Launching Into Space: Advanced M&V For Our Region

Moderator: Miles Ingram, Eversource
Michele Melley, CT Department of Energy and Environmental Protection
Sam Fernandes, LBNL
Chris Balbach, PSD
Teri Lutz, Michaels Energy
Pasi Miettinen, Sagewell
Standardized, Sustainable and Transparent EM&V – Integrating New Approaches in Connecticut

Michele Melley
NEEP Public Meeting: Stellar EM&V
Providence, Rhode Island
May 21, 2019
Standardized, Sustainable and Transparent EM&V- Integrating New Approaches in Connecticut

Funding

DOE Funding: Office of Energy Efficiency
Renewable Energy.
Cost Match: Project Partners

Project Goals:

This project will test the use of advanced data analytics and collection tools (M&V 2.0) through a statewide pilot and compare these findings with traditional M&V practices. The project team will transfer those results and experiences to other states along with additional EM&V 2.0 research and experiences from across the country.

Impact:

- Develop M&V 2.0 software tool standards and protocols
- Broad scale adoption and use of M&V 2.0 tools in CT based on pilot results
- State and regional education on automated versus traditional approaches to EM&V

Partners:

- NH, NY, RI, VT, NEEP, LBNL
- Eversource Connecticut (utility)
- United Illuminating (utility)

Stakeholders:

- State energy offices, regulators, utilities, program administrators, evaluators, system planners, facility managers
CT Advanced M&V Pilot: Status

Commercial Pilot-Completed

• Targeted 2-3 Dozen Commercial Buildings
• AMI Data
• RCx, Energy Opportunities, SBEA
• Compared Advanced M&V to “Traditional – savings estimates, time and cost.”
CT Advanced M&V Pilot: Status

Commercial Pilot- **Completed**

Resources/Deliverables-

- Utilities Traditional Savings Memo
- LBNL’S Implementation Resource Guide
- Pilot Results Memo-Coming Soon
- State Partner Workshops
- Outreach Plan
- Research Briefs/Guidance
Connecticut Department of Energy and Environmental Protection

CT Advanced M&V Pilot: Status

Progress

Transfer M&V Tool to Industry

• Utilities - Considering Use of Tool in Implementation Phase

 Project Criteria: expected savings > 5%, retrofit baseline, no DG

• LBNL-Trained CT Utility Staff
Residential Pilot - Planning Phase

Scope:

• Targeting ~ 2,000-3,000 CT “HES” homes
• Monthly Consumption Data- (not AMI)
• Compare the advanced M&V to “Traditional” savings estimates, time and costs
• NEEP will track the process of using these tools and share results with states.
NEXT STEPS

• Residential Tool Selected-Finalize Contract
• CT Utilities Provide HES Data –input Advanced M&V tool.
• Finalize Pilot Design
THANK YOU

• Michele Melley
• Michele.L.Melley@CT.gov
• 860-827-2621
Advanced M&V Savings Estimate Process

3-step project review sequence:

• Expected savings > 5%
• CUSUM chart profile relatively straight
• Compare advanced M&V savings estimate to traditional M&V savings estimate
Findings kWh and Fractional Savings

<table>
<thead>
<tr>
<th>Category</th>
<th>Trad. kWh</th>
<th>Adv. kWh</th>
<th>Fractional Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>234,032</td>
<td>231,361</td>
<td>12%</td>
</tr>
<tr>
<td>Category 2</td>
<td>588,840</td>
<td>254,604</td>
<td>26%</td>
</tr>
<tr>
<td>Category 3</td>
<td>59,738</td>
<td>-16,555</td>
<td>4.4%</td>
</tr>
<tr>
<td>Category 4</td>
<td>49,013</td>
<td>39,377</td>
<td>2.3%</td>
</tr>
</tbody>
</table>
Key Takeaways

• Early feedback + visibility into savings as they accrue.
• Identify underperforming projects
• Non-routine events could be detected in a timely manner

• Advanced M&V not proposed as a direct replacement for comprehensive EM&V
• Pilots in other regions reveal similar trends
For more information: https://buildings.lbl.gov/emis/assessment-automated-mv-methods

ecrowe@lbl.gov , sgfernandes@lbl.gov

THANK YOU!

More details on our tool:

https://github.com/LBNL-ETA/RMV2.0
M&V Lessons Learned –

Duke Energy “Smart Energy Now” Behavioral Energy Savings Program

Chris Balbach, PE, CMVP, CEM, BESA
NEEP Stellar EM&V
Annual Public Meeting
May 21, 2019
High Level Overview

~ 65 participating buildings
 • 11 million+ conditioned square foot
 • Savings compared to “2010” baseline period
 • Savings target (%) set at community level

Variety of Building Types
 • Offices / Financial Services
 • Hotels / Retail
 • Mixed Use Buildings
 • Municipally Owned Buildings
 • Jail / Courthouse

All Buildings represented by EPA Portfolio Manager
GOAL:
- Leverage large quantities of data

BARRIERS / ISSUES:
- Need to create *meaning* from the flood of *measured* data
- Real time (max 15 minute delay) feedback required
- Maintain Privacy

PSD SOLUTION:
- Real time *Whole Community* “efficiency meter” with a *community wide view of performance*
- Real time *Whole Building* “efficiency meter” for Building mngrs

INNOVATIONS REQUIRED:
- Provide guidance to building owners & occupants to operate efficiently *and neither reward nor penalize economic growth*
- Use *transparent* M&V approach to developing savings adjustments (eventual third party EM&V review)
Issues with Non Routine Event(s)

Issue 1: Buildings gain / lose tenants...

Issue 2: Building Specific “Savings” can be difficult to interpret...

Issue 3: Automated analysis of ‘savings’ data can reveals patterns - but not causes...

Behavioral Experiment Savings

Reduced lighting use due to behavioral experiment

Recording Changes (Non-routine Adjustments)

Overestimated Savings

- Reduced number of PCs
- Reduced number of occupants

Office Bldg x - Total Conditioned Gross ft²

Thousands of ft²

Issue 2: Building Specific “Savings” can be difficult to interpret...

Issue 3: Automated analysis of ‘savings’ data can reveals patterns - but not causes...
• **Issues Discovered**
 - Customers lacked incentive to record/ update “Building Characteristics”.
 - Building Managers lacked a “Peer Comparison” to drive competition.
 - Economic Impact of recession was significant (2011+).
 - Duke Energy unable to leverage system data for program claimed savings (3rd party EM&V)

• **Lessons Learned**
 - Improve approach by ‘custom’ building generation of ‘EPA Scaling Factor’.
 - Onboard EM&V consultant with technology approach as soon as possible.
Thank you for your time and attention!

Chris Balbach, PE, CEM, CMVP, BESA
Vice President of Research and Development
Performance Systems Development of NY, LLC
124 Brindley Street, Suite 4, Ithaca, NY 14850
http://www.psdconsulting.com
Pay for Performance

✓ What is P4P?
✓ What are the objectives?
✓ How can it be achieved?
✓ What else should be considered?
Pay for Performance

What is it?

- P4P programs reward energy savings on an ongoing basis as the savings occur
- Savings - and payments - based on metered data

Sort of like this… but smarter.
What are the objectives?

- Procure EE investment
- Shift from flat-rate rebate to market-based
- Increase EE savings and persistence over time
- Deliver locational and time savings to support/secure grid
- Stimulate innovation in program design
Pay for Performance

How can it be achieved?

✓ Smart metering infrastructure
✓ NMEC: Normalized Metered Energy Consumption
✓ Transparent open source tools, such as OpenEEMeter
✓ Empirically tested methods, such as CalTRACK
Considering Actionable Intelligence to...

Engage Customers
What are customers likely to do in the near and longer-term future?

Pay for Performance
What financial incentives drive the desired behavior?

Energy Forecasts/Grid Management
How does a program design change affect energy forecasts?

Inform Design & Delivery
What is the baseline? How are customers using energy?
THANK YOU!

Teri Lutz
Michaels Energy
trlutz@michaelsenergy.com
Common Sense M&V
Goals, AMI Analytics Methods & Outcomes
NEEP Stellar Evaluation
May 21, 2019

Pasi Miettinen
CEO, Sagewell, Inc.
pasi@sagewell.com
Total housing stock: 100 %
% of all homes that get energy audit/yr: 3 %
% of above homes that weatherize: 33 %
Avg. weatherized home energy Savings: 10 % 100%
Annual energy savings from weatheriz.: 0.1 %
Weatherization savings from last 10 years: 1 %
Spending on EE programs/yr in MA: $500 Million

Peak reduction: typically 10% to 15%
Programs often assume 40%+
Effectiveness requires: $Q \times I$
(Quantity times impact)
Heat pump trends

MA Heat pump sales Q4 2014 – Q4 2018

MA Residential Heat Pump Market share – through ‘17

Excludes municipal utilities

MA Residential Heat Pump Market share – through ‘18

More than 3%
2% - 3%
1% - 2%
0.5% - 1%
Less than 0.5%

Excludes municipal utilities
If we electrify home heating, what technology should we use?

- Not all heat pumps are worth the same environmentally or economically
- Ductless heat pumps are typically not used for heating
 - Must remove fossil fuel system to achieve results
- Ducted heat pumps use about 4,000 kWh/yr more than average home
 - Reduce CO2 by 30% to 50% over natural gas and oil

Data from **Sagewell SageSight**^SM^ AMI meter data analytics software and Sagewell's AMI meter data library
Importance of experimentation & failure

- “Fail fast” is important
- Celebrate failure, but change programs!
- EV Case study: trial and error
- Success! Finally! AMI data to the rescue.

<table>
<thead>
<tr>
<th></th>
<th>Option 1: AMI Data-driven prgm</th>
<th>Option 2: hardware</th>
<th>Option 3: hardware</th>
<th>TOU Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market penetration potential</td>
<td>85%</td>
<td><30%</td>
<td><30%</td>
<td><30%</td>
</tr>
<tr>
<td>Effective off-peak charging success</td>
<td>95%+</td>
<td>80%+</td>
<td>50%+</td>
<td>33%</td>
</tr>
<tr>
<td>Works with Teslas?</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Works without connectivity issues?</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

| | Market penetration potential | 85% | 30% | 30% | 25% |
|----------------------|---------------------------------|--------------------|--------------------|----------|
| Effective off-peak charging success | 95% | 80% | 50% | 33% |
| Maximum peak reduction | 81% | 24% | 15% | 8% |

WHAT IF:

<table>
<thead>
<tr>
<th></th>
<th>Market penetration potential</th>
<th>85%</th>
<th>30%</th>
<th>30%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective off-peak charging success</td>
<td>30%</td>
<td>80%</td>
<td>50%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>Maximum peak reduction</td>
<td>26%</td>
<td>24%</td>
<td>15%</td>
<td>5.0%</td>
<td></td>
</tr>
</tbody>
</table>

Load shapes – EV, load management & solar
Afternoon Break is sponsored by: