

The Current Flavors of M&V

Michael Li, US Department of Energy, Moderator Jeff Perkins, ERS Pasi Miettinen, Sagewell Jaden Crawford, Whiskerlabs Dave Korn, Cadmus

ADVANCED M&V

MEASURE, UNDERSTAND, KNOW

NEEP M&V FORUM October 3, 2017 Jeff Perkins

Reasons for Evolving M&V

- 1. More rapid data analysis
- 2. Improve programs during implementation cycles
- 3. Improve evaluations with little or no extra costs
- 4. Understand and manage demand curves
- 5. Evaluate GHG impacts of programs and measures
- 6. Efficiency as a grid resource

CHALLENGE-

CHANGE

SHAKE UP-

DISRUPT!-

Integrated Resources

Can Energy Efficiency Compare with:

- Distributed Generation?
- Renewable Energy?
- T&D Upgrades?

Traditionally, system planners have deeply discounted energy efficiency at the grid level.

Retiring Power Plants

A host of U.S. nuclear power plants closed or closing

Even more coal plants offline

Dealing with SONGS Closure

2014 All Resources Procurement

- Implement portfolio solution to address local peak
- Demonstrate DSM can be used to meet capacity & reliability
- > 125MW of Efficiency Projects

Providers of efficiency solutions are required to meter the savings delivered.

Efficiency for Capacity Needs

Demand Management Program (DMP)

Replacing Indian Point 2,000 MW

- ➤ 1,000 MW from Hydro-Quebec
- > Renewables, CHP, other Generation
- Energy Efficiency
 - 100 MW of Efficiency Upgrades
 - Targeted 2-6 pm, Jun-Sep

Non-Wires T&D Solution: BQDM

Install \$200 million <u>customer side</u> resources to defer building a \$1 billion substation

ers

conEdison

Most Desirable DSM

ers

Increased Value of Efficiency

A premium paid for targeted efficiency when it can be measured and confirmed.

DEMAND MANAGEMENT PROGRAM

In addition to the current program offerings, increased incentive rates will be offered to eligible Con Edison electric customers for energy improvements that provide summer on-peak demand reduction.

Project Type	Before DMP	DMP Offer		
Thermal Storage	\$600/kW	\$2,600/kW		
Battery Storage	\$600/kW	\$2,100/kW		
DR Enablement	\$200/kW	\$800/kW		
Chiller/HVAC/BMS/Controls	\$0.16/kWh	\$0.16/kWh + \$1,250/kW		
Lighting	\$0.16/kWh	\$0.16/kWh + \$800/kW		

Targeted Efficiency

Real-Time, Near-Time M&V
 Efficiency hits target window
 No room for error

Specific knowledge needed
 Which measures where
 In which sectors
 Which incentives to adjust
 Measures to add/delete
 How to target marketing

The Neighborhood Program

EI BE WIT I BE W

COMPANY THAT ILE BUT

19988 (1987) 1997; 111 (S.

THE R. LEWIS CO., LANSING MICH.

Most Desirable DSM

Planning & Forecasting

ers

The Evolving Grid...

ring Power Plant

It's Really About Data

1.283

1.267

1.251

1.245

1.234

Retiring Power Plan

300 m

200 m

100 m

1.283

Defining Advanced M&V

Data Analytics

- Machine Learning & Artificial Intelligence
- People Learning & Real Intelligence
- Engineering & Statistical Analysis
- What is granular data?
- What is the value to the energy sector?
- The future of E and M and V?

ers

Whole Building Data

The Role of AMI Data?

Scoping and snooping?
Billing analysis?
What sectors?
Is it really "big" data?

Sources of Data

Real-Time, Near-Time, Full-Time

RESIDENTIAL

NEBs: Building Health

Schools and learning outcomes...

SCHOOLS

FOUNDATIONS FOR STUDENT SUCCESS

HOW SCHOOL BUILDINGS INFLUENCE STUDENT HEALTH, THINKING AND PERFORMANCE

HARVARD SCHOOL OF PUBLIC HEALTH Center for Health and the Gobal Environment

Who Owns Advanced M and V?

Possible Value Streams for M and V

PROGRAMS

- Temporal and locational targeting and confirmation of CDM/DSM
- Evaluation of projects and programs

IMPLEMENTERS

- Contract performance
 monitoring
- Spot changes in use, impacts on usage, identify positive/negative shifts

OWNERS

- Better understanding of facility usage
- Building health
- Workplace analytics, productivity analysis

JEFF PERKINS VICE PRESIDENT OF BUSINESS OPERATIONS

978-521-2550 x207

JPERKINS@ERS-INC.COM WWW.ERS-INC.COM

Have you read Zondits today?

Advanced Evaluation and Measurement NEEP Hartford, CT

10-3-2017

G Smart Meter

01234 kWh

56789

12:34:56

Non-regulated utilities Pay-for-performance programs "Fail Fast"

Valuation using actual costs, not "regulatory" costs Increasing visibility into the data business Continuous iterative M&V + faster cycles

Capacity cost increase: the set up for a perfect storm

Boston area utilities

3x capacity cost increase

~40% increase in procurement costs

2% - Negative energy prices

Capacity > Energy

AMI meter analysis provides visibility into the business

"David was there all along, I just undressed the stone"

-Michelangelo

Reference load shapes Individual customer level analysis

A state of the state of the

Modeled vs. actual load shapes by customer class

Significant implications for:

DSM valuation

Rate setting

One customer, one week

Shape shifting amoeba: residential peak load distribution

Fall Saturday

Animation from Sagewell SageSightSM AMI meter data analytics software

Result: EM&V will change

THE NUMBERS GAME

CHRIS ANDERSON & DAVID SALLY

Principles: Precision vs. accuracy Look for obvious successes – do more Look for obvious failures – stop "Fail fast"

- Case studies:
- Weatherization
- Heat pump impact measurement
- Behavioral peak load reduction email program

Peak: 1.8 kW average summer coincident peak 0.1 kW peak reduction 5.6%

Reported reduction:

13,938 kW/ 20,745 participants = 0.67 kW

37% peak reduction from weatherization?

Precise but not accurate? Will "deemed savings" approach survive?

Q2 2017 Electric & Gas Summary Report

*Prior to 2016, benefits were only reported in Q2 and Q4. Benefits in the other quarters are shown as zero.

As of Q2 2017	Participants 🔍	Total Expenditures	Annual MWh Savings	Lifetime MWh Savings	Summer / Capacity (kW)
🖃 Residential	3,593,671	\$ 270,393,187	584,086	4,475,067	79,313
Residential Whole House	1,139,855	\$ 162,093,278	232,877	1,157,469	37,935
Residential New Construction	5,134	\$ 7,059,826	7,184	109,228	3,066
Residential Multi-Family Retrofit	19,417	\$ 18,031,125	9,310	91,805	833
Residential Home Energy Services - Measures	20,745	\$ 111,740,730	87,548	826,601	13,938

Source: Masssavedata.com

0.5-1 kW peak reduction over old equipment Equivalent to high efficiency central AC

If you just look at AC impacts... no advantage But...

2,000-6,000 kWh of "beneficial electrification" Significant carbon reduction \$300 to \$1,000 of additional contribution margin Verdict: continue

Note: ductless systems vs. ducted systems outcomes Change focus to favor ducted over ductless? Decoupling still a good idea? Recouple?

QUEST

2015, "great success" – 10-15% peak reduction 2016, 5-day heat wave – 2-3% reduction, fatigue Daily evaluation of success

2016, at 3 other utilities: 5-10% <u>increase</u>! Total failure; end program, celebrate, move on

The catch

= 100,000 data points/yr

5 million meters & 5 yrs = 2.5 Trillion Traditional databases New EM&V software firms will emerge Analysis and analysts will evolve

WHISKERLABS

Jaden Crawford October 3, 2017

Company Overview

- Sensor & software services platform company delivering total home intelligence
- Expertise in big data processing, thermodynamic modeling & consumer engagement
- HQ in Oakland, CA w/ lab in Germantown, MD - privately held, backed by top VCs

Thermodynamic Modeling

Granular Weather Data

Today's Home is Not Really Connected

<10/6</pre>
of all devices
connected

Or Is It?

Whisker Labs Energy Sensor

Typical Energy Data

Our View of Energy Data

Detecting Efficient vs. Faulty Window AC

Inefficient Systems Produce Less Cooling & Use More Energy

Connected Savings Programs & Pilots

Connected Savings Programs & Pilots

- Residential DR as a reliability product
- Residential DR, HVAC optimization, and behavioral EE for peak load reduction
- Whole home energy monitoring & HVAC fault detection
- Risk mitigation and short-term supply/demand optimization for residential electricity retailers
- Persistent virtual energy auditing & optimized measure implementation*

EM&V is Critical to Everything We Do

But No Single EM&V Approach Works for Everything We Do

- Our customers have differing objectives & preferences
- Rules, data sources and data access differ by program type, by jurisdiction and by customer
- Programs are designed to do different things and can't always be measured the same way
 - Mile markers vs. micrometers vs. measuring cups
- Program budgets are always tight
 - There may not be sufficient program-level benefit to warrant the cost of collecting, storing, analyzing, and protecting large amounts of customer data

WHISKERLABS

Advanced M&V

NEEP 2017 EM&V Regional Fall Meeting Hartford, CT October 3, 2017

Claimed Savings

- Project Summary
 - Custom lighting project
 - Replaced metal halides with LEDs, added staged dimming
 - Assumed 7,200 lighting hours of use (HOU)
- Energy Savings

– Annual savings of ~266,000 kWh

Desk Review

- Personnel Interview
 - Confirmed installation of proposed measures
 - Adjusted HOU from 7,200 to 6,935
- Energy Savings
 - Annual savings of ~255,000 kWh

Advanced M&V

- Modeling Approach
 - Split AMI data into pre and post-installation periods
 - Merge with data from additional sources (weather, occupancy, schedules, etc.)
 - Fit separate models to pre and post dataset
 - Apply models to typical year conditions
 - Take difference in response

Process

Advanced M&V

58

Advanced M&V

Post Metering

- Metering
 - Summer only (August, early September)
 - May skew low
- Energy Savings
 - Annual savings ~173,000 kWh

Post Installation Metering

Results

Method	kWh Savings	Realization %	Notes
Claimed Savings	266,000	NA	7,200 hour claimed operation
Desk Review	255,000	96%	Hours reduction
Post Metering	173,000	65%	May be skewing low for summer
Advanced M&V	186,000	70%	108% of metered

Closing Thoughts

- Use of AMI (advanced analytics) versus traditional approaches is not a binary choice
- Traditional M&V varies from not so accurate to very accurate (and expensive)
- Some other businesses have lower or different M&V requirements
- Even 1-hour AMI data can give great results for simple C&I projects

CADMUS

Dave Korn

Vice President, Energy Services

Dave.Korn@cadmusgroup.com

Facebook.com/CadmusGroup

@CadmusGroup

Linkedin.com/company/the-cadmus-group