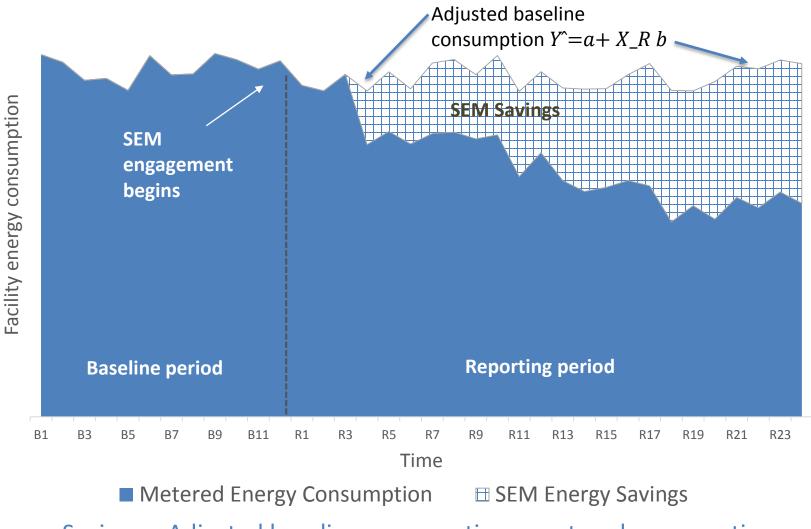


Perspectives on SEM Evaluation Northeast SEM Collaborative Workshop

Jim Stewart, Ph.D.


November 8, 2017

- Overview
- Best Practices
- Advances
- Measure Life

OVERVIEW

SEM Energy Savings

Savings = Adjusted baseline consumption – metered consumption

The Evaluation Problem

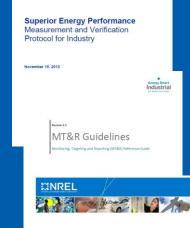
- Baseline must be estimated
 - Accuracy of savings estimate depends on baseline validity
- How to estimate baseline?
 - How to assess validity?

- Why do we care?
 - Credibility and acceptance of SEM energy savings

How is SEM Program Evaluation Different?

- Multiple energy end uses
- Small % savings
- Lifts EE program
 participation
- Uncertain measure life

BEST PRACTICES


SEM EM&V Protocols

PROTOCOLS

- IPMVP (2012) Option C
- ASHRAE-14 (2014) Measurement of Energy, Demand, and Water Savings
- U.S. Department of Energy Superior Energy Performance Measurement & Verification Protocol (2016)
- BPA Monitoring, Tracking, and Reporting Reference Guide 6.0 (2017)
- CA Industrial SEM M&V Guide (2017)
- U.S. Department of Energy Uniform Methods Project SEM Evaluation Protocol (2017)

TOPICS

- Characterization of facility
- Data collection
- Methods for calculating adjusted baseline
- Baseline model validation
- Savings estimation
- Non-routine adjustments

Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol

The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

My 2018 - April 2018 James Stewart, Ph.D. The Cadmus Group Portland, Oregon NEEL Technical Monitor, Charles Kumik

HEE, is a national introduction of the U.S. Dynamission of Ener Official Elevany Billichers, K. Sensewake Energy, LUC This area to a scalar at a cost of statutantief Energy, LUC This area to a scalar at a cost of non-the latitatical Energy (LUC Latoratory (INEE) at more negleopublications. Bubcommer Report HEE, 100, 7A4-0-8316 May 2017

DOE UMP SEM Program Evaluation Protocol

Published in 2017

 https://www.nrel.gov/docs/fy17 osti/68316.pdf

 Goal: provide guidance about best practices for estimating savings

Development

Technical Experts and TAG

– Public comment

Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol

The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

Created as part of subcontract with period of performance July 2016 – April 2018

James Stewart, Ph.D. The Cadmus Group Portland, Oregon

NREL Technical Monitor: Charles Kurnik

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Subcontract Report NREL/SR-7A40-68316 May 2017

Contract No. DE-AC36-08GO28308

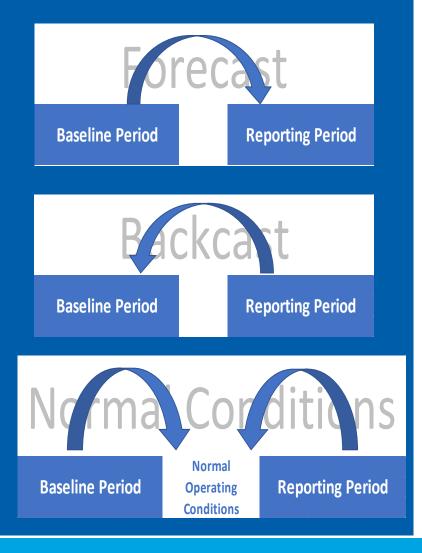
UMP Measure Description

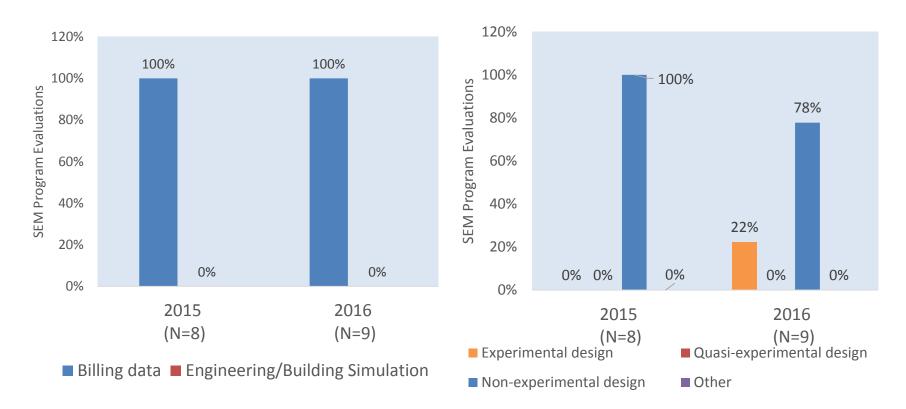
- Strategic Energy Management (SEM)
 - Continuous improvements in energy efficiency
 - Systematic and planned changes in facility O&M, behaviors, and capital upgrades
- Energy Management Systems (EnMS)
 - 1. Establish management support, policy, and goals
 - 2. Identify and implement savings opportunities
 - 3. Track progress
 - 4. Update goals and plans
- CEE Definition and Minimum Elements

Application Conditions of Protocol

- Estimating energy savings is the goal
- Facility-level data are available
 - Baseline and reporting periods
- Possible to construct a valid facility energy consumption model
 - Predictive accuracy
- Expected savings can be detected statistically

UMP Savings Calculation Approach

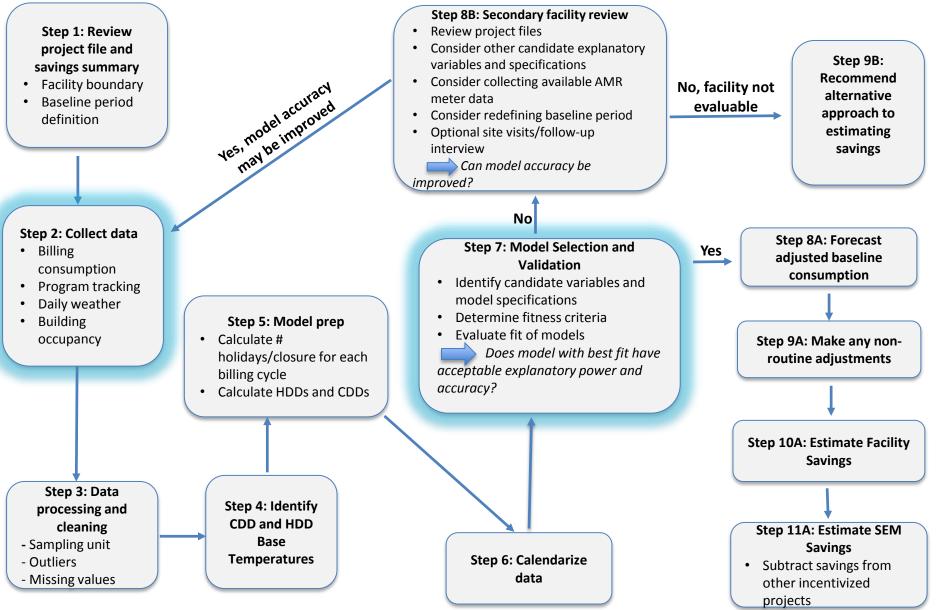

- Facility ≡ unit of analysis
- Estimate savings for individual facilities
- Define facility boundary
- Collect data
 - Full year of baseline data
- Multivariate regression analysis
 - Validate model
- Non-routine adjustments
 - Use sparingly and should be based on engineering calculations


UMP Measurement and Verification Methods

• Regression models for estimating savings: $\widehat{Y}_t = a + X_t b$ -Forecast models

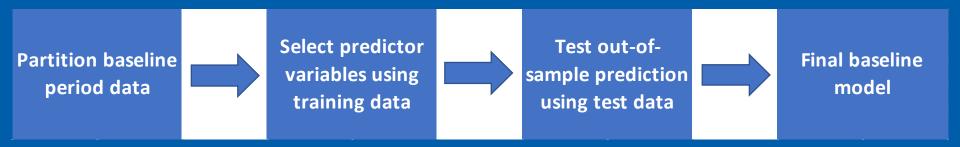
- Backcast models
- Normalized operating conditions models

SEM Evaluation in Practice


Source: CEE Behavior-based program database for 2015 and 2016. Utility SEM or CEI programs that estimated or planned to estimate energy savings.

ADVANCES

16


SEM Impact Evaluation Steps

Application of Machine Learning to SEM Evaluation

True model is unknown and may be complex

- With AMI data, large number of candidate variables and functional forms to choose from
- Evaluation benefits of machine learning
 - Can improve prediction of baseline consumption
 - Uncover generalizable patterns
 - Avoids overfitting

Barriers to Use of Machine Learning Methods

Data availability

- AMI meter data
- High frequency output data for industrial facilities
- Regulator and program administrator acceptance

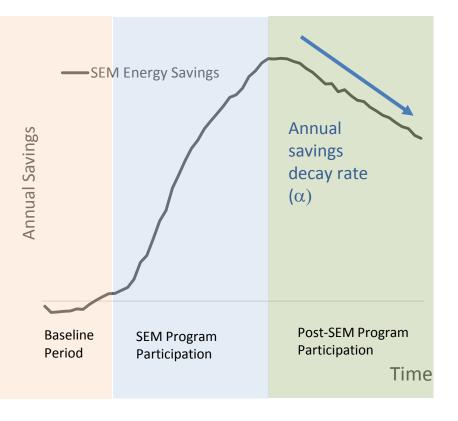
• LBNL studies

- Granderson et al. (2016)
- Evaluation of EE in schools
 - Burlig, Knittel, Rapson, Reguant, and Wolfram (2017)

SEM MEASURE LIFE

SEM Measure Life

- Cost-effectiveness
- Long-term goal of SEM programs is lasting change in facility energy management
 - Do SEM savings persist?


40% 33% SEM evaluations (N=12) 30% 25% 25% 20% 10% 8% 8% 0% Two Years Three Years Five Years Not One Year reported or not determined

SEM program measure life assumptions

Measure Life

Source: 2014 CEE database for SEM programs that estimated energy savings

Framework for Estimating SEM Measure Life

Annual savings decay rate (α) = $\frac{s_t - st_{+1}}{s_t}$

Measure life = $\frac{Lifetime Savings}{Annual Savings}$

 $\frac{\text{Example}}{\text{Annual savings }s}$ Savings decay rate $\alpha = 25\%$

Lifetime savings = $s + s(1 - 0.25) + s(1 - 0.25)^2 + ...$ = s/0.25 = 4s

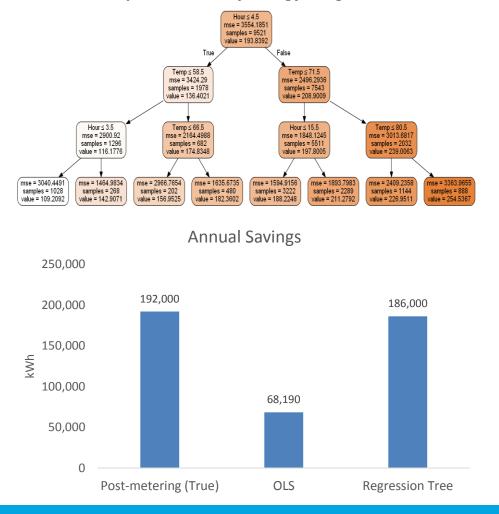
Measure life = 4s/s = 4 years

Estimating SEM Measure Life

- Estimate SEM energy savings after program engagement ends
 - Multiple years and facilities
- Calculate SEM savings decay rate and measure life

Challenges

- Measure life depends on length of engagement and facility type
- Facility closures
- Collection of postparticipation data


Thank You

Jim Stewart, Ph.D. Principal Economist Cadmus, Energy Services jim.stewart@cadmusgroup.com 503-467-7184

Automated Baseline Example

- Project summary
 - Custom lighting project
 - Replaced metal halide with LEDs, added staged dimming
 - Sub-metering of lighting load
- Compared savings estimates from submetering with those from regression tree and OLS regression

Two Variables: Temp and Hour of Day, Max Depth of Three, Response is Hourly Energy Usage in kWh

