

Regional Assessment of Strategic Electrification

NEEP Strategic Electrification Summit

June 29, 2017

Asa S. Hopkins, PhD – Synapse Energy Economics

Philip Kreycik – Meister Consultants Group

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

Synapse Energy Economics

- Founded in 1996 by CEO Bruce Biewald
- Leader for public interest and government clients in providing rigorous analysis of the electric power sector
- Staff of 30 includes experts in energy and environmental economics and environmental compliance
- Core project team: Asa, Kenji, Pat, and Ariel

Meister Consultants Group

- International Boston-based sustainability consulting firm specializing in next generation solutions to today's most pressing challenges
- Advises clients in the United States and across the globe on new strategies in fields such as energy, climate, water, and mobility
- Core project team: Neil, Philip, Jeremy

Outline

- Why Electrification?
- Defining "Strategic Electrification"
- Technology and Market Assessment: Buildings, Industry, Transport
- Market Barriers and Policy Assessment
- Looking toward 2050: Modeling and Impacts
- Next Steps

Decarbonizing via EE and zero-carbon electricity falls short

 95% zero carbon electricity on the grid, plus aggressive electric and thermal energy efficiency

- Emissions are nearly *triple* the goal of 80% reduction
- Conclusion: need to switch some or all of the direct fuel use to zero- or lowcarbon sources, like electricity

Fossil fuel use in New York and New England

4.2 Quadrillion BTUs per year of direct fossil fuel use

85% addressable with electrification technologies assessed in this report

Decarbonization context

"Strategic Electrification" means...

- powering end uses with electricity instead of fossil fuels
- in a way that increases energy efficiency and reduces pollution,
- while lowering costs to customers and society,
- as part of an integrated approach to deep decarbonization.

Technology and Market Assessment

Buildings: Space and water heat

- Heat pumps competitive in markets dominated by delivered fuels or resistance heat, not natural gas
- Over time: Rising efficiency and more customer options

Space Heat

- Driven by air-source; ground-source play a role in new construction
 - Variable refrigerant flow growing in commercial
- 70,000 HPs installed in the region in 2015
- ASHPs are not always suitable as a fullbuilding solution
- Can be added to, rather than replace, existing heating systems
- Occupants must learn new habits to maximize ASHP benefits
- Residential market more advanced

Water Heat

- Market driven by like-for-like replacements
- HPs have lower market share than in space heating
- Limited by air and space needs
- Advancing technology
- Upstream rebates show promise to shift market

In electric arc furnacebased steelmaking, electric current travels through solid iron, melting and transforming it into steel without burning fuel

Industry

- Process heat and steam dominate addressable fuel use
- Process heat: glass, iron, and steel
 - Steel: Arc furnaces
 - More targeted heat than combustion-based tech
- Steam: food and chemicals
 - Resistance, electrode, induction, microwave
- Existing infrastructure dominates; transformation not governed by stock turnover
- Biofuels may be more attractive for facilities to reduce emissions

Transportation: Cars and light trucks

- All about electric vehicles
- EV charging infrastructure build out as market grows
- Customer economic proposition improving rapidly
- Annual sales of light-duty battery-powered electric vehicles have nearly doubled since 2013 – but market share is still small
- Lots of new models and increased range coming in the next few years
- Possible synergies with autonomous driving and "transportation as a service"

Transportation: Medium and heavy duty

- Fleet-based markets
- 20-year vehicle life expected slow turnover
- Less mature technology than cars; pilot stage adoption

Credit: Drive Electric Vermont

Percent of MDV/HDV Freight Trips <100 mi. by state of origin

Connecticut	91
Maine	87
Massachusetts	80
New Hampshire	72
New York	85
Rhode Island	59
Vermont	79
Region	85

- Long-distance
 - Electrification doesn't compare favorably to biofuels and increased engine and vehicle efficiency

Market Barriers and Policy Assessment

Market barriers

Many of these barriers also contribute to real or perceived investment risk, which drives up the cost of capital

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

Regulatory context

- Utility energy efficiency (EE) programs are a critical and well-funded tool that help states pursue GHG reduction goals
- Four major EE program barriers hinder strategic electrification:

Fuel switching rules	 EE programs generally cannot provide incentives to encourage switching fuels
Cost effectiveness requirements	 Heat pumps may or may not be deemed cost effective in each state
Utility incentives	 Electric decoupling removes incentive for utilities to push EV or HP tech Gas utilities will lose customers and may worry about stranded assets long term
Consumer incentives for fossil fuel appliances	 E.g. rebates for high efficiency condensing boilers While these may achieve short term EE savings, they lock customers into another 15-30 years of fossil fuel usage

Policy and program options

	Definition	Benefits
Mandates & Targets	 Mandates: obligations on private sector, public agencies, and utilities Targets: goals for deployment 	 Provides signals to investors If binding, can provide certainty on outcomes
Pricing- Based Options	 Policies that change costs of conventional and/or replacement technologies – e.g. incentives, rate structures, or pricing externalities 	 Overcomes upfront cost premiums Leverages private sector investment
Marketing, Outreach, & Education	• Efforts to raise local awareness among vendors, installers, and consumers	 Overcomes lack of awareness Strengthens commitment and interest from consumers
Emerging Financing & Business Models	 Policies to encourage/enable new models such as 3rd party ownership, ESCOs, mobility as a service, and standardization of financial contracts 	 Increases access to private sector innovation Overcomes upfront costs Simplifies consumer decision-making
QA/QC and EM&V	 QA: ensure that technologies meet minimum workmanship and performance standards EM&V: assess energy performance 	 Increases consumer confidence Unlocks performance-based incentives

Regional policy landscape - Buildings

NY

VERMONT

- Incentives for ASHPs and HPWHs through Efficiency VT and utilities
- GMP leasing ASHPs and HPWHs for RES compliance

NEW YORK

 NYSERDA developing rebate program for GSHP; targeting heat pump cost reductions

NEW HAMPSHIRE

- Developed first-in-nation RPS carveout for renewable thermal
- ASHP and HPWH rebates from individual utilities

VT

NH

MA

MAINE

 Significant uptake in residential ASHP/HPWH through Efficiency Maine rebate and financing programs (over 20,000 rebates FY14-FY16)

MASSACHUSETTS

- Integrating renewable thermal energy into Alternative Portfolio Standard
- Rebates for ASHP, GSHP, and HPWH through MassCEC and Mass Save programs
- Solarize Mass Plus will include heat pumps, EVs, and storage

CONNECTICUT

• Heat pump rebates available through Energize CT

RHODE ISLAND

ME

 Exploring workforce development programs to drive heat pump uptake (e.g. engaging delivered fuel dealers)

Regional policy landscape - Transportation

NEW HAMPSHIRE

TOU rate through Liberty Utilities for EVs

VERMONT

• Utilities offering EV incentives for Renewable Energy Standard compliance

NEW YORK

- Variable rebates for PHEVs and BEVs (Drive Clean Rebate)
- Incentives such as free use of certain HOV lanes and discounted EZ-Pass
- Residential and nonresidential TOU rates for EV charging (ConEd)
- Rebates for EVSE installation (EV Charger Rebate Program)

RHODE ISLAND

- Variable rebates for PHEVs and BEVs (DRIVE)
- Goal: zero-emission rail by 2050.

Looking Toward 2050

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

Getting to 80% GHG reduction by 2050

Assume we do the "right" things on efficiency, flexibility, and low-carbon electric supply:

- How fast do electrification markets need to transform to get to 80% GHG reduction?
- What if we also plan to use some bioenergy?
- What are the electric supply needs?
- What impacts should we expect on the grid, and on consumers?

"MaxElectric" case: 80% via electrification

GHG emissions 78% below 2001 levels by 2050 electrifying heat and on-road transport (get the rest from miscellaneous uses)

Electric consumption rises 58% from current levels

Markets need to transform fast

Electric Car & Light Truck Market

-All-In

2040

2045

2035

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

2050

"Optimistic" case: 70% from electrification

Res. HP market penetration: 5-15 years slower than "all-in" case

Light EV same through 2025, but slower after

Need biogas/biofuels to get to 80% reduction

Annual electric consumption rises 32% from current

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

Shifting seasonal load shape

- January consumption passes August in mid-2030s
- Need more than double the low-carbon electricity currently used in the region, biased toward winter
- One grid challenge: Reach and integrate new variable supplies

Higher efficiency HPs have grid benefits

- Illustrative calculation indicates that higherefficiency HPs can delay the region's shift to winter peaking by 4-5 years
- Clustering on distribution system => winter peaks sooner
- Potential for substantial T&D cost savings from winter EE

Displacing natural gas

- Biggest economic and emissions win from displacing oil in heating and transportation, and the market is going there today (with policy help)
- What if we stop there, and don't electrify natural gas end uses?

A long way from GHG goals:

Much less electric system impact:

Shared infrastructure → shared impacts

Electric load factor up

- Rate (\$/kWh) relief possible, if peaks are managed well
- New flexible end uses could avoid some infrastructure costs

Gas load factor down

- Increased rate pressure; risk of self-perpetuating cycle
- Equity issues
- Stranded cost risk

Costs for enabling infrastructure

• Who pays; who benefits?

Next Steps:
Policies and programs
Data and research
Thorny questions

Near-term policies and programs

Grow Markets

• Focus where it's most cost-effective (with greatest emissions reduction)

Get on Track

- ASHPs to **half** of delivered fuel heating system market by 2025
- ASHPs displacing natural gas in 2025 where delivered fuel market is today
- EVs to 1/4 of sales by 2025 (ZEV Rule target)

Examples

- Set explicit targets, goals, and mandates for electrification to create certainty
- Launch or support marketing campaigns to increase customer awareness
- Support and expand incentives for EVs, heat pumps, and heat pump water heaters
- Expand EV charging infrastructure, particularly in multi-family housing, workplaces, and fast charging for longer-distance travel
- Develop and scale new financing models for cost-effective electric technologies
- Continue characterizing technology performance

Data and research needs

- Data on the market uptake and performance of heat pumps and electric vehicles
- Pilots on the control and capabilities of electrification technologies as grid resources
- Analysis of the capacity of distribution circuits to meet electrification needs before significant upgrades are required
- Analysis of power supply and transmission options for a very different seasonal load shape, supplied by low-carbon resources, across the northeastern United States and eastern Canada

Thorny questions

- What are the appropriate roles for electric distribution utilities (including regulated EE programs) in fostering electrification?
- Do these roles require changes in the utility business model or regulatory paradigm?
- What is the right balance between biogas and electrification for current gas uses?
- What is the future of the natural gas utilities and their pipeline networks?
- What rate structures would help to advance strategic electrification, and will advanced meters be deployed if they are necessary to implement these rates?
- If incentives are going to play a significant role in advancing electrification, where will the money come from?

Asa S. Hopkins

ahopkins@synapse-energy.com

617-453-7060

Philip Kreycik philip.kreycik@mc-group.com 617-874-1313