Emerging Technology: Opportunities and Challenges Associated with Controls

David Jacobson, Jacobson Energy, Moderator
Why The Focus on Controls?

- Many types, purposes and end uses – e.g. lighting, HVAC, building energy management systems (EMS), other
- Relevant for DR and EE programs
- Useful for evaluation and for savings - not limited to just the technology that they control
- “Smart” technologies and the integrated EE/DER environment are both growing; the DER environment needs to understand consumption patterns – both at end use levels and whole building, location-specific information and rapid feedback
- P.s. on accuracy: *For a sample of technologies like advanced LED lighting controls and VRF systems feedback is that accurate data acquisition is not a priority or if available not used.*

• What information can control technologies provide?
• What are the issues/barriers to successful leveraging of control technologies *to provide both additional savings and valuable EM&V data?*
• What recommendations do we have for strategies/best practices to make these support success?
Experience using EMS data in EM&V work
Background and definitions

DMI’s Role:

- Providing EM&V field work for impact evaluation studies
- Site-level field data collection and analysis
- Not (yet) EM&V 2.0 - a/k/a Advanced EM&V

Definition of Data Sources (in DMI’s opinion):

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Equipment Installed By</th>
<th>Type of Equipment</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend data</td>
<td>Controls Contractor</td>
<td>Building Energy Management System</td>
<td>Permanent*</td>
</tr>
<tr>
<td>Meter data</td>
<td>Evaluation Contractor</td>
<td>Portable dataloggers</td>
<td>Temporary</td>
</tr>
<tr>
<td>Interval data</td>
<td>Utility Company</td>
<td>Utility gas or electric meter</td>
<td>Permanent</td>
</tr>
</tbody>
</table>

*May require configuration by evaluator
Using building EMS data for EM&V: Example 1

• CDA (Comprehensive Design Approach) Evaluation Study

• Example of using post-installation/Cx trend data to verify implementation of measures and to calibrate evaluation model
 • ECMs: Condensing Boilers, Heat Recovery, High eff. Chillers, Static Pressure Reset, Low dP filters, VFDs on fume hood exhaust fans, DCV in classrooms, and lighting.

• Specific examples of trend data use to verify and measure ECM performance
 • HW supply temp, AHU static pressure and VFD speed, space CO₂, and OA damper positions

• When analysis of trends is complete, adjust model inputs to reflect actual operations

• Trend data was not the only source of information for this study – supplemented other meter data collected by evaluator, such as motor kW, amperage, etc.
Using building EMS data for EM&V: Example 2

• HVAC retrofit measure evaluation-Particle Counters w VFD Control of Fans, Low Pressure Drop Filters

• Trend data was only source of specific ex post measurements – no supplemental metering by evaluator at equipment level
 • Site had restricted access to cleanroom areas and site operations did not allow shutdown of AHUs to install meters

• Specific examples of trend data use to verify and measure ECM performance
 • VFD speed, fan motor current, fan status, particle count readings

• Additional sources of data were used
 • Whole building interval data allowed a confirmation of pre / post energy use
 • TA vendor and installing contractor had collected fan current meter data using dataloggers
Pitfalls and shortcoming of using EMS data

• Data Accuracy
 • Important to verify accuracy of trended data points
 • Some values are more suspect than others
 • Can’t get make/model of sensors
 • Can’t verify whether any necessary calibration or maintenance steps were taken
 • Can’t verify whether the point on the front end screen is actually what it says it is

• Data availability
 • Most building operators will tell you that there are trends available, but “your mileage may vary”
 • Local operators usually unfamiliar with how to set up new trended points or extract data
 • Bringing in trained controls technician to set up trends typically adds cost
 • Not all building equipment connected
 • Site personnel unwilling or unable to share production data or other proprietary information

• Conclusions from field experience:
 • Not (yet) generally feasible to rely solely on EMS data for EM&V
 • Cannot easily rely on accuracy of trend data, but in many cases, trend data, if available, is better than no data
 • EMS trend data not reliable for measuring motor kW accurately, but revenue grade submeters are out there
Some Possible Solutions – How evaluators can help advance the energy efficiency industry

• More Stringent Requirements for Program Participation
 • Require demonstrated trending capabilities of key variable before final rebate payments is made
 • Stress test system to make sure controls measures don’t have unintended consequences

• Pre-Installation Trending of Controls Projects
 • For projects over a certain size require some trended data of pre-conditions for controls projects and non-controls projects where trending is needed
 • Consider paying for collection of pre-trending for larger project; part of engineering fee

• Accuracy of EMS sensors
 • Work with major EMS/controls manufacturers to determine accuracy of sensors ahead of time; pre-qualify

• Budget for Acquiring Trending Data in Impact Evaluations
 • If only way to get trend data is for customers to bring in their controls vendor to set up trending at a cost they do not want to bear, offer to reimburse them for reasonable charges to set up needed trending, often less than $1,000 per site
Emerging Technology: Opportunities and Challenges Associated with Controls

Michael Myer, PNNL
Controls as an Efficiency Measure: Opportunities and Challenges

MICHAEL MYER
Pacific Northwest National Laboratory
EM&V Annual Public Meeting
Lighting Controls in Commercial Buildings

2012 paper reviewing:
- 240 savings estimates
- 88 papers

Average energy savings
- 24% occupancy sensors
- 28% daylighting
- 31% personal tuning
- 36% institutional tuning
- 38% multiple approaches

Baseline & Controls
- Non-LED loads
- Legacy controls

Govt. Office LPD – Total Site and Per Zone

Govt. Office – Savings by Retrofit Action

- Pre-Retrofit Baseline
- Initial Configuration
- Final Configuration
<table>
<thead>
<tr>
<th>Site</th>
<th>FL to LED Only</th>
<th>Occupancy Control</th>
<th>Daylighting Control</th>
<th>Task Tuning</th>
<th>Total: LED with All Controls</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Brewery</td>
<td>50%</td>
<td>10%</td>
<td>6%</td>
<td>*</td>
<td>66%</td>
<td>Pre-retrofit occupancy sensors</td>
</tr>
<tr>
<td>2 – Office</td>
<td>64%</td>
<td>-2%</td>
<td>5%</td>
<td>**</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>3 – Med Office</td>
<td>29%</td>
<td>24%</td>
<td>9%</td>
<td>***</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>4 – Retail (Grocery)</td>
<td>30%</td>
<td>3%</td>
<td>~</td>
<td>33%</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td>5 – Office</td>
<td>43%</td>
<td>-1%</td>
<td>4%</td>
<td>24%</td>
<td>70%</td>
<td>Pre-retrofit occupancy sensors</td>
</tr>
</tbody>
</table>

*Tuning at this site was negligible as it only applied to a very few fixture in one area.

**Task tuning was not separately done at this site. Fixtures were shipped to the site with 88% output effectively applying a 12% tuning.

***Task tuning was done at two different steps at this site in direct coordination with both FL to LED replacement and Daylighting Control savings and therefore not separately.
NEEP Field Evaluation

Baseline: LED fixture

<table>
<thead>
<tr>
<th>Site</th>
<th>Occupancy Control</th>
<th>Daylight Control</th>
<th>Task Tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Brewery</td>
<td>19%</td>
<td>13%</td>
<td>~ *</td>
</tr>
<tr>
<td>2 – Office</td>
<td>-5%</td>
<td>16%</td>
<td>12% *</td>
</tr>
<tr>
<td>3 – Med Office</td>
<td>34%</td>
<td>12%</td>
<td>34% *</td>
</tr>
<tr>
<td>4 – Retail</td>
<td>4%</td>
<td>~</td>
<td>47%</td>
</tr>
<tr>
<td>5 – Office</td>
<td>-2%</td>
<td>7%</td>
<td>43%</td>
</tr>
</tbody>
</table>

*Estimated values

- Advanced occupancy sensors actually lead to cases of negative savings in outlier cases
- Greater sensor resolution / more sensitive?
- Differences in time settings?
Issues/ Barriers that impede successful leveraging of controls technologies

Costs

- LED equipment saves significant energy \rightarrow limiting cost recoveries from controls
- Commissioning / user expectations / settings

- DesignLights Consortium has standardized report guidelines as part of the Networked Lighting Control Systems

- Energy Efficiency Lighting Program Committee

- Working Groups:
 - Developing data / recommendations for lighting information for TRMs
 - Energy Efficiency Program Design Guide
 - Energy Efficiency Best Practices
 - Energy Efficiency Lighting Quality Metric for Best Project Outcomes
Promising technologies solve current problems with EM&V of control systems?

- **Energy Reporting**
 - DOE studying energy reporting accuracy
 - Smart power strips
 - Street lights

- **Communication**
 - No more isolated building systems
 - EMIS
 - Lighting
 - HVAC
 - Plugs

- **Standardized data sets / structures**
 - Building Energy Data Exchange Specification (BEDES)
 - DesignLights Consortium has standardized report guidelines as part of the Networked Lighting Control Systems
Integration with building control systems – EM&V opportunities?

- Industry moving from widgets to systems
- The increase of systems leads to more complex M&V and controls
- Other Energy Benefits (OEBs) – beyond the specific system
 - Example – occupancy sensors part of lighting system interacting with HVAC and plug loads
- Non-energy benefits
 - Space utilization – using occupancy sensors to detect which spaces are used more / less frequently
 - Asset tracking – RFID tags on track occupancy for better space utilization and possibly greater energy savings
 - Many other non-energy related applications