyses
- Over 75 organizations representing a range of perspectives.

NSPM Drafting Committee:

- Tim Woolf, Synapse Energy Economics
- Chris Neme, Energy Futures Group
- Marty Kushler, ACEEE
- Steve Schiller, Schiller Consulting
- Tom Eckman (Consultant)

NSPM Review Committee:

- ~40 experts representing a variety of organizations from around the country
- Provided several rounds of review/feedback on draft manual

Project Coordination and Funding:

- Coordinated and funded by E4TheFuture, managed by Julie Michals
- Earlier work on NESP-NSPM managed by Home Performance Coalition.

For more information: www.nationalefficiencyscreening.org

The Need for an NSPM

- Traditional tests (UCT, TRC, SCT) not meeting state needs
 - No underlying principles
 - Don't directly address policy goals/needs
 - Lack of clarity on their conceptual constructs
 - Only 3 options, despite greater variability in jurisdiction needs
- Asymmetry of costs and benefits → EE is under-valued
- Absence of standard guidance on proper application of tests
- Inputs to tests are often problematic
- Lack of transparency on why/how tests were chosen/developed

Developing the right test is critical to ensuring utility investments are economic.

Purpose and Scope of NSPM

Purpose

- Fundamental principles both test selection & application
- Framework for primary test selection/development
- Guidance on key test inputs/application issues

Scope

- Focus on efficiency resources
- Focus on utility rate-payer funded efficiency acquisition
- Focus on static cost-effectiveness analysis
 - Not dynamic IRP modelling...
 - Though principles and key elements could theoretically be applied to IRP too
- Addresses 1st order question: "which EE resources merit acquisition?"

NSPM Table of Contents

Executive Summary

Introduction

Part 1: Developing Your Test

- 1. Principles
- 2. Resource Value Framework
- 3. Developing Resource Value Test
- 4. Relationship to Traditional Tests
- 5. Secondary Tests

Part 2: Developing Test Inputs

- 6. Efficiency Costs & Benefits
- Methods to Account for Costs & Benefits

- 8. Participant Impacts
- 9. Discount Rates
- 10. Assessment Level
- 11. Analysis Period & End Effects
- 12. Analysis of Early Retirement
- 13. Free Rider & Spillover Effects

Appendices

- A. Summary of Traditional Tests
- B. Cost-Effectiveness of Other DERs
- C. Accounting for Rate & Bill Impacts
- D. Glossary

Part I: Developing a Cost-Effectiveness Test Using the Resource Value Framework

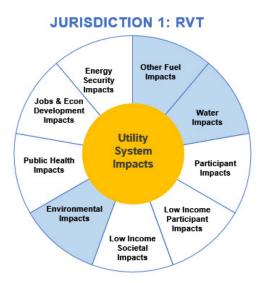
Universal Principles

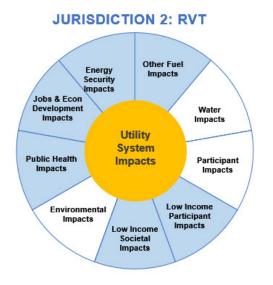
RVF 7-step process

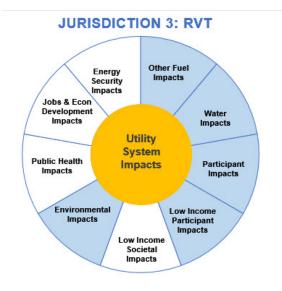
Primary Test (RVT)

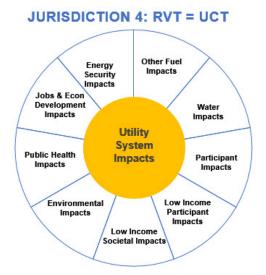
NSPM Principles

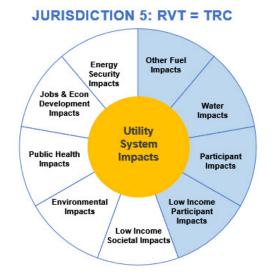
- 1. Recognize that energy efficiency is a resource.
- 2. Account for applicable policy goals.
- 3. Account for all relevant costs & benefits, even if hard to quantify impacts.
- 4. Ensure symmetry across all relevant costs and benefits.
- 5. Conduct a forward-looking, long-term analysis that captures incremental impacts of energy efficiency.
- 6. Ensure transparency in presenting the analysis and the results.

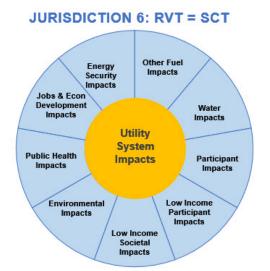



7-Step Resource Value Framework


Step 1	Identify and articulate the jurisdiction's applicable policy goals.
Step 2	Include all utility system impacts in the test.
Step 3	Decide which additional <i>non-utility</i> system impacts to include in the test, based on applicable policy goals.
Step 4	Ensure the test is symmetrical in considering both costs and benefits.
Step 5	Ensure the analysis is forward-looking, incremental, and long-term.
Step 6	Develop methodologies and inputs to account for all impacts, including hard-to-quantify impacts.
Step 7	Ensure transparency in presenting the analysis and the results.




Relationship to Traditional Tests - Examples



NSPM Referencing and Application to Date

State / Other	Docket/Bill Number	State/ Other	Docket/Bill Number
AR *	13-002-U Order No 40 10-100-R Order No. 27	NV	17-08023
CA	15-02-007 14-10-003	RI	Least Cost Procurement Standard
СТ	2017 Comprehensive Energy Strategy	sc	H 4425
IA	RMU-2016-0018	VA	PUR-2017-00047
ID	IPC-E-17-13	WA **	UE-171087, PSE UE-171091, Avista UE-171092, Pacific Power
IL	EE Stakeholder Advisory Group Evaluation Plan	wv	17-0401-E-P
KS	Senate Bill 347 - draft	US DOE	SEE Action: EM&V Framework for States
MI	2010-AD-2	US DOE	EERE-2017-OT-0056
NH	DE-17-136	ACEEE	ACEEE Report: Role of EE in a DER Future (2018)

^{*} AR Commission order ** WA UTC Staff recommendation See NSPM References website page for more details

NSPM Application - Case Studies Purpose and Scope

- Provide real-world examples of states/jurisdictions that are applying, have applied, or could apply the NSPM principles and concepts to develop a primary cost-effectiveness test
- Case studies can serve as NSPM tutorials for regulators, utilities, and other stakeholders
- Case study scope each case study identifies how a state's current practice has applied (or could apply):
 - The key NSPM principles
 - The seven steps in the RVF to develop its RVT
 - Other elements of the NSPM (e.g., discount rates)

Data sources for inputs

NSPM Application Case studies in the works...

- Rhode Island adopted the NSPM principles, developed "RI test" which applies to all DERs; case study complete, to be released later this summer
- 2. Arkansas in process, commission order directs PSC staff to consider the NSPM; stakeholder process underway; PSC staff has taken inventory of applicable policies; utilities are documenting what costs and benefits are currently accounted for; report to PSC by Oct 1
- 3. Minnesota in process. MN Dept of Commerce, Division of Energy Resources RFP retained Synapse to review MN CE testing practices, apply NSPM and prepare recommendations. Aug 2018
- **4. Washington** in process. WA UTC has taken inventory of applicable policies, now reviewing utility practices. Fall 2018

Tech support available to other states interested in applying the NSPM

Cost-Benefit Impacts Supporting Resources

NSPM Supporting Resources

- > Data (plug and play), methods and tools (repository) to support key cost and benefit categories such as:
 - Outdoor health and environmental impacts (ACEEE, EPA resources)
 - Indoor health impacts
 - Job impacts
 - Avoided costs, Avoided T&D
 - Energy security, risk, reliability, resilience
 - Identify major gaps (for potential future research)
- > Current state CE testing practices workbook documenting:
 - Type of current test used (and any references to NSPM)
 - Benefits and costs accounted for in test
 - Discount rate used
 - Link to relevant regulatory/policy docs
 - Will cover approx. 20 states (2018 scope)

Expanding NSPM to Other DERs

Interest in NSPM DER Expansion

- Address categories of costs and benefits for other DERs in more detail, with focus on "to whom does value accrue"
- Address locational/temporal value of resources (for EE and other DERs - avoided T&D, net locational benefits, relevance to NWAs)
- Address in context of distribution planning
- Lots of DER valuation studies done to date inconsistent approaches
- Space is evolving wild west, need some guidance but premature to write 'the bible'
- Build on current / existing work or guidance

Distributed Energy Resources Utility System Impacts

		Energy Efficiency	Demand Response	Distributed Generation	Distributed Storage
Costs					0.0.05
E	Measure costs (utility portion)	•	•	0	0
	Other financial incentives	•	•	•	•
ste	Other program and administrative costs	•	0	•	•
Sy	Evaluation, measurement, and verification	•	•	•	•
Utility System	Performance incentives	•	0	•	•
T T	Interconnection costs	0	0	•	•
	Distribution system upgrades	0	0	•	•
Benefits					
	Avoided energy costs	•	0	•	•
	Avoided generation capacity costs	•	•	•	•
_	Avoided reserves or other ancillary services	•	•	•	•
leπ	Avoided T&D system investment	•	•	•	•
Utility System	Avoided T&D line losses	•	•	•	•
₹	Wholesale market price suppression	•	•	•	•
₽	Avoided RPS or EPS compliance costs	•	•	•	•
)	Avoided environmental compliance costs	•	•	•	•
	Avoided credit and collection costs	•	•	•	•
	Reduced risk	•	•	•	•

Distributed Energy Resources: Non-Utility System Impacts

		Energy Efficiency	Demand Response	Distributed Generation	Distributed Storage
Costs					
ity	Measure costs (participant portion)	•	•	•	•
	Interconnection fees	0	0	•	•
)±i	Annual O&M	0	0	•	•
Non-Utility	Participant increased resource consumption	•	•	•	•
	Non-financial (transaction) costs	•	•	0	0
Benef	its				
Non-Utility	Reduced low-income energy burden	•	•	•	•
	Public health benefits	•	•	•	•
	Energy security	•	•	•	•
	Jobs and economic development benefits	•	•	•	•
	Environmental benefits	•	•	•	•
	Participant health, comfort, and safety	•	0	0	0
	Participant resource savings (fuel, water)	•	0	0	0

Other Types of DERS Existing Studies and General Interest Level

Type of DER	Existing Studies of Cost-Effectiveness	General Interest or Need
Demand Response – Price Based	Very Few	Low – in several states
Demand Response – Incentive Based	Several	Low – in several states
Distributed Gen - PV	Many	High – in many states
Distributed Gen – NEM (overlap with PV)	Many	High – in many states
Distributed Storage	Few	Moderate – in a few states
Electric Vehicles	Few	Moderate – in a few states
Other Environmentally Beneficial Electrification (heat pumps etc.)	Few	Moderate – in a few states
Distribution System Planning (integrated planning, optimizing DERs)	Few	High – in a few states

Other Types of DERs Cost-Effectiveness Challenges

Type of DER	Challenges		
Demand Response: Price-Based (TVR)	Cost-shifting is the biggest issue		
Demand Response: Incentive- Based	Relatively few challenges		
Distributed Gen: PV	Lots of momentum in the wrong direction, RIM test is common, cost-shifting not addressed properly, benefits are mostly societal		
Distributed Gen: NEM	Cost-effectiveness is conflated with rate design		
Distributed Storage	Getting the right inputs		
Electric Vehicles	Getting the right inputs, benefits are societal		
Other Environmentally Beneficial Electrification (heat pumps etc.)	Getting the right inputs, benefits are societal		
Distribution System Planning (integrated planning, optimizing DERs)	Very complex process, different from resource screening Note: LBNL working on a Framework for iDER Analysis.		

NSPM DER Expansion - Scoping Tasks

- Review landscape of key DER studies/reports and B-C frameworks upon which to build
- Develop scope for guidance on benefit cost issues for each DER of interest
- 3. Develop scope for general guidance on core DER integration issues and CE testing
- Develop scope for guidance on avoided T&D (e.g., net locational benefits) for EE and other selected DERs
- 5. Estimate budget for developing guidance docs
- 6. Timeframe: May-Aug approx.
- 7. NSPM Adv Comm sub-group to help review scopes, budget estimates and prioritize
- 8. E4TheFuture with Adv Comm to seek leveraging funds

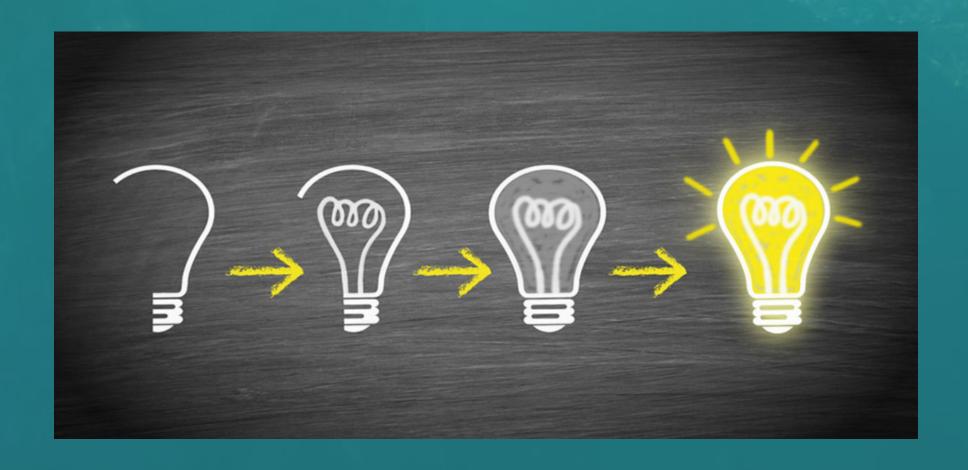
Thank you!

Julie Michals
NSPM Project Coordinator
jmichals@e4thefuture.org

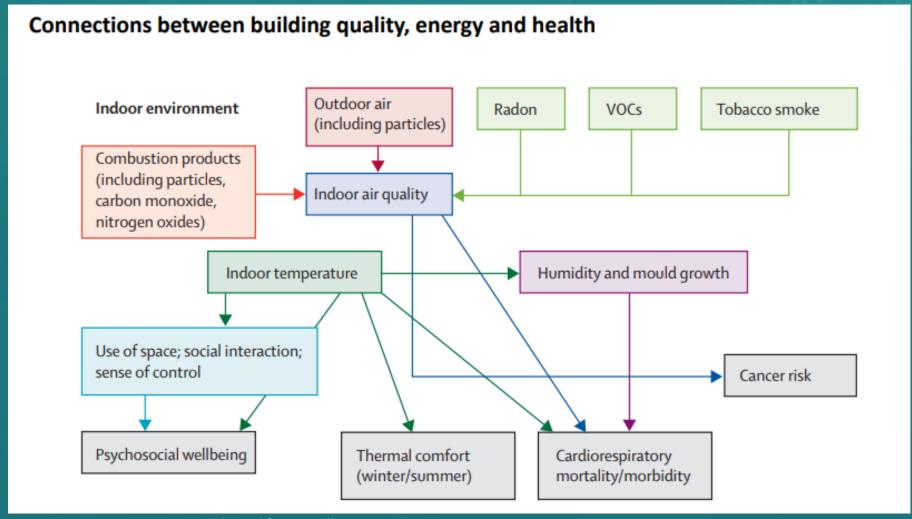
Lessons from Across the Pond

Samantha Caputo

Policy and Research


International Energy Agency (IEA) Workshop Beyond energy savings - The multiple benefits of energy efficiency

- Case studies on energy efficiency policies NEIs
- What do policymakers need?
- Methodologies for quantifying multiple benefits
- Effectively communicate energy efficiency policies and actions
- Impact on the macro-economy, indoor air quality, and transport-related air pollution


What are the lessons learned?

Health & Wellbeing Emerging as a Priority

The geographical coverage of the evidence base is limited

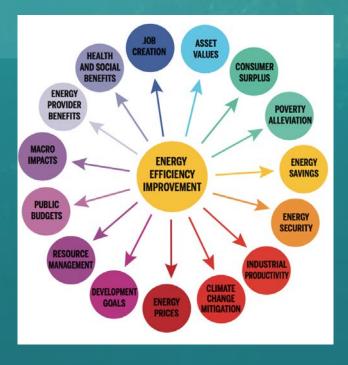
- Strongest: North America, Europe and other developed economies such as Australia and New Zealand, where policy evaluation has a longer history.
- There are still gaps
 - Interactive effects between exposures to indoor and outdoor air quality
 - Single family versus multifamily
 - Less evidence for commercial sector
 - Health impacts of reduced emissions from transportation

Communication is Key

- Engage meaningfully with other communities outside of the energy efficiency community
 - Ireland used health specialist who could speak to health benefits in the Health and Wellbeing program- provides EE upgrades to homes w/ chronic respiratory conditions
- Communication and engagement need to be a work stream in programs and policies to ensure success
 - Create individual narratives with scalability
 - Fit for purpose campaign, not a fit for all campaign
- Understand your target audience and their values.

Policymakers need a framework

National Standard Practice Manual


for Assessing Cost-Effectiveness of Energy Efficiency Resources

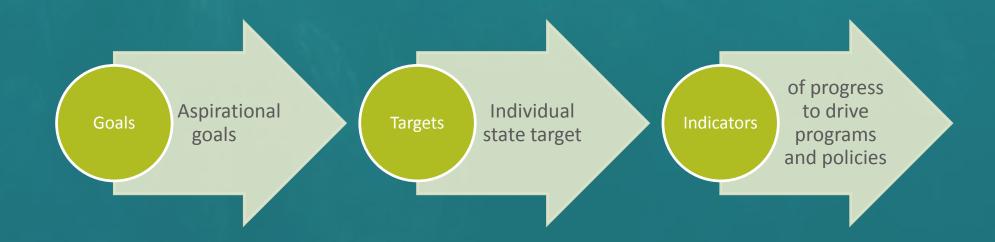
EDITION 1 Spring 2017

6 CLEAN WATER AND SANITATION

13 CLIMATE ACTION

8 DECENT WORK AND ECONOMIC GROWTH

14 LIFE BELOW WATER



How to use these frameworks?

Thank you

IEA's Beyond energy savings: The multiple benefits of energy efficiency

Samantha Caputo Scaputo@neep.org

Cost-effectiveness and Non-energy Impacts – Northeast Experience

Greg Clendenning, NMR Group, Inc. Nathan Caron, DNV GL

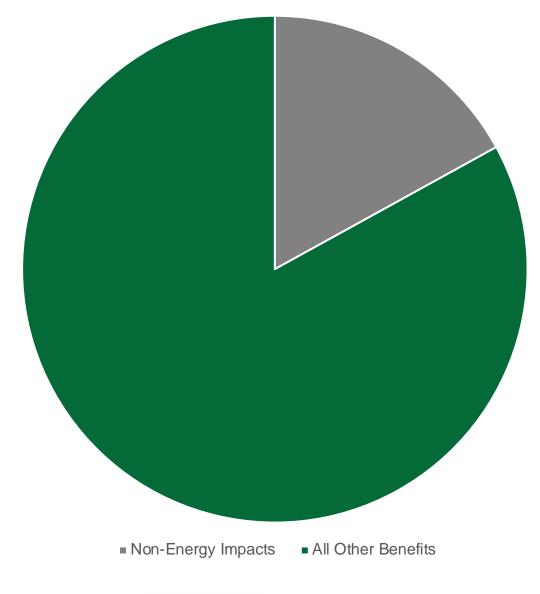
Cost Effectiveness and Non-Energy Impacts

NEEP EM&V Forum

Greg Clendenning, NMR Group, Inc. Nate Caron, DNV GL

May 8, 2018

Overview of Presentation


- Cost Effectiveness Sensitivity Analysis:
 - Massachusetts:
 - Large # of NEIs accepted
 - Magnitude of NEIs
 - Impacts of NEIs on cost-effectiveness on
 - » Portfolio
 - » Individual initiatives
 - Pennsylvania:
 - Narrow set of NEIs first accepted for 2016-17 Program Year
 - Impacts of NEIs on cost-effectiveness on portfolio
- Current Studies: Health and safety impacts
 - Low-income Multifamily Weatherization
 - Energy-efficiency retrofits in schools

Massachusetts: Background

MA NEI Framework Study

- What is the current inventory of NEIs claimed by the MA Program Administrators?
- How important are NEIs to initiative design and marketing?
- What are the areas of potential NEI overlap—creating a risk of double counting—within and across residential and C&I initiatives?
- How important are NEIs to achieving the cost-effectiveness of the Program Administrators' current and planned initiatives?

Massachusetts – Magnitude of NEIs

Massachusetts Claimed NEIs

Residential

Health benefits

Home durability

Lighting quality and lifetime

Noise reduction

Thermal comfort

Property value increase*

Low Income: Utility Perspective

Arrearages

Bad debt write-offs

Customer calls and collections

Price hedging

Rate discounts

Safety related emergency calls

Terminations and reconnections

Low Income: Owner/Occupant Perspective

Equipment maintenance

Health benefits

Home durability

Improved safety

Lighting quality and lifetime

Noise reduction

Property durability

Reduced tenant complaints

Thermal comfort

Rental unit marketability

Increased property value*

Commercial & Industrial

Administrative costs

Material handling

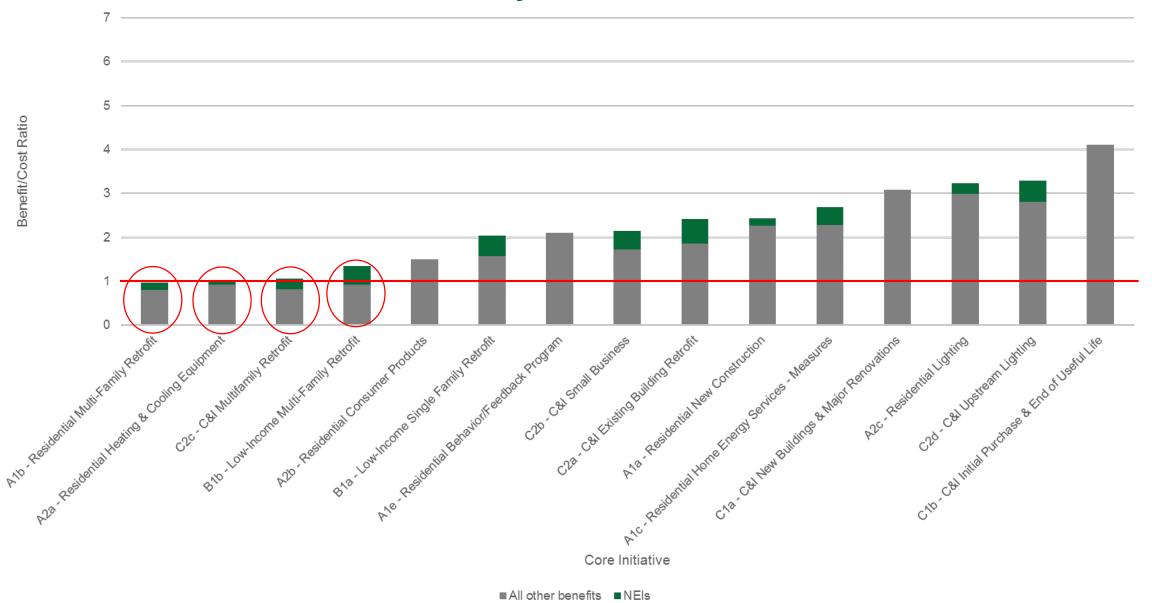
Material movement

Operations & maintenance

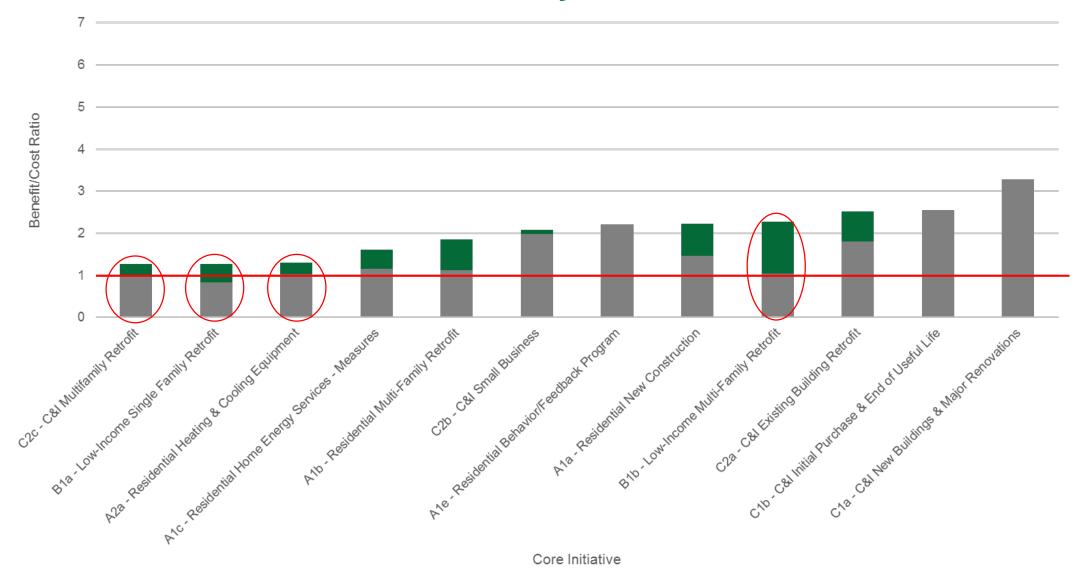
Product spoilage

Sales revenue

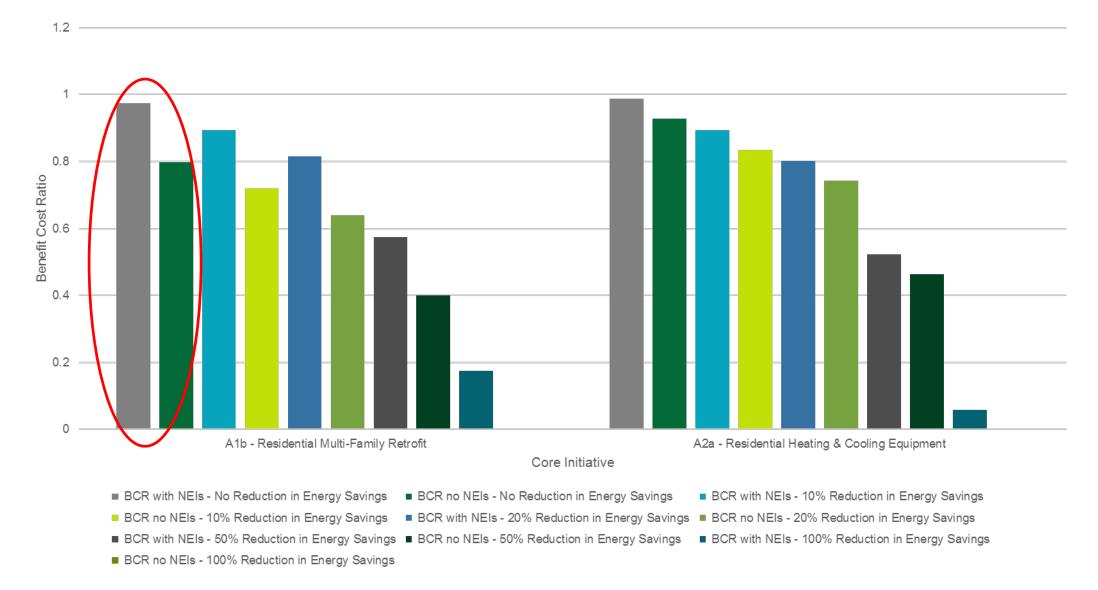
Waste disposal


Water and sewer savings

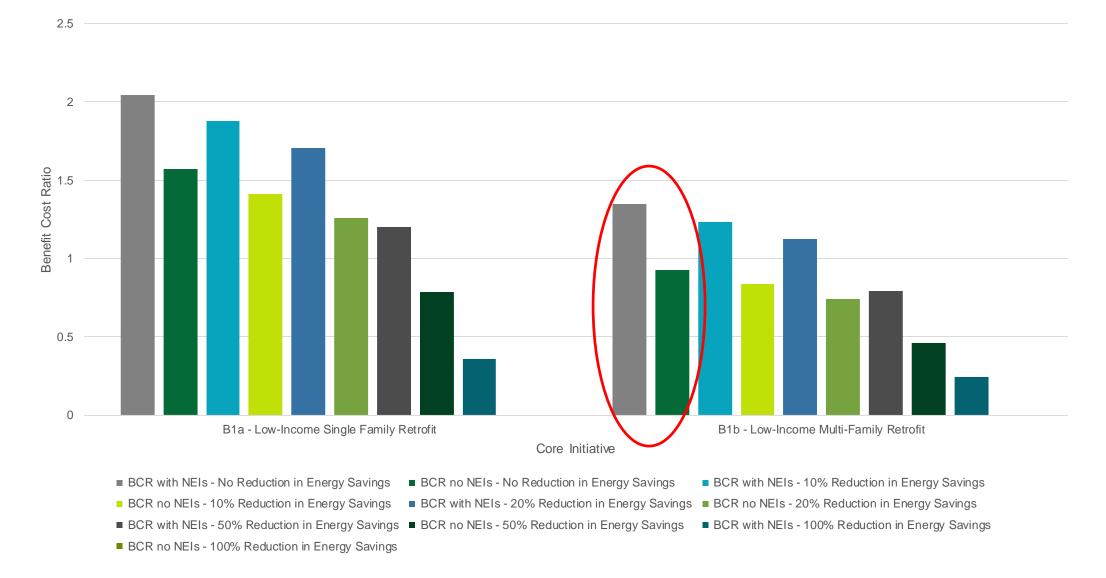
Rent revenue*

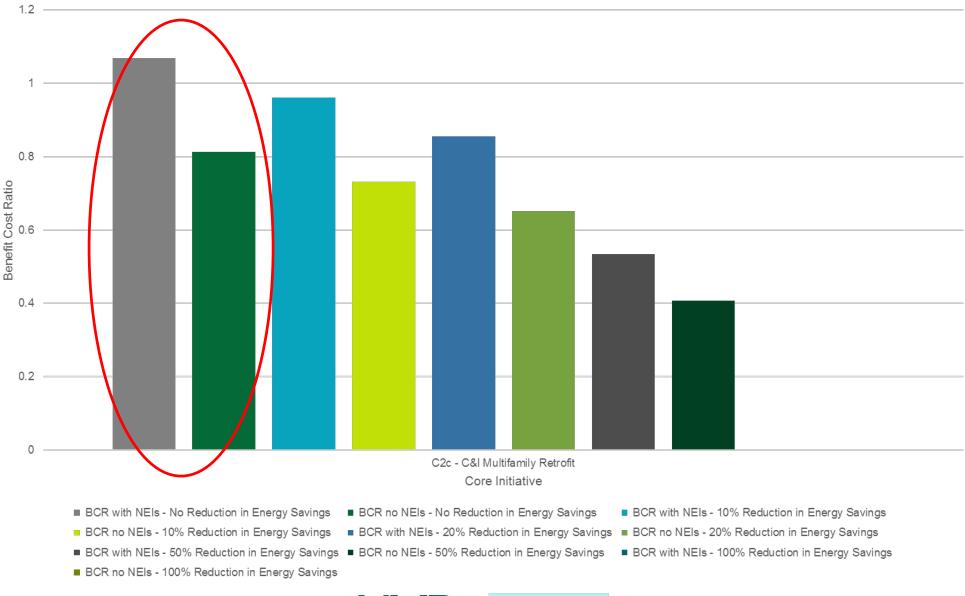


Massachusetts – Benefit/Cost Analysis - Electric

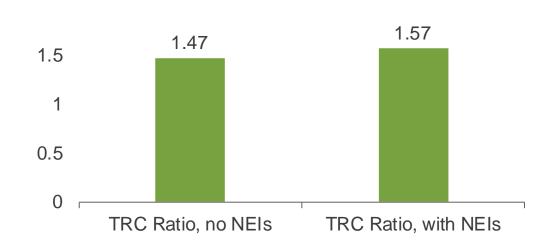

DNV-GL

Massachusetts - Benefit/Cost Analysis - Gas


MA Sensitivity Analysis – Electric - Residential


MA Sensitivity Analysis – Electric – Low Income

MA Sensitivity Analysis – Electric – C&I



Pennsylvania: Background

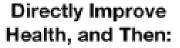
- Act 129: Governs electric energy efficiency programs in Pennsylvania
 - Applies to 7 largest electric distribution companies (EDCs)
 - Directs the Public Utility Commission (PUC) to use a TRC Test to analyze the benefits and costs
 - PUC TRC Order:
 - Provides guidance, methodology, and formulas for properly evaluating cost effectiveness
- 2016 TRC Order:
 - Directed EDCs to include fossil fuel and water impacts in Phase III TRC
 Test
 - First time inclusion of NEIs

Pennsylvania: TRC Sensitivity Analysis

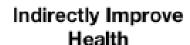
- EDC evaluations excluded fossil fuel or water savings from TRC benefits
- Statewide Evaluator (SWE) calculated the water and fossil fuel savings for 2 measures offered in 2016-17 program year:
 - 66,000 faucet aerators
 - 39,000 low-flow showerheads
- An additional \$30 million in TRC benefits
- Increased the statewide gross TRC by
 7.3% from 1.47 to 1.57

Current Research: Health and Safety Impacts Low-income Multifamily Weatherization

Weatherization Programs Install Measures That:



Physically Change Homes in Ways That:



Save Households Money, and Then:

Common physical changes include:

- 1- reduced allergens and pests;
- 2- improved thermal performance;
- 3- reduced mold and mildew; and
- 4- increased noise insulation.

Common health improvements include:

- reduced asthma symptoms;
- 2- reduced thermal stress;
- 3- fewer colds and flu;
- 4- reduced poor mental health days; and,
- 5- reduced # days of poor rest/sleep.

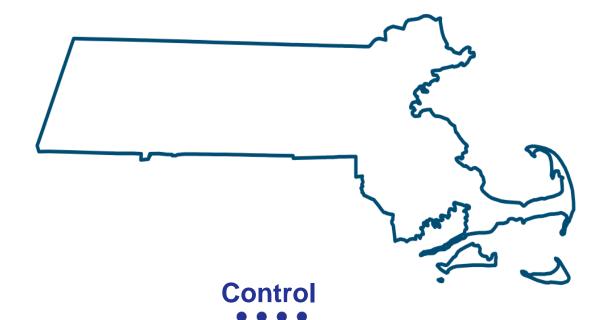
Common ways that health improvements indirectly save money include:

 reduced missed days of work from being sick or having a household member being sick (results in less lost income); and,
 reduced out-of-pocket expenses incurred from illnesses.

Source: Impacts of Weatherizing Low-income Multifamily Buildings, by Three³

Low-income Multifamily Weatherization (LIMF)

- Previous research on SFH and mobile homes (MH):
 - Monetized improved health outcomes: \$937 / year (\$220 w/out avoided death)
 - Reduced asthma, thermal stress, missed days at work, CO poisoning, fires & increased home productivity
- Does comprehensive MF weatherization produce similar benefits?
 - If so, what is the magnitude of the benefits?
- WAP studies:
 - Demographics of MF building residents suggest they are a more vulnerable population on average than the occupants of SF or MH
 - Socioeconomic status and physical health
- Examine additional potential health impacts:
 - Trips and falls
 - COPD / other respiratory illnesses
 - Arthritis
 - Diabetes



Current Study: MA LIMF Weatherization

Comparison with Treatment (CwT)

buildings weatherized one to two years previously

Treatment (T)

buildings scheduled to be weatherized

buildings that have not been weatherized and not scheduled to be weatherized

The Impacts of Energy Efficiency in Schools

Improve Environment

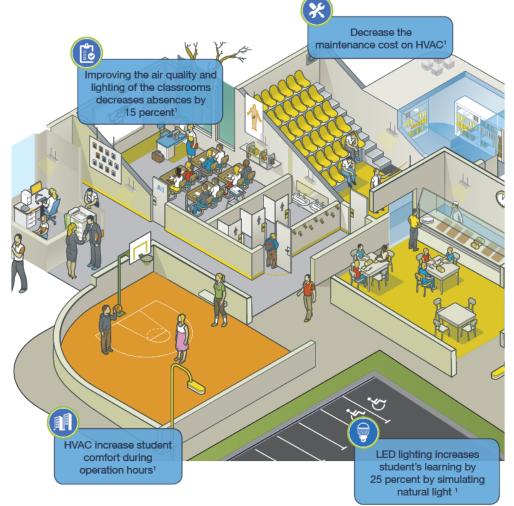
A failure or malfunction of any component of the HVAC system may subject student or faculty to discomfort and exposure to airborne contaminants. Relative humidity levels greater than 60 percent promote fungal growth. Reducing the risk of fungal grow to improve student and faculty health and decreasing absences by 15 percent.

Increased Productivity

LEDs can simulate daylight that increases student productivity by 20 percent and learning by 25 percent. LED can also improve student's mood and attention in the classroom.

Increased Comfort

HVAC systems in school districts are designed to maintain the indoor air temperature and humidity at comfortable levels for students and faculties. HVAC systems provide a cleaner, quieter, healthier and more comfortable learning and working environment for students, teachers, and staff. Improved HVAC upgrades run quieter, reducing distractions stemming from noise.



O&M Cost Savings:

Energy management system (EMS) and HVAC controls lead to lower maintenance requirements, reduced costs for maintenance, and maintenance materials. Equipment life for the updated energy efficiency products also increased for school districts.

Operations & Maintenance Cost Savings

Equipment	Energy Savings	Non - Energy Savings	Total Energy Savings	Energy Payback	Non - Energy Payback
Lighting	\$2,961	\$7,670	\$10,632	3.10 yrs.	0.86 yrs.
VFD	\$906	\$0	\$906	2.11 yrs.	2.11 yrs.

1. LOCAL GOVERNMENT CLIMATE AND ENERGY STRATEGY SERIES: Energy Efficiency Programs in K-12 Schools: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs. U.S. ENVIRONMENTAL PROTECTION AGENCY, 2011.

NMR Group, Inc.

DNV GL

Greg Clendenning, Ph.D.

Director

Phone: 617-284-6230 x3

Email: gclendenning@nmrgroupinc.com

Nate Caron Consultant

Phone: 207-773-0110 x45102

Email: nathan.caron@dnvgl.com

Co-Authors: Three3, Inc.

Sponsors: Massachusetts Program Administrators