Creating A Cleaner Energy Future For the Commonwealth

Raising the BAR: Building Asset Rating in Massachusetts
January 29, 2013

Northeast Energy Efficiency Partnerships &
Massachusetts Department of Energy Resources
TODAY’S WEBINAR

- Background motivation for MA pilot
- Building Energy Rating Overview
- Phase I - Innovative Methods
- Phase I - Lessons learned
- Phase I - Findings
- Phase II - Scope and Goals
WHY RAISE THE BAR?

- MA Global Warming Solutions Act
 - 25% GHG reduction by 2020
 - 80% GHG reduction by 2050

- 2020 Clean Energy & Climate Plan
OTHER THINGS ARE RISING!
OPPORTUNITY

• Have to invest in upgrading our buildings
 ➢ Owners/investors lack information on efficiency opportunities
 ➢ Cost of comprehensive audits is ‘too high’
 ➢ Custom audits currently not scalable
PATHWAY TO EE INVESTMENTS

Awareness of Energy Use
Market Value
Building Owner Motivation
Invest in EE
VALUE OF ASSET RATINGS

How does my building compare?

How does my building compare?

Where are the “calories” used?
LABELS MATTER TOO

......but not our focus

Creating A Cleaner Energy Future For the Commonwealth
FOCUS OF MA BAR PILOT

• Existing buildings
 ➢ Vast majority of building stock
 ➢ Have usage data to calibrate
 ➢ Major energy efficiency retrofit opportunities

• Commercial office use type
 ➢ Significant % of C&I buildings
 ➢ Competitive market for tenants

• Building on LEED and ENERGY STAR rating
• Building Energy Rating coming soon to ???

Creating A Cleaner Energy Future For the Commonwealth
CAN WE IMPROVE BUILDING ANALYSIS?

BAR Pilot tests new methods:
1. Streamlined modeling tools
2. Prioritization of key data inputs requires less reliance on building plans & schedules
3. Use new data sources: satellite imagery; interval meter meter analysis
4. Modeling inferences based on previous building analysis
RAISING THE BAR: GOAL

- **Goal:** Identify cost-effective, scalable methods to assess “as-built” buildings and systems
 - Compare energy use intensity between buildings, independent of tenancy
 - Enable market valuation
- **Scope:** Commercial office buildings
- **Two phases**
 - Phase 1: Testing innovation (2011-2012)
 - Phase 2: Scale Demonstration (2012-2013)
BAR PILOT - PHASE 1

- 11 office buildings modeled by 4 teams
- Stress test across building types
 - Construction: 1871 to 2010
 - Size: 32,000 to 1,025,000 sq ft
- Funding:
 - Barr Foundation
 - ARRA
 - US DOE SEP competitive award
- National Partners: US DOE, PNNL, CA CEC
- Local Partners: Boston & Cambridge
METHODOLOGY
- Ian Finlayson
MA BAR METHODOLOGY

3 step energy modeling process:

• Data collection: energy use data, building drawings, site visit, etc.

• Calibrate energy model: develop energy model calibrated to prior year usage data

• Generate asset model: normalize calibrated model parameters to neutralize impact of tenant operations
ADJUSTING FOR ‘NORMAL’ TENANTS

- Actual bill
- Operational
- Asset

- Heating & Hot Water
- Plug & Misc. Loads
- Base load

Creating A Cleaner Energy Future For the Commonwealth
Operational Model

- **Heating:** Boiler X
- **Cooling:** Chiller Y
- **Lighting:** 100% T8s
- **Occupant Density:** 300 sf / person
- **Occupancy Schedule:** 8 am - 7 pm
- **Plug Loads:** 0.8 w / sf

Asset Model

- **Heating:** Boiler X
- **Cooling:** Chiller Y
- **Lighting:** 100% T8s
- **Occupant Density:** typical
- **Occupancy Schedule:** typical
- **Plug Loads:** typical

Normalization: operational > asset
OPERATIONAL TO ASSET: End Use Changes

Operational factors
- Long hours
- Process loads
- Data centers
- Operational inefficiencies (long start-up time)

Asset normalization
- Lighting down (schedule)
- Plug load up
- Process load removed
- Occupancy up
- Heating up
- Cooling down
TRADITIONAL APPROACH - PHASE 1

- ASHRAE level II Audit - lite
- Typically 1 day site visit
- Developed e-Quest or Trane Trace energy models
- Calibrated models generate Operational EUIs
- Substitute reference loads for Asset Rating EUIs
- Cost range $15k - $30k per building

Creating A Cleaner Energy Future For the Commonwealth
ALTERNATE METHODOLOGIES

1. Streamlined building energy model
2. Streamlined building energy model + time-of-use meter analysis
3. Operational focused rating using time-of-use meter analysis

US DOE / PNNL Asset Rating Pilot:
4. Streamlined building energy model with minimal calibration
1. STREAMLINED BUILDING ENERGY MODEL

- Inputs - same set of visit data, building documentation and energy billing data as for ‘traditional approach’
- Streamlined energy model coupled with the team’s existing database of buildings
- PRISM approach to calibrating using all fuels
2. STREAMLINED BUILDING ENERGY MODEL + TIME-OF-USE ANALYSIS

- Streamlined energy model coupled with the team’s existing data base of buildings
- Analysis of electric interval meter data
- Additional use of online data
3. OPERATIONAL FOCUSED RATING WITH TIME-OF-USE ANALYSIS

- Analysis of time-of-use meter data and online data
4. US DOE/ PNNL: Streamlined energy model without operational calibration

- Detailed hourly energy simulation coupled with a simplified user interface and informed building data defaults
- Easy to use online interface for rapid modeling and cloud based data management
- Multiple building types: office, school, retail, mixed use, etc.
PHASE ONE FINDINGS
- Pat Coleman
BAR PHASE 1 - BOTTOM LINE

• Assessment of building performance achieved at lower cost - especially with TOU data
 ➢ “Innovative” methods ID efficiency opportunities missed by “traditional” methods

• Average cost of traditional method: $25k

• Average cost of “innovative” methods <$8k
 ➢ Opportunities to reduce cost with scale
1. Comprehensive energy usage data is critical to MA pilot approach
 • The methodology relies on utility and fuel data to calibrate models
 • Incomplete utility data resulted in inconsistent modeling outcomes
 • DOE / PNNL tool can handle buildings without annual energy data
BAR PHASE 1
Lessons Learned

2. Definition of building area (Sq ft) is critical

- Defining the “building” can be challenging
- Similar issue faced by Portfolio Manager

<table>
<thead>
<tr>
<th>Reported Sq Ft</th>
<th>768,054</th>
<th>580,000</th>
<th>602,000</th>
<th>793,168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported EUI</td>
<td>63</td>
<td>81</td>
<td>78</td>
<td>54</td>
</tr>
<tr>
<td>Common Sq Ft EUI</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>55</td>
</tr>
</tbody>
</table>
3. Building drawings of limited use

- Plans & elevations useful but imagery can often replace
- Modern buildings have 1,000s of files
- Older buildings have incomplete drawings
- Equipment schedules frequently out of date
BAR PHASE 1
Lessons Learned

4. Tenants vary - TOU data highlights operations

- Occupancy is not just 9-5
 - E.g. after hours events
- Interval data analysis can pick up unexpected hours and loads
 - Data centers and process loads
 - Tenants augment HVAC
 - Personal heaters, opening windows
5. Important to reconcile all fuels
 • Electric data - requires complete set of accounts
 • Gas data - including onsite CHP
 • Other fuels
 ➢ Steam data
 ➢ Onsite solar PV or geothermal systems
 ➢ Back-up generation (load shaving)
LOAD SHAVING
BAR PHASE 1
Lessons learned

6. Heating & cooling: not just weather dependent

- Undersized systems
 - E.g. underperforming geothermal
- Oversized systems
 - E.g. oversized chillers or boilers without modulating controls
- Simultaneous heating & cooling
 - Major impact on building performance - not captured by all models
BAR PHASE 1
Lessons learned

7. Need to address inadequate ventilation
 • Older buildings sometimes have undersized systems
 ➢ Dependent on operable windows
 • Low mechanical ventilation load, but is building space conditioned adequately?
BAR PHASE 1 - FINDINGS
BAR PHASE 1 - FINDINGS

BAR Phase 1: Average Asset & Operational EUIs

EUI (kBUT/sq. ft./year)

Phase 1 Building

1 2 3 4 5 6 7 8 9 10 11

Asset - Building EUI
Operational - Building EUI
BAR PHASE 1 - FINDINGS

BAR Phase 1: Average Asset & Operational EUIs

Phase 1 Building Square Footage

EUI (kBUT/sq. ft./year)

<50K 50K - 250K 500K - 750K >750K

- 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Asset - Building EUI
Operational - Building EUI
BAR PHASE 1 - FINDINGS

BAR Phase 1: Average Asset & Operational EUIs

Phase 1 Building Vintage

- EUI (kBUT/sq. ft./year)
- Asset - Building EUI
- Operational - Building EUI
BAR PHASE 1 - EVALUATION

Three-step process:

1. Comparison of modeled EUIs by fuel with metered consumption
2. Disaggregation of end-use consumption in operational model logically explained by report narrative and model inputs
3. Normalization to asset EUIs logically explained by report narrative and model inputs
LESSONS LEARNED AND PHASE II
- Carolyn Sarno
LESSONS LEARNED

• Critical elements:
 ➢ Full set of consumption data
 ➢ Site visits key to validate building inputs
• Clear modeling guidelines
• Important to reconcile all fuels
• HVAC sizing matters
• Tenant usage varies
BAR PILOT - PHASE 2

• Deeper test of promising methodologies
• 40-50 buildings
 ➢ Statistically useful sample
 ➢ Streamlined implementation
 ➢ Interval / non-interval meters
 ➢ Class A and Class B
BAR PILOT - PHASE 2

• Key questions for phase 2:
 ➢ How do BAR results compare with ESPM scores?
 ➢ Trends based on building size, age, location?
 ➢ How available is interval meter data?

• Greater Boston and the Merrimack Valley

• Recruiting now!
Second pilot round to test:

- Simple vs. advanced score
- Energy efficiency recommendations
- 100 point scale values
- Greater variety of building types (e.g., multi-family, courthouses, retail, mixed use)
RESOURCES

MA DOER

NEEP

DOE Energy Asset Score website
http://www1.eere.energy.gov/buildings/commercial/assetscore.html
THANK YOU!

Patrick Coleman
617-626-7328
patrick.coleman@state.ma.us

Carolyn Sarno
781-860-9177
csarno@neep.org

Ian Finlayson
617-626-4910
ian.finlayson@state.ma.us

Allison Webster
781-860-9177
awebster@neep.org