Looking At Laundry: Heat Pump and Hybrid Clothes Dryers Enter the U.S. Market

Elizabeth Titus, NEEP, Lexington, MA Brian McCowan, ERS, Andover, MA Rebecca Foster, VEIC, Burlington, VT

Presentation Overview

Why Dryers?

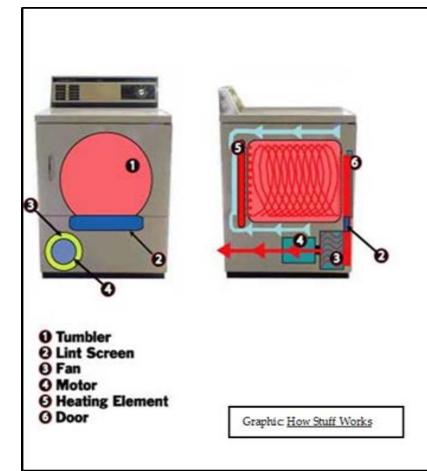
- Technology Overview
- Market Status

Building a Case for Savings

- Baseline Conditions
- Savings Assumptions

Where We're Going

- Super Efficient Dryer Initiative
- Updating Test Procedures and Standards



WHY SHOULD WE CARE ABOUT DRYERS?

Old Fashioned Technology

Electric Dryer Operation

- Motor and controls operate on 120 v.
- Resistance coils operate on 240 v.
- Coil(s) are cycled on/off depending on the temperature settings and sensors. Some dryers have two separately controlled coils.
- One motor drives the fan and the tumbler. The fan draws air across the heating coils and forces it through the tumbler drum.
- Older dryers with electro-mechanical controls have no standby energy usage.

Dryer Technology Advancements

Improved sensors & auto-termination controls

- Hybrid and full heat pump electric clothes dryers
- Ultrasonic dryers (TBD 2017)

Market Status

1930s

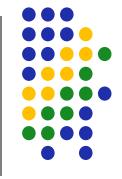
Electric dryers first introduced in the US

Q4 2014

- LG and Whirlpool awarded the ENERGY STAR 2014 Emerging Technology Award (ETA) after introducing hybrid heat pump dryers to US market
- 68 efficiency program providers offered incentives for ENERGY STAR dryers
- 7 efficiency program providers offered incentives for 2014 ETA dryers

Early 2015

Arcelik / Blomberg introduced a third ETA dryer - compact, full heat pump model


— January 2016

- 80 ENERGY STAR electric dryers (US Market)
- 27 ENERGY STAR gas dryers (US Market)
- 10 ENERGY STAR Heat Pump Models (Beko, Blomberg, Whirlpool, Kenmore & LG)

2017

Anticipated market introduction of new ultrasonic dryer technology (GE and ORNL)

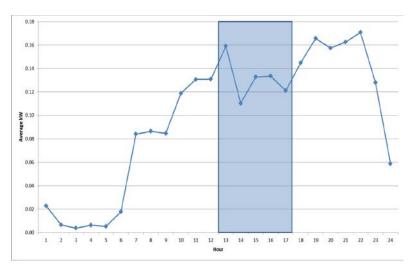
BUILDING A CASE FOR SAVINGS

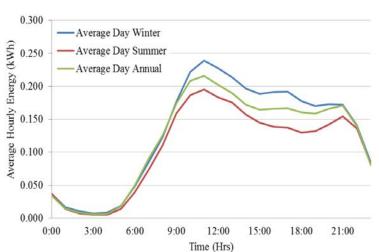
Baseline Conditions: NEEA & NEEP EM&V Forum Study Key Findings

Key Finding or Factor	NEEA Study	NEEP Study
Average annual energy usage (kWh) per single family household of 2.8 ¹	915	993
Average # of dryer loads per year	311	439 ^{2, 3}
Average annual dryer runtime (hours)	307	351 ²
Average drying time per load (minutes)	56	48 ³
Reported percentage of washer loads dried in dryer (opposed to hang dry)	93.5%	79%
Increase in drying time for heavy fabrics	13%	NA ⁴
Percentage of medium & high temperature settings selection	50/50%	NA
Cycle time variation for medium & high temperature settings selection	None	NA
Average annual standby energy usage (kWh)	1.5	1.1
Energy savings associated with auto-termination vs. timed drying	None	NA
Energy penalty associated with make-up air (kWh - electric resistance heat)	NA	120
Percentage of horizontal axis (front load)washers in study	23%	62%

¹ NEEA study actual average household size was 2.8 – NEEP study normalized to 2.8 (note: only annual energy usage is normalized for household size)

 $^{^{4}}$ Limited metered data demonstrates some increased drying time during winter months




² Extrapolated from partial year metered data

³ Difficult to differentiate distinct loads from "touch-up" loads

Load Shapes Vary By Region / Season

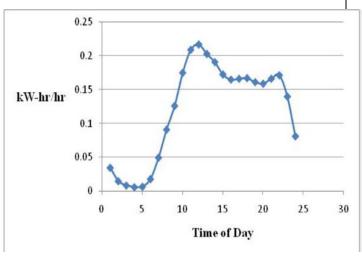
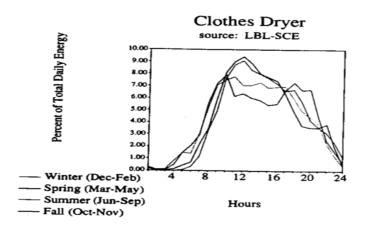
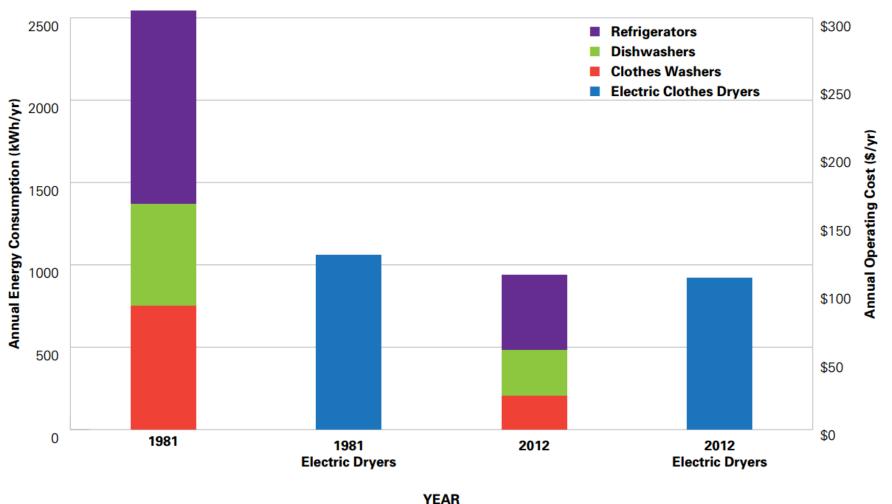



Figure 10. Daily Load Shape - Clothes Dryer source: LBL-SCE

Annual Energy Usage: Comparison To Other Jurisdictions


NEEP Baseline Study: 993 kWh

- NEEA (2014): 915 kWh
- DOE EIA's Residential Energy Consumption Survey (2001): 1,079 kWh
- Southern California Edison (1991): 1,070 kWh
- BPA / ELCAP (1986): Existing homes 918 kWh and new homes 987 kWh
- Progress Energy Florida (1999): 885 kWh
- Multi-Housing Laundry Association (2002): 993
 kWh

How Dryers Stack Up

Source: A Call to Action for More Efficient Clothes Dryers: U.S. Consumers Missing Out on \$4 Billion in Annual Savings. http://www.nrdc.org/energy/files/efficient-clothes-dryers-IB.pdf

Conclusions From NEEP Study

- Average annual energy usage for monitored sites: 1,060 kWh
- Average annual energy usage, normalized for avg. household size of 2.8: 993 kWh ± 129*
- Daily load shape is relatively flat between 11am and 10pm
- Highest average demand occurs on weekends
- Seasonal variations: colder months require more energy
- Dryer runtime average: 48 minutes
- Average number of loads: 439**
- Make-up air energy consumption varies: estimated to be: 120kWh; 2.3 gals fuel oil; 3.2 therms NG, or approximately 12% of dryer energy usage

ASSOCIATION OF ENERGY SERVICES PROFESSIONALS

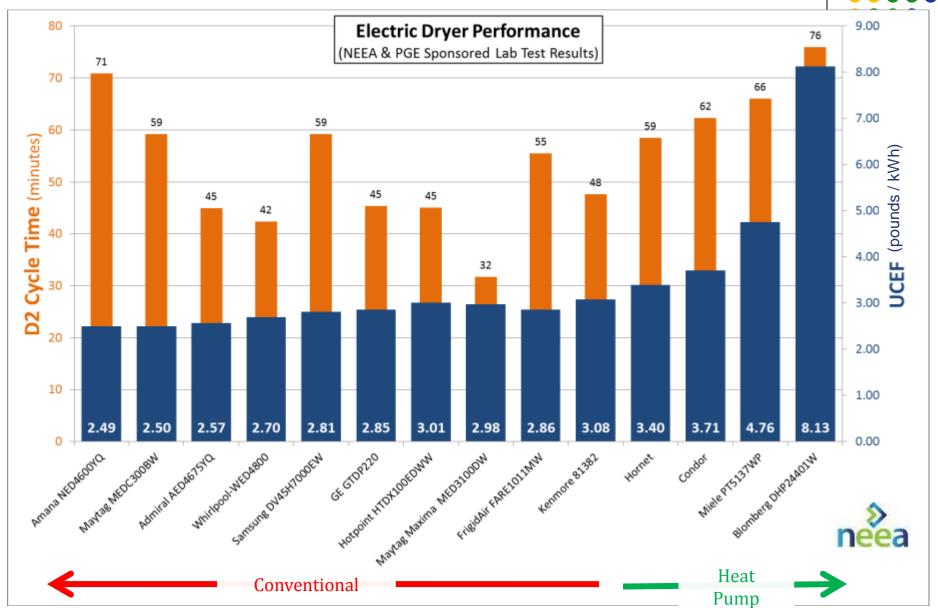
^{*} Applying a standard 90% confidence interval analysis results in ± 13%, although this statistical analysis is not fully appropriate for the sample and for extrapolated data

^{**} Estimated from metered data – difficult to differentiate distinct individual loads from "touch-up" loads

How Do We Measure Savings?

Three approaches in the absence of field performance data on high performance dryers

- Gather data in lab tests
- Use ENERGY STAR calculations
- Gather baseline information


Future field data will improve savings estimation

 NEEA Field Evaluation Report (Q1 2016) includes an evaluation of Whirlpool and Blomberg dryers

Lab Testing Approach

ENERGY STAR Approach

- ENERGY STAR uses a baseline CEF based on D2 test procedure tests for small sample of standard dryers
- CEF = test load size (8.45 lbs) / Machine electric energy use during standby and operational cycles
- Loads/year = average loads from RECS (2009)

ENERGY STAR Calculator

 http://www.energystar.gov/sites/default/files/asset/docu ment/appliance_calculator.xlsx

Approach Using Baseline Data

Using baseline field evaluation data and 20% savings (3.93 CEF for ENERGY STAR dryers)

Annual kWh savings = baseline annual kWh - baseline annual kWh x 0.8 = 199 kWh

Using baseline field evaluation data and 30% savings (4.5 CEF for hybrid heat pumps)

Annual kWh savings = baseline annual kWh – baseline annual kWh x 0.7 = 298 kWh

Full heat pump dryers have CEF = 5.7 for compact load (3 lb.) Full heat pump dryers have CEF = 10.4 for standard load *Savings increase with full heat pump models:* ~700 kWh

WHERE WE'RE GOING

Future Test Procedures and Standards

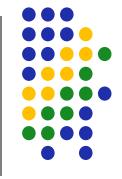
DOE released an RFI regarding amendments to the 2015 clothes dryer standard in March 2015

- Adding a class for standard sized non-venting electric dryers
- Assessing several dryer technologies, including heat pump and microwave technology
- Considering requiring "full cycle testing" (D2 test procedure)

Potential plans for 2016/2017 advanced dryer specifications

- CEE clothes dryer specification
- 2017 ENERGY STAR Most Efficient criteria for clothes dryers

SEDI in 2015/2016


Increase builder industry engagement and SEDI Call to Action on Multifamily

Develop both retail and commercial sales with retailer and distributor/dealer sales channels

Address needs in new home industry for partnership

- Longer term commitment to rebates
- Streamlined point-of-sale rebates
- Budget & rebate levels need to be set to support early acceleration in market

CLOSING: ADD DRYERS TO YOUR PORTFOLIOS AND JOIN SEDI!

Elizabeth Titus Senior Manager, Research and Evaluation NEEP 781-860-9177 x111

etitus@neep.org

Brian McCowan
Senior VP of Technology and Development
ERS
978-521-2550,x301
bmccowan@ers-inc.com

Rebecca Foster
Director, Consulting
VEIC
802-540-7882
rfoster@veic.org

