FINAL REPORT

Assessment of Energy-Efficiency and Distributed Generation Baseline and Opportunities

September 19, 2012

Prepared by:

The Cadmus Group, Inc. Energy Services Division 720 SW Washington Street, Suite 400 Portland, OR 97205 503.467.7100

In collaboration with GDS Associates, Inc.

Prepared for: Efficiency Maine Trust

Prepared by: Hossein Haeri, Ph.D. Tina Jayaweera, Ph.D. Lauren Mattison Heidi Ochsner Mary Knipe The Cadmus Group, Inc.

> Bob Fratto Jeff Davis Jeffrey Huber GDS Associates, Inc.

Corporate Headquarters: 57 Water Street Watertown, MA 02472 Tel: 617.673.7000 Fax: 617.673.7001

An Employee-Owned Company www.cadmusgroup.com 720 SW Washington St. Suite 400 Portland, OR 97205 Tel: 503.228.2992 Fax: 503.228.3696

This page left blank.

Contents

Executive Summary	1
Background	1
Study Scope	1
Baseline Data Collection	1
Summary of Results	1
Energy Efficiency	
Distributed Generation	
Uncertainties	
Organization of this Document	3
Introduction	4
Background	4
Study Scope	4
Baseline Data Collection	5
Uncertainties	5
Methodology	6
Energy-Efficiency Potential Methodology	
Measure Characterization	
Potential Analysis	
Baseline Assessment	14
Purpose of Baseline Assessment	
Sample Design and Recruitment	
Survey Design and Implementation	15
Survey Design and Implementation Survey Respondent Profile	15 16
Survey Design and Implementation Survey Respondent Profile Key Observations	15 16 16
Survey Design and Implementation Survey Respondent Profile	15
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration	
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling	
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration	15 16 16 17 20 21 22
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making	
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making Residential Energy-Efficiency Potential	15 16 16 17 20 21 22 22 22 24
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making Residential Energy-Efficiency Potential	
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making Residential Energy-Efficiency Potential Summary of Assessment Results Measures by End Use	
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making Residential Energy-Efficiency Potential Summary of Assessment Results Measures by End Use Technical and Economic Potential Savings Maximum Achievable Potential Savings	15 16 16 17 20 21 22 24 24 24 24 24 25 27
Survey Design and Implementation Survey Respondent Profile Key Observations Lighting Cooling Refrigeration Energy-Efficiency Decision Making Residential Energy-Efficiency Potential Summary of Assessment Results Measures by End Use Technical and Economic Potential Savings	15 16 16 17 20 21 22 24 24 24 24 24 25 27 31

Technical and Economic Potential Savings	
Maximum Achievable Potential Savings	34
Industrial Energy-Efficiency Potential	37
Summary of Potential Results	37
Measures by End Use	37
Technical and Economic Potential Savings	
Maximum Achievable Potential Savings	40
Distributed Generation Potential	43
Technical Assumptions	43
Rooftop PV Customer-Sited Wind	
CHP Cost-Effectiveness	
Technical Potential	47
Biogas Industrial Biomass	
Natural Gas	
Total Technical Potential Achievable Potential	
Appendix A. Survey Instrument	51
Appendix B. Frequency Tables	52
Appendix C. Measure Data	53

EXECUTIVE SUMMARY

Background

Efficiency Maine Trust (Trust) has been established to serve as an independent entity guiding and administering energy efficiency and alternative energy programs in Maine. In July 2012, the Trust entered the final year of its first Triennial Plan. This study serves as the first step in developing the Trust's second Triennial Plan.

Study Scope

This report assesses energy-efficiency and distributed generation resources for Maine. The study covers 2012–2021, encompassing the residential, commercial, and industrial sectors, and focusing on providing reasonably reliable estimates of technical, economic, and maximum achievable potential.

Baseline Data Collection

To ensure the reliability of this study's results, baseline research collected field data on building and electric equipment characteristics in Maine's commercial and industrial (C&I) sectors. Data from these surveys provided the basis for developing up-to-date assessments of current market conditions, regarding important variables, such as saturations of various electric end uses and current saturations of energy-efficient equipment and combined heat and power (CHP) applications.

Summary of Results

Energy Efficiency

Study results indicate cumulative technical potential of nearly 3.8 million MWh through 2021. Approximately 2 million MWh of savings reasonably could be achieved, using an aggressive acquisition scenario. The estimated maximum achievable potential equals 16% of the 2021 load forecast (Table ES-1 and Figure ES-1). The majority of achievable potential (46%) occurs in the residential sector. Commercial and industrial savings, respectively, account for 39% and 15% of the maximum achievable potential.

Sector	Technical Potential 2021 (MWh)	Economic Potential Energy (MWh)	Maximum Achievable Potential 2021 (MWh)	Maximum Achievable Potential as a Percent of 2021 Sales
Residential	1,521,890	1,388,392	964,389	18%
Commercial	1,607,407	1,380,145	816,357	18%
Industrial	639,637	639,637	318,007	10%
Total	3,768,934	3,408,174	2,098,753	16%

Table ES-1. 2021 Electric Energy-Efficiency Potential by Potential Type and Sector

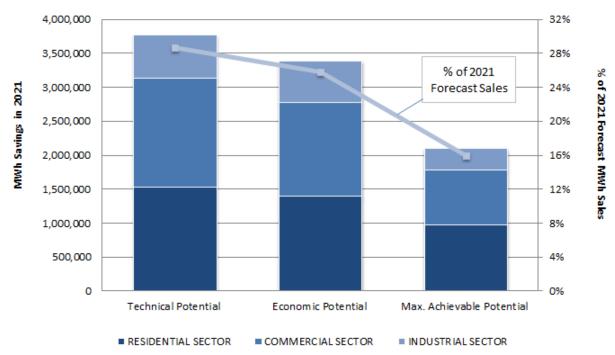


Figure ES-1. 2021 Electric Energy-Efficiency Potential Summary

Assuming a constant acquisition rate, the identified maximum achievable potential represents approximately 1.6% of annual sales over the 10-year planning period. This is just slightly lower than the top annual savings rate of 1.64% for Vermont as reported by the American Council for an Energy Efficient Economy (ACEEE) in its 2011 State Energy Efficiency Scorecard.¹

Distributed Generation

This assessment addressed three types of distributed generation resources: photovoltaics, customer-sited wind, and CHP. Of those, only the following CHP technologies proved cost-effective from the total resource cost perspective:

- Biogas-fueled:
 - ➢ Gas turbine and microturbine
 - Reciprocating engine
- Biomass-fueled steam turbine
- Natural gas-fueled:
 - ➢ Gas turbine
 - Reciprocating engine

Table ES-2 summarizes 10-year achievable potential for all distributed generation resources. Natural gas and biomass CHP units offer the largest share of CHP potential. However, due to

¹ State Energy Efficiency Scorecard, American Council for an Energy Efficient Economy, October 2011, Report Number E115, p. 17.

the substantial contributions of CHP units, these results may be sensitive to the number of CHP units installed.

Fuel	Number of Installations	Total Capacity (kW)
Natural gas	18	5,611
Biomass—paper/wood waste	2	6,160
Biogas—dairy farm	1	554
Biogas—landfill	1	156
Total	22	12,481

Table ES-2. CHP Achievable Potential

Uncertainties

Inherently, conservation potential studies are complex, requiring large amounts of data from multiple sources, and making many technical assumptions over long time periods. Thus, the study results (and, generally, results from any study of this nature) should be considered best estimates, in light of future uncertainties.

Organization of this Document

This report has been organized into seven sections:

- Section 1, following this summary, provides an introduction to the study.
- Section 2 describes the overall methodology for estimating technical, economic, and maximum achievable potential.
- Section 3 describes the market baseline study and its results, as used in estimating technical potential.
- Sections 4 through 6 describe derivations of technical, economic, and maximum achievable potential.
- Section 7 describes CHP potential methods and results.

Appendices A through C provide technical material related to data collection and measure assumptions.

INTRODUCTION

Background

Efficiency Maine Trust (Trust) has been established as an independent entity to guide and administer energy-efficiency and alternative energy programs in Maine. In July 2012, the Trust entered the last year of its first Triennial Plan. This study serves as the first step in developing the second Triennial Plan.

Study Scope

This report assesses Maine's energy-efficiency and distributed generation resources. The study covers 2012–2021, encompassing the residential, commercial, and industrial sectors, and focusing on providing reasonably reliable estimates of technical, economic, and maximum achievable potential. Figure 1 shows the relationships among the three, following types of potential:

- **Technical potential:** Savings realized upon applying energy-efficiency measures passing the qualitative screening in all feasible instances, regardless of cost.
- **Economic potential:** A subset of technical potential, utilizing measures deemed costeffective from the Total Resource Cost (TRC) perspective, without regard to crosssubsidies.
- **Maximum achievable potential:** Savings feasibly achievable through program and policy interventions. This maximum achievable potential assumes that combining very high incentive levels (such as 100% of incremental costs) with well-designed programs (characterized by aggressive marketing, education, and outreach) generally would result in an 80% overall measure penetration rate.

Not Technically Feasible		Technical Potential					
Not Technically Feasible	Not Cost Effective	Economic Potential					
Not Technically Feasible	Not Cost Effective	Market Barriers	Maximum Achievable Potential				

Figure 1. Illustration of Energy-Efficiency Potentials

Note: Solely for illustrative purposes, Figure 1 has been adapted from the Environmental Protection Agency National Action Plan for Energy Efficiency (EPA-NAPEE) Guide for Conducting Energy Efficiency Potential Studies.

Baseline Data Collection

To ensure the reliability of this study's results, baseline research collected field data on building and electric equipment characteristics in Maine's commercial and industrial (C&I) sectors. Data from these surveys provided a basis for developing up-to-date assessments of current market conditions regarding important variables, such as saturations of various electric end uses and energy-efficient equipment and CHP applications.

Uncertainties

As complex undertakings, conservation potential studies require large amounts of data from multiple sources, and include many technical assumptions, addressing long time periods. Thus, results from this (and, generally, all studies of this nature) should be considered in light of future uncertainties. For example, the market acceptance rate provides a key determinant of potential for achievable energy-efficiency savings. Market acceptance, however, depends on difficult-to-predict behavioral factors, involving high uncertainty levels.

Estimated impacts of efficient technologies on energy consumption provide another key determinant of savings potential; yet these inputs also present uncertainty. While efficient technology options can be defined reasonably well in the near term, customer behaviors and electricity usage patterns vary widely, and can differ significantly from assumptions made to model "typical" usage profiles.

Future years may experience greater uncertainties due to insufficient information about emerging technology choices and upcoming codes and standards improvements. Consequently, the availability and magnitude of future impacts inherently must be considered speculative.

METHODOLOGY

This section describes the overall methodology used to conduct the energy-efficiency potential study, and explains general steps and methods used at each stage of the analytical process, which produced the various estimates of energy-efficiency opportunities presented. The report notes specific methodology differences between sectors. The final chapter presents methodologies and results for the study's distributed generation component.

Energy-Efficiency Potential Methodology

Measure Characterization

This study's measure portfolio only includes measures with some technical feasibility for implementation, either by substituting for or being applied to existing technologies on a retrofit or market-driven basis. In this context, "market-driven" refers to equipment replacements made normally in the market, as equipment reaches the end of its effective useful life.

For this study, retrofit measures have been limited to applications of supplemental measures (such as adding low-flow devices to showerheads or increasing insulation levels), and do not include early replacements of operational equipment.

In calculating a measure's cost-effectiveness, all measures have been treated *independently*; that is, measure savings have not been reduced or otherwise adjusted for overlaps between competing or interacting measures. By analyzing measures independently, assumptions cannot be made regarding combinations or orders in which they might be installed in buildings. This approach evaluates energy-efficient technologies on their own merits, and does not unfairly exclude one measure in favor of another.

In developing overall potential electricity savings estimates, however, the analysis took steps to account for interactive effects of measures designed to impact the same end use. Cumulative savings potential cannot be estimated by adding savings from each individual savings estimate, as this would result in double-counting some savings. For example, if a home or building improved air leakage rates, overall space heating and cooling consumption in the building would decrease. Consequently, remaining energy savings potential derived from more efficient heating/cooling equipment would be reduced.

Interactive adjustments have been addressed by ranking efficiency measures, and adjusting baseline consumption of subsequent measures by savings derived from preceding measures. Generally, measures have been ranked by cost-effectiveness. In most instances, retrofit measures, which can be implemented at any time, have been assigned priority over replace-on-burnout measures.

Where two or more technologies competed for the same electric end use in a home or business (such as high-efficiency storage water heaters, heat pump water heaters, and solar water heating in a home), analysis assigned a percentage of the available population to each measure. If a competing measure did not prove cost-effective, homes or businesses assigned that measure were transitioned to the cost-effective alternative (if available).

Number of Measures

Overall, the energy-efficiency analysis across all three customer classes (residential, commercial, and industrial) included 245 unique measures. After adjusting for different housing/building types, building characteristics, and efficiency tiers, thousands of measure permutations were considered. This report's results sections provide a more detailed breakout of measures by end use for each customer class.

Sector	Number of Unique Measures
Residential	37
Commercial	127
Industrial	81

Prescreening limited the analysis only to electric-efficiency measures currently available commercially. Thus, the analysis did not include emerging technologies or technologies with extremely low market availability.

Sources Used for Measure List Development

Lists of electric energy-efficiency measure lists drew upon the latest version of the Maine Residential and Commercial Technical Reference Manuals (TRMs) and other measures currently (or planned to be) offered through Trust programs. As necessary, these measures were supplemented to include other technology areas of interest to the Trust.

Sources Used for Measure Assumptions

Estimating savings potentials for individual energy-efficiency measures or programs—across the residential, commercial, and industrial sectors—requires significant data. Thus, the study expended considerable effort in identifying, reviewing, and documenting all available data sources.²

This allowed development of reasonable assumptions, for each measure, regarding the following attributes:

- Measure lives;
- Installed incremental and full costs (where appropriate); and
- Electric savings.

Savings

Estimates of annual measure savings as a percentage of base equipment usage drew upon a variety of sources, including:

² This report's appendices provide complete data sources the study used to obtain up-to-date data on measure costs, savings, and useful lives.

- Existing technical references manuals;³
- Building energy modeling software and engineering analyses;
- Secondary sources, such as the American Council for an Energy-Efficient Economy (ACEEE), Department of Energy (DOE), Energy Information Administration (EIA), ENERGY STAR[®], and other technical potential studies; and
- Program evaluations conducted by the Trust as well as by other program administrators and utilities.

Measure Costs

Measure costs represent the energy-efficiency measure's costs, which typically include installation costs, expressed as incremental measure costs (the difference between a standard and high-efficiency measure) or full measure costs (entire costs to install the measure).

This study held nominal measure costs constant over time, an assumption made as many measure costs (e.g., compact fluorescent lamps [CFLs]) have declined over time, while other measure costs have increased (e.g., fiberglass insulation). Residential screw-in LED lighting costs present an exception: while currently ~\$30 per bulb, their costs likely will decrease rapidly over the next decade. (Some studies predict LED bulb costs will decline by 50% over the next several years, and will continue to fall to \$5.00 per bulb by 2020.) Given these significant forecasted price reductions during the study period (2012–2021), the analysis accounted for expected decreases in LED bulb costs over time.⁴

Measure cost estimates typically drew from the following sources:

- Existing TRMs;
- Secondary sources (such as ACEEE, ENERGY STAR, and other technical potential studies);
- Retail store pricing and industry experts; and
- Program evaluation reports.

Measure Life

Measure life represents energy-using equipment's expected number of years (or hours) of operation (this may also be called expected useful life [EUL]). Measure life estimates drew upon:

- Existing TRMs;
- Manufacturer data;
- Savings calculators and life-cycle cost analyses from ENERGY STAR and DOE;

³ TRMs used for this study include: Maine, Mid-Atlantic, Vermont, Massachusetts, Pennsylvania, Ohio, and Rhode Island

⁴ Northeast Energy Efficiency Partnerships. March 2012.*Northeast Residential Lighting Strategy*. Presentation.

- Secondary sources (such as ACEEE, ENERGY STAR, and other technical potential studies);
- The California Database for Energy Efficient Resources database; and
- Program evaluation reports.

Baseline and Efficient Technology Saturations

To assess available energy-efficiency savings, current saturations of baseline equipment and energy-efficiency measures had to be estimated. Up-to-date measure saturation data primarily derived from recent Trust program evaluation reports as well as from on-site audits conducted through this study for C&I facilities. Other equipment saturation data sources included:

- Utility appliance saturation survey data;
- Regional efficiency program evaluation reports; and
- 2009 EIA Residential Energy Consumption Survey.

Potential Analysis

Potential studies often distinguish between three different types of efficiency potential: technical, economic, and achievable. As key definitional differences occur between studies, it is important to understand the definition and scope of each potential estimate type, as applied to this study.

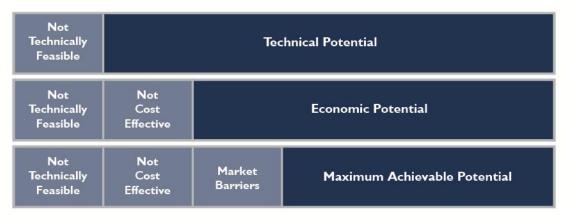


Figure 2. Types of Energy-Efficiency Potential

SOURCE: EPA-NAPEE, Guide for Conducting Energy Efficiency Potential Studies (for illustrative purpose only).

The first two potential types—technical and economic—provide a theoretical upper bound for energy savings. Technical potential estimates total savings assuming installation of all technically feasible measures. Economic potential—a subset of the technical potential—only includes cost-effective measures, based on the TRC perspective. However, not even the best-designed program portfolio will likely capture 100% of the economic potential. Therefore, achievable potential attempts to estimate:

- What realistically may be achieved;
- When it might be captured; and
- How much it would cost to do so.

The existing analysis did not include a fourth potential scenario: program potential.

Technical Potential Methodology

As noted, technical potential represents the theoretical maximum amount of energy use that could be displaced by efficiency, disregarding all non-engineering constraints (such as cost-effectiveness and the willingness of end users to adopt efficiency measures). Often, this is estimated as a "snapshot" in time, assuming immediate implementation of all technologically feasible energy-saving measures, with additional efficiency opportunities assumed as they arise from activities such as new construction.⁵

Approach for the Residential Sector

To calculate the potential of energy-efficiency measures or a set of measures, this study used a "bottom-up" approach for the residential sector. This approach began with savings and costs associated with replacing one piece of equipment (measure) with its efficient counterpart. Savings potential was calculated by multiplying values for one measure by the number of measures available for installation throughout the program's life. Often the preferred method of potential estimation in the residential sector, the bottom-up approach provided better data availability and greater homogeneity in building and equipment stock to which measures could be applied.

Figure 3 shows the core equation used in the residential sector potential analysis for each individual efficiency measure.

Figure 3. Core Equation for Residential Sector Technical Potential

Technical Potential of Efficient Measure	=	Total Number of Households	х	Base Case Equipment End Use Intensity [kWh/unit]	Х	Base Case Factor	х	Remaining Factor	х	Applicability Factor	Х	Savings Factor
---	---	----------------------------------	---	--	---	------------------------	---	---------------------	---	-------------------------	---	-------------------

Where:

• Base Case Equipment End Use Intensity = annual electric consumption (kWh) used per customer, per year, by each base-case technology in each market segment. This provides the consumption of electric-using equipment that efficient technology would replace or affect.

⁵ National Action Plan for Energy Efficiency. "Guide for Conducting Energy Efficiency Potential Studies." page 2-4.

- Base Case Factor = the fraction of an end use applicable for an efficient technology in a given market segment. For example, for residential water heating, this would represent the fraction of all residential customers with electric water heating in their households.
- Remaining Factor = the fraction of applicable dwelling units not yet converted to the high-efficiency measure; that is, one minus the fraction of households already having the energy-efficiency measure installed.
- Applicability Factor = the fraction of applicable units technically feasible for conversion to the efficient technology from an *engineering* perspective (e.g., it may not be possible to install CFLs in all light sockets in a home, as CFLs may not fit in every socket).
- Savings Factor = the fraction of electric consumption reduced by applications of the efficient technology.

Approach for the C&I Sector

Developing technical potential estimates for the C&I sector utilized a "top-down" approach, as this sector contains many different building types, with various equipment stocks. The study team chose analytical models designed to accommodate the lack of detailed end-use C&I saturation data. This approach built an energy-use profile, based on sales estimates by business segments and end uses. Energy-efficiency measure savings factors could then be applied to applicable end-use energy estimates, after making assumptions regarding fractions of sales associated with inefficient equipment and the technical/engineering feasibility of each energy-efficiency measure.

For the C&I sector, savings estimates per base unit (e.g. per square foot or per widget) were determined by comparing high-efficiency equipment to:

- Currently installed equipment for existing construction retrofits; or
- Current equipment code standards for replace-on-burnout and new construction scenarios.

Figure 4 shows the core equation used in the C&I sector technical potential analysis for each individual efficiency measure.

Figure 4. Core Equati	on for Commercial/II	ndustrial Sector 7	Fechnical Potential
- gait in cont - quan			

Technical Potential of Efficient Measure	=	Total End Use kWh Sales by Market Segment	х	Base Case Factor	Х	Remaining Factor	Х	Applicability Factor	Х	Savings Factor	
---	---	---	---	---------------------	---	---------------------	---	-------------------------	---	-------------------	--

Where:

- Total end-use kWh sales (by segment) = the forecasted electric sales level for a given end use (e.g., space heating) in a commercial or industrial market segment (e.g., office buildings).
- Base Case factor = the fraction of end-use energy applicable for the efficient technology in a given market segment. For example, with fluorescent lighting, this would be the

fraction of all lighting kWh in a given market segment associated with fluorescent fixtures.

- Remaining factor = the fraction of applicable kWh sales associated with equipment not yet converted to the electric energy-efficiency measure; that is, one minus the fraction of the market segment with energy-efficiency measures already installed.
- Applicability factor = the fraction of the equipment or practice technically feasible for conversion to the efficient technology from an *engineering* perspective (e.g., it may not be possible to install variable-frequency drives (VFDs) on all motors in a given market segment).
- Savings factor = the fraction of electric consumption reduced by application of the efficient technology.

Economic Potential Methodology

Economic potential refers to the subset of technical potential that is economically cost-effective, compared to conventional, supply-side energy resources. Both technical and economic potential present theoretical numbers, assuming immediate implementation of efficiency measures, without regard for the gradual "ramping up" process of real-life programs. The assumption of immediate implementation also ignores market barriers (to ensure actual implementation). Finally, economic potential only considers costs of efficiency measures, and does not consider programmatic costs (e.g., marketing, analysis, or administration) necessary to capture markets.

In practice, most technical and economic potential estimates are similar, as many analysts prescreen possible efficiency technologies and practices for cost-effectiveness, and, in the interest of conserving time and effort for other analysis, future analysis excludes measures not found cost-effective.

In calculating economic potential, cost-effectiveness is evaluated using the TRC test, which includes costs such as total program costs paid by the program administrator and participants,⁶ and increases in energy supply costs during periods when loads increase. Thus, the test includes all costs (regardless of who pays them) for equipment, installation, operation and maintenance, removal (less salvage value), and administration.⁷

In the TRC test, benefits include avoided electric supply costs for periods when electric load reduction occurs, and savings of other resources, such as fossil fuels and water. Avoided supply costs are calculated using net program savings (savings net of energy-use changes that would have happened in the program's absence).

Maximum Achievable Potential Methodology

Maximum achievable potential describes economic potential achieved over a given time period, following the most aggressive program scenario (e.g., providing end users with payments for

⁶ California Public Utilities Commission. October 2001. *California Standard Practice Manual, Economic Analysis of Demand-Side Management Programs and Projects*. Page 18.

⁷ Non-incentive or administrative costs were excluded during measure-level cost-effectiveness screening, and were included only for estimates of achievable potential.

entire incremental costs of more efficient equipment). In contrast to economic potential, maximum achievable potential accounts for barriers hindering consumer adoption of energy-efficiency measures (such as: financial, political, and regulatory barriers; administrative and marketing costs associated with efficiency programs; and the capability of programs and administrators to ramp up activity over time).

For this study, which primarily adopted a replace-on-burnout approach for replacing standardefficiency equipment with high-efficiency technologies, the energy-efficiency measures' eligible market has been limited each year to measures expected to reach the end of their useful life (and thus be targeted for replacement).

For example, if a measure has a 20-year useful life, only half of the existing units would be expected to burn out during a 10-year time frame, and only one in 20 would be eligible for replacement annually. For retrofit applications (such as insulation), the study assumed all non-efficient measures would become eligible over the study period, regardless of measure lifetimes.

For computing maximum achievable potential, the analysis assumed combining very highincentive levels with well-designed programs and aggressive, marketing, education, and outreach generally would result in an 80% overall measure penetration rate.

In the C&I sectors, analysis assumed 80% target penetration for replace-on-burnout measures could be achieved immediately, due to Maine's existing network of program allies, and their relationships with C&I businesses. For C&I retrofit measures, however, a ramp-up period was assumed, due to significant costs associated with adding insulation to an existing facility.

In the residential sector, given its lack of a trade ally network and purchasing decisions not always based on cost-effectiveness, penetration was assumed to ramp up over the next three years from existing levels, achieving 80% target penetration of annual eligible measures by 2014.

BASELINE ASSESSMENT

Purpose of Baseline Assessment

Baseline research helps utilities and other energy-efficiency program administrators, such as the Trust, make informed decisions about energy end uses and equipment that can be targeted most readily and cost-effectively through energy-efficiency programs.

For example, baseline research can be used to characterize types of energy-consuming equipment installed in homes or businesses. Resulting data can validate program-planning assumptions, and prove useful in evaluating any remaining energy-savings opportunities, once programs have been established.

According to the National Energy Efficiency Best Practices Study's *Portfolio Best Practices Report*:⁸ "Objective baseline research reinforces the credibility of the portfolio and its underlying programs with diverse stakeholders and improves the accuracy of savings estimates, cost-effectiveness calculations, and goals."

For this study, the baseline assessment focused on the collection of primary field data regarding building and electric equipment characteristics in Maine's C&I sectors. Data collected from C&I site surveys informed assessments of energy-efficiency opportunities in Maine, providing key, energy-efficiency potential assessment inputs (such as saturations of various electric end uses), and the percentage of certain, already energy-efficient equipment. The on-site survey process served to provide data on energy-efficiency attitudes of businesses in Maine, and provided information on distributed generation.

Based on our prior energy-efficiency potential study work in Maine, and on our knowledge of available residential baseline data (including evaluation reports, socket surveys, and utility appliance saturation surveys), the baseline assessment of the residential sector built upon secondary data, and residential on-site surveys were deemed unnecessary for this study.

Sample Design and Recruitment

The C&I baseline assessment's on-site survey sample drew from two general, sample populations:

- All commercial business; and
- All industrial facilities.

This commercial customer population was segmented into subsectors, including all building types in the population sample, though, for sample design purposes, the industrial sector was not segmented further.

⁸ <u>http://www.epa.gov/cleanenergy/documents/suca/napee_chap6.pdf</u>

Overall, the sample design process sought to achieve the highest possible survey precision level, given project budget constraints. The resulting sample reflected the following information, drawn from prior Maine potential studies:

- The commercial sector represents a large percentage of overall C&I opportunities.
- Offices and retail represent the key segments in the commercial sector.
- Lighting, HVAC, and refrigeration represent the dominant commercial end uses.
- Refrigeration consumes a major portion of electricity in groceries and restaurants.

The final sample, composed of 103 commercial sites and 30 industrial sites, resulted in the following precision levels:

- Overall Commercial: 90/10 (90% confidence that results are accurate, with a ±10% margin of error).
- Overall Industrial: 90/15.
- Other Key Commercial Segments: $\approx 90/20$.
 - ➢ Grocery
 - ➢ Office
 - ➢ Restaurant
 - ➢ Retail

The survey recruitment process began by assigning a random number to each customer on the sample population list. By following the list in order of assigned random numbers, customers were contacted until the sample goal could be attained for each subsector. Due to limited time for completing the study, customers contacted were:

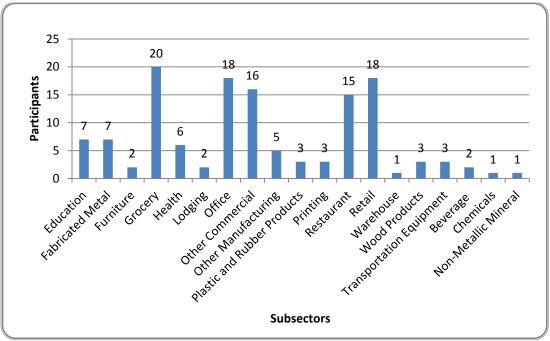
- Scheduled for the on-site survey;
- Left a voice message; or
- Removed from the list, due to: lack of contact, no interest, wrong numbers, or other factors.

Customer outreach continued down the list until appointments were secured for the full on-site survey complement.

Survey Design and Implementation

The C&I on-site data collection's baseline survey instrument covered all relevant energy aspects of customer facilities and business, including:

- Building size;
- Building envelope information (such as wall and window sizes, and insulation levels); and

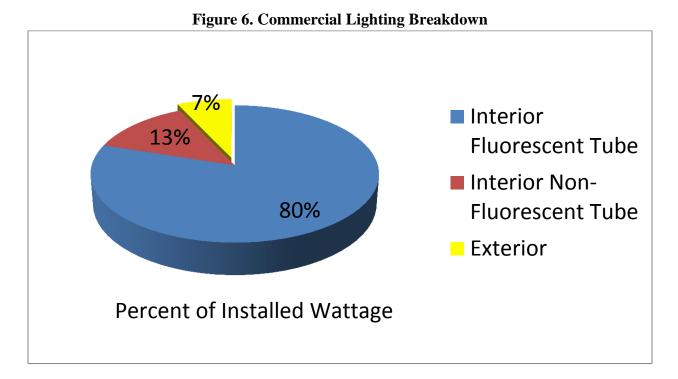

• Inventories of electric energy-using equipment (including lighting, HVAC, water heating, refrigeration, cooking, office equipment, motors, air compressors, and other types of process equipment).

The baseline survey also included questions addressing customers' energy-efficiency attitudes regarding energy-efficient equipment purchases, while probing for customers' familiarity with distributed generation, and their interest in pursuing it at their current locations.

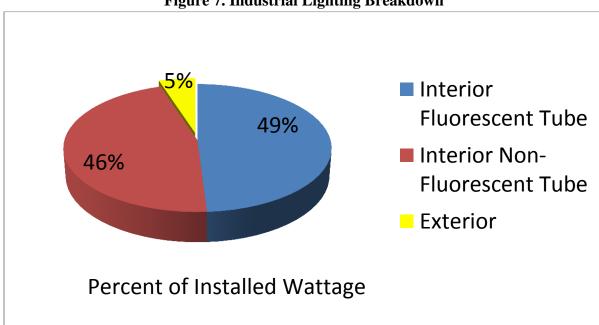
During on-site visits, surveys were completed using computer tablet technology (Appendix A provides a hard copy of the survey instrument). Completing surveys for commercial customers generally took one to two hours, and completing surveys for industrial customers generally took two to three hours.

Survey Respondent Profile

Figure 5 breaks down the completed on-site surveys (with 133 C&I customers surveyed).

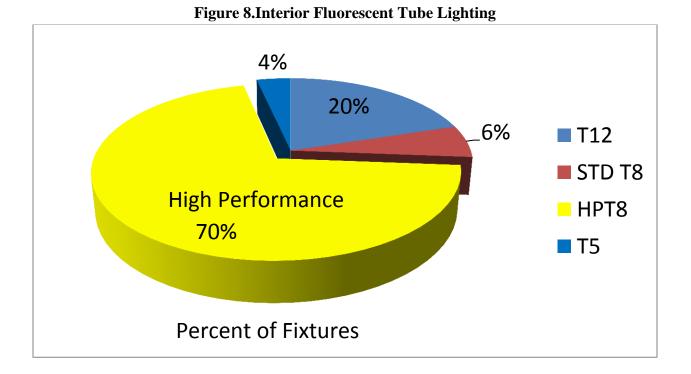

Figure 5. C&I Survey Respondents by Subsector

Key Observations


As discussed, the C&I baseline assessment primarily sought to collect data that could be used for assessing energy-efficiency opportunities in Maine, within project budget limitations. As such, this report does not present a full analysis of all site survey data collected. Rather, it focuses on key observations drawn from site survey data used as inputs to develop energy-efficiency potential model inputs for the C&I sector. This section presents these key observations. Appendix B provides frequencies for responses to all survey questions.

Lighting

As shown in Figure 6, interior lighting comprised 93% of commercial lighting, as measured by connected wattage, with interior fluorescent tubes (at 80%) representing the largest total of installed wattage.



As shown in Figure 7, interior, non-fluorescent tubes (such as metal halides) proved much more prevalent in the industrial sector, representing 46% of the total installed wattage.

Figure 7. Industrial Lighting Breakdown

Figure 8 shows efficient, interior, fluorescent tube lighting (in the form of High Performance T8s [HPT8]) has penetrated a large share (70%) of Maine's C&I market. This suggests incentives offered to businesses by the Trust for replacing T12 lighting with HPT8 lighting have been effective, and have led to market transformation for fluorescent tube lighting. Some opportunities remain to replace existing T12 lighting with HPT8 lighting, and to replace standard T8 lighting with reduced-wattage HPT8 lighting.

Interior, non-fluorescent tube lighting includes:

- CFLs
- Metal halide lighting
- Incandescent lamps.

At 40%, CFLs represented the largest share of interior, non-fluorescent tube fixtures. This suggests long-running CFL incentives and buy-downs offered by the Trust's Business Program have been effective. At 3%, LED lighting, which had been more recently added to the Trust's Business Program with a prescriptive lighting incentive, has just started to penetrate the interior, non-fluorescent lighting market for Maine's businesses.

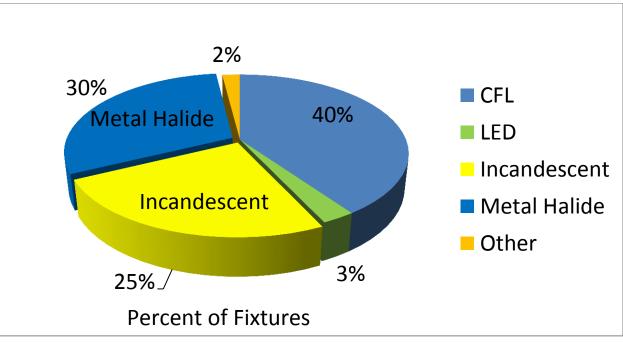


Figure 9. Interior Non-Fluorescent Tube Lighting

Through on-site surveys, the study team found lighting controls represented significant savings opportunities in Maine's C&I market, as shown in Figure 10. In commercial buildings, 92% of lighting wattage was uncontrolled, while, in industrial facilities, 85% was uncontrolled. Despite significant opportunities, it should be noted controlling 100% of lighting does not prove feasible, given building occupancy and use characteristics, technical limitations, and safety issues.

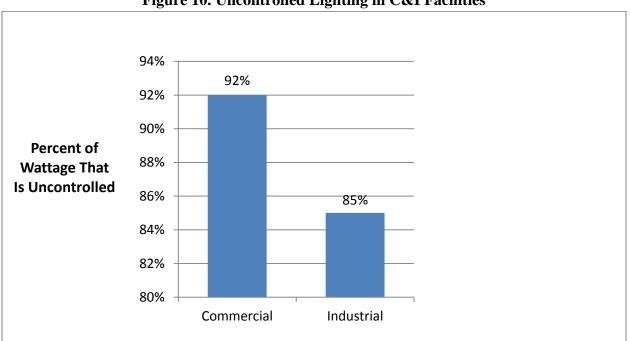
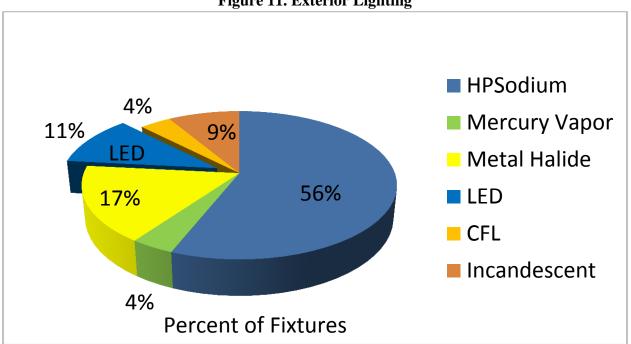



Figure 10. Uncontrolled Lighting in C&I Facilities

Figure 11 presents distributions of exterior lighting at C&I facilities by lighting type. LEDs have started to penetrate the exterior business lighting market, which partly may be due to significant incentives the Trust offered for LED wall packs, outdoor area fixtures, and parking garage fixtures.

Figure 11. Exterior Lighting

Cooling

Table 2 presents findings regarding installed cooling systems in C&I facilities (based on numbers of units, not unit capacities). While window A/C systems are most prevalent units (32% of installed units), they represented a much smaller portion of installed capacity.

Tuble 20 19 pes of Instance Cooling Systems						
Type of System	Percent of Units					
Window Unit A/C	34%					
Air Cooled Chiller	2%					
Packaged System	28%					
Split System	28%					
Water Cooled Chiller	2%					
Heat Pump	3%					
Mini-Split System	3%					

Table 2. Types of Installed Cooling Systems

Other key survey findings regarding energy-efficiency measures impacting HVAC equipment include:

- 21% of facilities used programmable thermostats.
- 9% of facilities, where economizers are potentially applicable, used outside air economizers.
- 8% of facilities had energy management systems.
- 11% employed VFDs on cooling fans.
- 27% of facilities with duct work had duct-sealing processes performed.
- 64% of ducts were insulated.

Refrigeration

Table 3 presents findings on self-contained refrigeration units (based on numbers of units, not on unit capacities). As shown, glass door refrigerators commanded a dominant market share (42%) of all installed, self-contained refrigeration units.

Tuble et Types of sen Contained Herrigeration Chief						
Type of Unit	Percent of Units					
Glass Door Reach In Refrigerator	42%					
Glass Door Beverage Cases	12%					
Glass Top Freezer Cases	10%					
Open Upright Display Cases	9%					
Other Refrigeration	6%					
Service Cases	5%					
Glass Door Reach In Freezer	4%					
Ice Machines	4%					
Solid Door Reach-In Freezer	4%					
Solid Door Reach-In Refrigerator	3%					
Island Cases	1%					

Table 3. Types of Self-Contained Refrigeration Units

Other key survey findings regarding energy-efficiency measures affecting self-contained refrigeration include:

- Fluorescent tubes comprised 96% of refrigeration lighting; LEDs made up 4%.
- 12% of applicable refrigeration units had door heater controls or zero energy doors.
- Each of the following measures were installed on 4% to 5% of refrigeration units:
 - Efficient fan motors
 - ➢ Fan motor controls
 - Defrost controls

Table 4 shows percentages of remote refrigeration units with energy-efficiency measures installed. Energy-efficient compressors (Discus and Scroll) and heat recovery water heating measures were most commonly installed, at 17% and 16%, respectively.

Type of Measure	Saturation (Percent of Refrigeration Units)
Discus & Scroll Compressors	17%
Pressure Controls	4%
Heat Recovery Water Heating	16%
High-Efficiency Fan Motors	4%
Condenser Fan VSD	2%
High-Efficiency Pump Motors & VSDs	2%

Table A Catanatian of Damate	D.f	
Table 4. Saturation of Remote	Refrigeration Energy	y-Efficiency Measures

Energy-Efficiency Decision Making

In addition to collecting baseline equipment information, the study asked business owners and managers about factors they considered in making investment decisions regarding energy-efficient equipment, with incentives available and payback criteria the two key decision factors commonly reported.

Figure 12 shows the likelihood of program participation at different incentive levels, stated as a percentage of installed equipment costs. Higher incentives (ranging from 35%–40% of installed costs, to 50%–75%) were associated with higher reports of "very likely" participation among businesses.

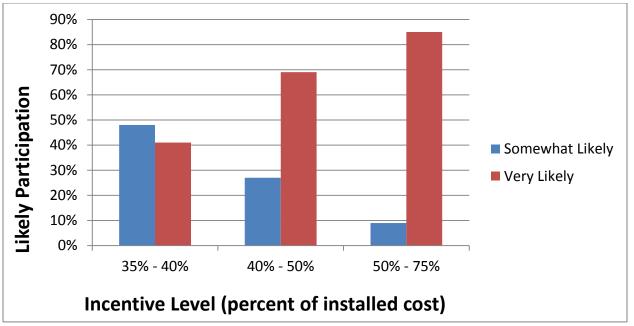
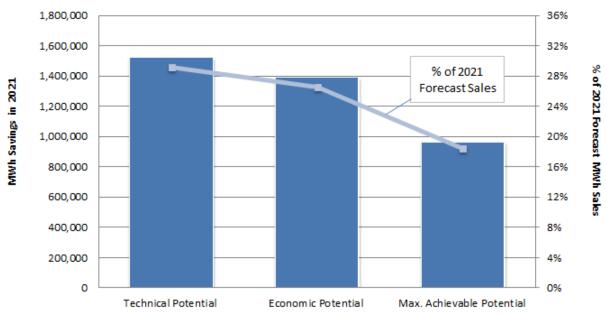


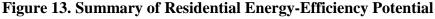
Figure 12. Incentive Levels and Likely Program Participation

A majority of Maine's businesses (58%) stated they considered the payback period when making decisions regarding energy-efficient equipment. Of these businesses, 72% required payback

periods under three years. Table 5 shows payback criteria businesses used when considering energy-efficiency investment decisions.

	·
Payback Criteria	Percent*
Less than 1 year	5
Less than 1.5 years	5
Less than 2 years	27
Less than 3 years	35
*0(1) 1 1 1 1	


Table 5. Energy-Efficiency Investment Payback Criteria


*Of businesses considering payback.

RESIDENTIAL ENERGY-EFFICIENCY POTENTIAL

Summary of Assessment Results

Figure 13 summarizes technical, economic (based on the TRC test), and maximum achievable savings potential in the residential sector in Maine by 2021. The maximum achievable potential estimate primarily was based on a market penetration scenario, targeting installation of energy-efficient equipment in 80% of the remaining eligible market by 2021.

Per the data shown in Figure 13, large potential remains for electric energy-efficiency savings in the residential sector. If targeted market penetration for all remaining, eligible, cost-effective measures could be achieved over the next decade, maximum achievable potential for residential electric savings by 2021 would be: 964,389 MWh, or approximately 18% of forecasted residential MWh sales in 2021.

Measures by End Use

Table 6 lists residential, electric-efficiency technologies (by end use) this analysis considered. Appendix C provides savings, useful life, costs, and equipment saturations associated with each measure.

End-Use Type	End-Use Description	Measures/Programs Included
Appliances	ENERGY STAR Appliances	 ENERGY STAR Clothes Washers & Dishwashers ENERGY STAR Dehumidifiers ENERGY STAR Refrigerators & Freezers Refrigerator/Freezer Pick-Up/Recycling
Consumer Electronics	Home Electronics	 Controlled Power Strips Internal Power Supplies, Laptops, Computer Monitors Efficient Televisions
Lighting	Interior/Exterior Lighting	Specialty and Standard CFL BulbsLED Screw-In LightingEfficient Indoor/Exterior Fixtures
Water Heating	Domestic Hot Water	 Efficient Storage Tank WH Heat Pump WH Solar WH w/ Electric Back-Up Tank & Pipe Wrap Low Flow Showerheads & Faucet Aerators
HVAC Envelope	Building Envelope Upgrades	 Improved Attic, Wall, & Floor Insulation Levels ENERGY STAR Windows Improved Air Sealing & Duct Sealing
HVAC Equipment	Heating/Cooling/Ventilation Equipment	 Existing Central AC Tune-Up Efficient Central AC Systems Efficient Room Air Conditioners Ductless Mini-Split Heat Pumps Efficient Furnace Fans Whole House Ventilation Fans
Other	Miscellaneous Efficiency Upgrades	Two-speed or Variable Speed Pool Pump Motor

Table 6. Residential Sector Electric Energy-Efficiency Measures by End Use

Technical and Economic Potential Savings

Technical potential represents savings that could be captured if 100% of inefficient electric equipment was replaced instantaneously (where technically feasible) with alternative, high-efficiency equipment. As shown in Table 7, Maine's residential sector has total *technical potential savings* of: 1,521,890 MWh, or 29% of forecast residential MWh sales in 2021.

End Use	2021 Energy (MWh)
Lighting	440,074
Water Heating	277,928
Appliances	234,387
Electronics	213,295
HVAC (Equipment)	177,294
HVAC (Envelope)	122,210
Other	56,703
Total	1,521,890
% of Annual Sales Forecast	29%

As shown in Table 8, *economic potential* in the residential sector is 1,388,392 MWh in 2021. Economic potential assumes 100% installation of all eligible cost-effective measures. At this analysis stage, the economic potential only excluded measures found not cost-effective, based on the TRC Test.

End Use	2021 Energy (MWh)
Lighting	440,074
Appliances	234,387
Water Heating	194,930
Electronics	189,892
HVAC (Equipment)	154,249
HVAC (Envelope)	118,156
Other	56,703
Total	1,388,392
% of Annual Sales Forecast	27%

 Table 8. Residential Electric Economic Potential Savings by End Use

Figure 14 shows economic potential for electric efficiency for the residential sector as a supply curve (i.e., the relationship between economic potential savings [as a percentage of 2021 residential forecast sales] and levelized costs per lifetime kWh saved). For example, savings of roughly 17.5% of forecast sales can be achieved at a cost per lifetime kWh saved of \$0.05 or less. To obtain increased electric energy savings from efficiency resources, one must move to the curve's right, choosing progressively more costly resources.

In this analysis, levelized costs were based only on electric savings; they did not factor in associated capacity benefits or non-electric benefits, and did not include program administrative costs. For example, insulation measures had a high levelized cost, based on cooling-only savings, but passed the economic screen due to non-electric heating fuel savings.

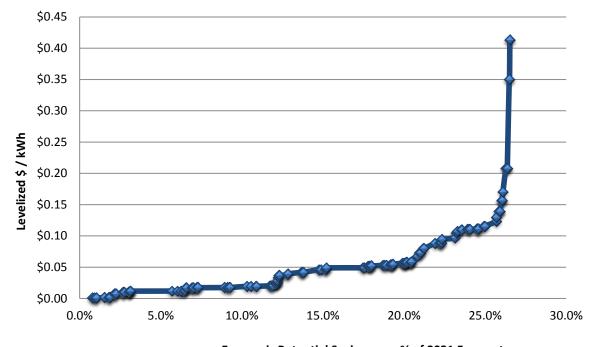


Figure 14. Residential Electric-Efficiency Supply Curve for Maine (Economic Potential)

Economic Potential Savings as a % of 2021 Forecast

Maximum Achievable Potential Savings

Maximum achievable potential serves as a subset of economic potential, limited by various market and adoption barriers. Maximum achievable potential also accounts for the capability of program administrators to ramp-up program activity over time.

This analysis assumed end users would be provided with incentives equal to the entire incremental cost of the more-efficient equipment. As residential customers would not be responsible for any incremental costs, all measures were assumed to reach targeted market penetration rates (equal to 80% of eligible measures annually) by the third year of analysis (2014). While this assumption simplifies actual adoption curves, it provides a concise method for estimating achievable savings potential over a specific time period.

Table 9 provides maximum achievable potential in the residential sector, assuming 80% market penetration. The study estimated maximum achievable potential for 2021 electric-efficiency savings at: 964,389 MWh, or 18% of residential sales in 2021.

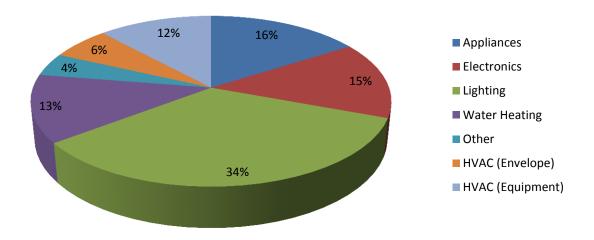
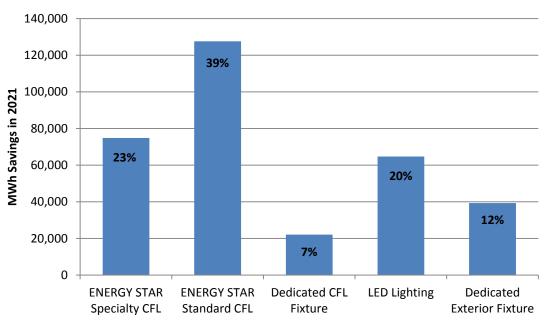

End Use	2021 Energy (MWh)
Lighting	328,406
Appliances	154,185
Electronics	141,156
Water Heating	123,694
HVAC (Equipment)	114,997
HVAC (Envelope)	59,857
Other	42,094
Total	964,389
% of Annual Sales Forecast	18%

Table 9. Residential Electric Maximum Achievable Potential Savings by End Use

Figure 15 shows maximum achievable potential by end use. Major opportunities for electric energy-efficiency savings remain in residential lighting, including:

- Continued promotion of efficient CFLs for standard and specialty lighting sockets; and
- Support for LED bulbs in residential applications.

Figure 15. Residential Sector End-Use Savings as a Percentage of 2021 Maximum Achievable Potential


Consumer electronics, including televisions, computers, and miscellaneous plug loads, present a growing residential end use: opportunities for improved efficiency in this category represent ~15% of estimated maximum achievable potential by 2021. Improved efficiency measures in this category include:

- Efficient televisions;
- ENERGY STAR-rated computers and LCD monitors; and
- Smart strip plug controls.

The remaining 50% of the estimated maximum achievable result from:

- ENERGY STAR appliances (16%);
- Improvements to water heater efficiency (13%);
- Building envelope characteristics (6%);
- HVAC equipment (12%); and
- Pool pump motors.

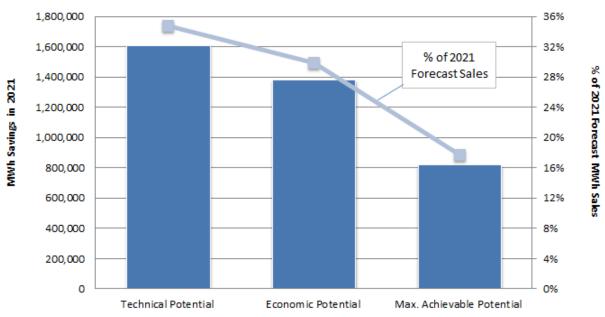
As noted, the lighting end use represents the largest opportunity for continued electric savings in the maximum achievable potential scenario. Figure 16 presents measure details of maximum achievable potential for the residential lighting end use.

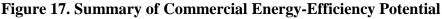
Standard screw-in CFL bulbs continue to represent a significant portion of the overall potential (39% of all residential lighting potential), even after accounting for impacts of the 2007 Energy Independence and Security Act, which will result in a more efficient baseline, with new halogen bulbs replacing traditional incandescent lighting as the measure baseline.

Specialty CFL sockets (including small, screw-base, three-way lighting, and other non-traditional bulbs) represent 23% of maximum achievable savings in the lighting end use.⁹ LED bulb penetration was assumed to increase over the 10-year study period, reflecting the majority

⁹ Specialty bulbs were assumed to represent 11% of all household sockets, as reported in the *Efficiency Maine Trust Residential Lighting Program Evaluation: Interim Report*, April 2012.

of all bulbs installed after 2018. Thus, LED bulbs represent 20% of the lighting end-use potential. Exterior and interior fixtures, requiring installation of a dedicated pin-base, were assigned a low applicability factor, representing 12% and 7% of maximum achievable savings in the residential lighting end use, respectively.¹⁰


Appendix C provides additional, measure-level, maximum achievable potential savings detail for the remaining end uses.


¹⁰ Fixtures were assigned a low applicability factor, based on their current, overall share of all bulbs rebated through the Trust's Residential Lighting Program.

COMMERCIAL ENERGY-EFFICIENCY POTENTIAL

Summary of Potential Results

Figure 17 summarizes technical, economic (based on the TRC test), and maximum achievable savings potential in the commercial sector in Maine by 2021. The maximum achievable potential estimate has been based on a market penetration scenario, targeting installation of energy-efficient equipment in 80% of the remaining eligible market by 2021.

As shown, substantial potential remains for electric energy-efficiency savings in the commercial sector. If targeted market penetration for all remaining, eligible, cost-effective measures can be reached over the next decade, the maximum achievable potential for commercial electric savings by the year 2021 would be: 816,357 MWh, or approximately 18% of forecast commercial sales in 2021.

Measures by End Use

Energy-savings analysis for the commercial sector included 127 commercial electric-efficiency measures. Table 10 lists commercial, electric-efficiency technologies, by end use, considered in the analysis. Appendix C provides savings, useful life, costs, and equipment saturations associated with each measure.

End-Use Type	End-Use Description	Measures Included
Space Heating & Space Cooling	Heating/Cooling/Ventilation Equipment, HVAC Controls	 Heat Pumps (High-Efficiency, Water Source) Insulation (Wall, Ceiling, etc.) EMS / Controls Economizers High-Efficiency AC and Chillers
Ventilation	HVAC, Air Quality	Ventilation Motors and VFD'sDemand Controlled Ventilation
Water Heating	Domestic Hot Water	 High-Efficiency Tank and Booster Water Heaters Heat Pump Water Heater Low Flow Showerhead/Faucet Aerator High-Efficiency Clothes Washers
Lighting	Interior/Exterior Lighting	 High-Efficiency T8 and T5 Systems LED Lighting Systems (Indoor and Outdoor) Lighting Controls Refrigerated Case Lighting
Cooking	Energy Star Appliances	High-Efficiency Cooking Equipment
Refrigeration	High-Efficiency Equipment Refrigeration Controls	 Vending Machines/Vending Misers Reach-In Freezers Covers for Display Cases Evaporator Fan Controls
Office Equipment/ Computers	Energy Star Office Equipment	 Energy Star Office Equipment Smart Power Strips / Power Supplies
Other	Industrial Processes High-Efficiency Electricity Distribution	 Machine / Industrial Processes Air Compressors High-Efficiency Transformers

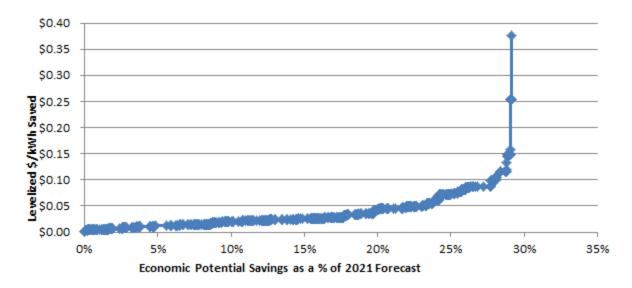
Table 10. Commercial Sector Electric Energy-Efficiency Measures by End Use

Technical and Economic Potential Savings

Technical potential represents savings that could be captured if 100% of inefficient electric equipment was replaced instantaneously (where technically feasible). As shown in Table 11, total *technical potential savings* in Maine's commercial sector would be: 1,607,257 MWh, or 34.8% of forecast commercial MWh sales in 2021.

End Use	2021 Energy (MWh)				
Lighting	590,836				
Ventilation	339,126				
Refrigeration	248,638				
Space Cooling	167,296				
Office Equipment	89,293				
Space Heating	92,563				
Water Heating	49,185				
Process	17,101				
Other	9,081				
Cooking	4,288				
Total	1,607,407				
% of Annual Sales Forecast	35%				

Table 11. Commercial Electric Technical Potential Savings by End Use


As shown in **Error! Not a valid bookmark self-reference.**, the *economic potential* in the commercial sector would be

1,380,145 MWh in 2021. Economic potential assumes 100% installation of all eligible costeffective measures, excluding measures previously included in the technical potential, but not passing the TRC benefit/cost-screening test.

Table 12. Commercial Electric Economic Potential Savings by End Use

End Use	2021 Energy (MWh)				
Lighting	466,253				
Ventilation	337,946				
Refrigeration	219,919				
Space Cooling	152,116				
Office Equipment	44,809				
Space Heating	84,020				
Water Heating	47,064				
Process	17,101				
Other	7,241				
Cooking	3,677				
Total	1,380,145				
% of Annual Sales Forecast	30%				

Figure 18 presents commercial sector economic potential for electric efficiency as a supply curve, demonstrating the relationship between economic potential savings (as a percentage of 2021 commercial forecast sales) and levelized costs per lifetime kWh saved.

Figure 18. Commercial Electric-Efficiency Supply Curve for Maine (Economic Potential)

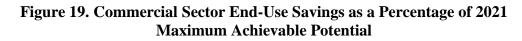
For example, savings of roughly 23% of forecast sales could be achieved at a cost per lifetime kWh saved of \$0.05 or less. To obtain increased electric energy savings from efficiency resources, one must move to the right on the curve, and choose progressively more costly resources.

In this analysis, levelized costs have been based only on electric savings, and do not include: associated capacity benefits, non-electric benefits, or program administrative costs. For example, insulation measures exhibit a high levelized cost, based on cooling-only savings, but pass the economic screen due to non-electric heating fuel savings.

Maximum Achievable Potential Savings

Achievable potential serves a subset of economic potential, limited by various market and adoption barriers. Maximum achievable potential represents attainable savings if market penetration of selected measures ramps up to replace 80% of the eligible market, turning over each year by 2015.

As discussed, this analysis assumed target penetration for replace-on-burnout measures could be achieved immediately, due to Maine's existing network of program allies and their relationships with C&I businesses. Retrofit measures assumed a ramp-up period,¹¹ rather than immediate adoption, due to significant associated costs (for example, costs of adding insulation to an existing facility).


¹¹ Ramp-up rates for retrofit measures:

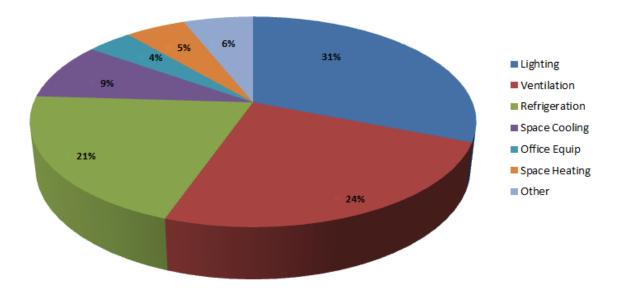

I I I											
Year	1	2	3	4	5	6	7	8	9	10	Total
Ramp-Up Rate	5%	15%	20%	20%	10%	10%	5%	5%	5%	5%	100%

Table 13 and Figure 19 provide estimates of maximum achievable potential in the commercial sector by end use, with maximum achievable potential for electric-efficiency savings in 2021 estimated at: 816,357 MWh, or 18% of commercial MWh sales in 2021.

End Use	2021 Energy (MWh)				
Lighting	253,055				
Ventilation	198,948				
Refrigeration	168,161				
Space Cooling	72,139				
Office Equipment	32,007				
Space Heating	42,551				
Water Heating	29,869				
Process	12,395				
Other	5,080				
Cooking	2,153				
Total	816,357				
% of Annual Sales Forecast	18%				

Table 13. Commercial Electric Max Achievable Potential Savings by End Use

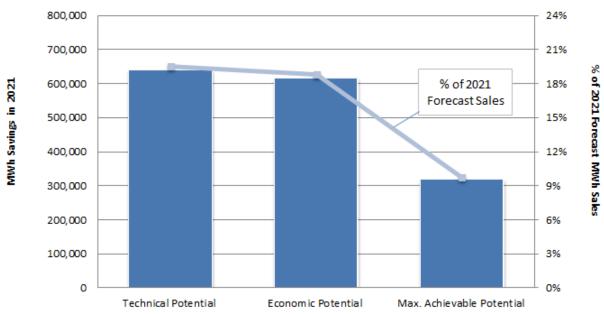
Major opportunities for electric energy-efficiency savings remain in commercial lighting, ventilation, and refrigeration. Together, energy-efficiency measures targeted at these end uses represented 76% of the maximum achievable potential in this sector. Specific measures include:

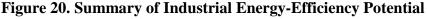
- LED lighting
- Occupancy controls

- Variable speed drives
- Efficient refrigeration fan motors and controls

Additional opportunities, representing 18% of maximum achievable potential, can be found in space cooling, heating, and office equipment. Table 14 provides additional measure detail on the most promising energy-efficiency opportunities in the commercial sector.

End Use/Measure	% of End Use Max Achievable Potential					
Lighting						
LED	31.8%					
Occupancy Sensor	27.8%					
Fluorescent	27.2%					
Ventilation						
Dual Enthalpy Economizer	32.9%					
Variable Speed Drive Control	43.2%					
Demand-Controlled Ventilation	15.0%					
Refrigeration						
Fan Motors	45.0%					
Vending Miser for Soft Drink Vending Machines	14.2%					
Zero-Energy Doors	8.0%					
Space Cooling / Space Heating						
EMS install	26.6%					
High-Efficiency AC	18.2%					
Programmable Thermostats	13.0%					
Office Equipment						
"Smart" Power Strip	56.0%					
Energy Star office equipment	43.9%					
Other						
Heat Pump Water Heater	25.6%					
Solar Water Heating System	21.3%					
High-Efficiency Air Nozzles	12.5%					
Automatic Drains for Compressed Air	7.2%					


	a • 1			3.6 1	
Table 14. Top	Commercial	Electric En	ergy-Efficiency	' Measures t	ov End Use


Appendix C provides additional measure-level maximum achievable potential savings details for the remaining end uses.

INDUSTRIAL ENERGY-EFFICIENCY POTENTIAL

Summary of Potential Results

Figure 20 summarizes technical, economic (based on the TRC test), and maximum achievable savings potential in the industrial sector in Maine by 2021. Maximum achievable potential estimates primarily have been based on a market penetration scenario, targeting installation of energy-efficient equipment in 80% of the remaining eligible market by 2021.

As shown, large potential remains for electric energy-efficiency savings in the industrial sector. If targeted market penetration for all remaining, eligible, cost-effective measures could be reached over the next decade, maximum achievable potential for industrial electric savings by 2021 would be 318,007 MWh, or approximately 10% of forecast industrial sales in 2021.

Measures by End Use

Energy-savings analysis for the industrial sector included 81 electric-efficiency measures. Table 15 lists industrial electric-efficiency technologies (by end use) considered in the analysis.

End-Use Type	End-Use Description	Measures/Programs Included
Space Heating & Space Cooling	Heating/Cooling/Ventilation Equipment, HVAC Controls	 Insulation (Wall, Ceiling, etc.) EMS / Controls Economizers High-Efficiency AC and Chillers
Ventilation	HVAC, Air Quality	Ventilation Motors and VFD'sDemand Controlled Ventilation
Water Heating	Domestic Hot Water	High-Efficiency Tank and Booster Water HeatersHeat Pump Water Heater
Lighting	Interior/Exterior Lighting	 High-Efficiency T8 and T5 Systems LED Lighting Systems (Indoor and Outdoor) Lighting Controls
Cooking	Energy Star Appliances	High-Efficiency Cooking Equipment
Process Cooling, Process Heating & Refrigeration	High-Efficiency Equipment Refrigeration Controls	 Improved Refrigeration (Various Measures) Electric Supply System Improvements Sensors & Controls Energy Information System
Office Equipment/ Computers	Energy Star Office Equipment	Energy Star Office EquipmentSmart Power Strips / Power Supplies
Machine Drive	Industrial Processes	 Pump System Efficiency Improvements Motor System Optimization (Including ASD) Electric Supply System Improvements Sensors & Controls Industrial Motor Management Fan System Improvements Advanced Efficient Motors Energy Information System Advanced Lubricants

Table 15. Industrial Sector Electric Energy-Efficiency Measures by End Use

Technical and Economic Potential Savings

Technical potential represents savings that could be captured if all inefficient electric equipment was replaced instantaneously (where technically feasible). Table 16 shows total *technical potential savings* in Maine's industrial sector of: 639,637 MWh, or 20% of forecast industrial sales in 2021.

End Use	2021 Energy (MWh)				
Machine Drive	364,021				
Lighting	104,381				
Ventilation	35,986				
Space Cooling	48,453				
Process Cooling & Refrig	20,558				
HVAC Controls	11,805				
Office Equipment	12,082				
Process Heating	8,324				
Water Heating	12,246				
Envelope	18,421				
Other	3,360				
Total	639,637				
% of Annual Sales Forecast	20%				

Table 16. Industrial Electric Technical Potential Savings by End Use

Table 17 shows *economic potential* in the industrial sector of 616,514 MWh in 2021. Economic potential assumes 100% of all cost-effective measures eligible for installation would be installed, but excludes measures previously included in the technical potential, but not passing the TRC benefit/cost screening test.

End Use	2021 Energy (MWh)				
Machine Drive	364,021				
Lighting	101,544				
Ventilation	35,077				
Space Cooling	42,130				
Process Cooling & Refrig	20,558				
HVAC Controls	11,805				
Office Equipment	12,082				
Process Heating	8,230				
Water Heating	4,847				
Envelope	12,859				
Other	3,360				
Total	616,514				
% of Annual Sales Forecast	19%				

Table 17. Industrial Electric Economic Potential Savings by End Use

Figure 21 presents economic electric-efficiency potential for the industrial sector as a supply curve, demonstrating relationships between economic potential savings (as a percentage of 2021 industrial forecast sales) and levelized costs per lifetime kWh saved.

For example, savings of roughly 15% of forecast sales could be achieved at a cost per lifetime kWh saved of \$0.05 or less. To obtain increased electric energy savings from efficiency resources, one must move to the right on the curve, and choose progressively more costly resources.

In this analysis, levelized costs have been based only on electric savings, and do not consider associated capacity benefits, non-electric benefits, or include program administrative costs. For example, insulation measures have a high levelized cost, based on cooling-only savings, but pass the economic screen due to non-electric heating fuel savings.

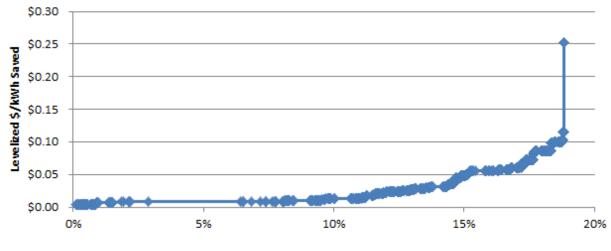


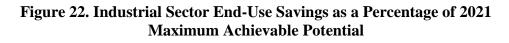
Figure 21. Industrial Electric-Efficiency Supply Curve for Maine (Economic Potential)

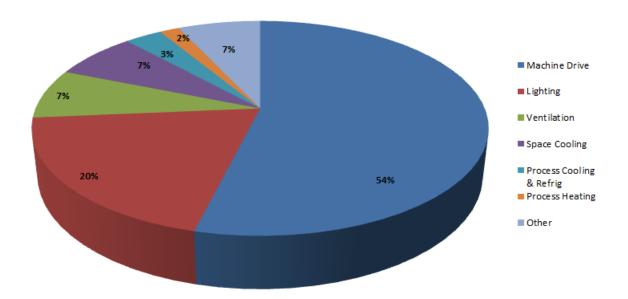
Economic Potential Savings as a % of 2021 Forecast

Maximum Achievable Potential Savings

Various market and adoption barriers limit achievable potential, a subset of economic potential. Maximum achievable potential represents attainable savings if market penetration of selected measures ramps up to replace 80% of the eligible market, turning over each year by 2015.

As discussed, this analysis assumed target penetrations for replace-on-burnout measures could be achieved immediately, given Maine's existing network of program allies and their relationships with C&I businesses. For retrofit measures, a ramp-up period¹² was assumed (rather than immediate adoption) due to significant associated costs (for example, costs of adding insulation to an existing facility).


Table 18 and Figure 22 present maximum achievable potential in the industrial sector by end use, with maximum achievable potential for electric-efficiency savings in 2021 estimated at 318,007 MWh, or 10% of industrial MWh sales in 2021.


¹² Ramp-up rates for retrofit measures:

I I I											
Year	1	2	3	4	5	6	7	8	9	10	Total
Ramp-Up Rate	5%	15%	20%	20%	10%	10%	5%	5%	5%	5%	100%

End Use	2021 Energy (MWh)			
Machine Drive	171,307			
Lighting	62,776			
Ventilation	23,909			
Space Cooling	22,518			
Process Cooling & Refrig	9,988			
HVAC Controls	9,074			
Office Equipment	5,867			
Process Heating	5,297			
Water Heating	2,908			
Envelope	2,245			
Other	2,117			
Total	318,007			
% of Annual Sales Forecast	10%			

Table 18. Industrial Electric Max Achievable Potential Savings by End Use

Representing almost 54% of the maximum achievable potential, machine drives present the largest opportunity for electric energy-efficiency savings in the industrial sector. Machine drive energy-efficiency measures include:

- Motor system optimization (including VFDs);
- Sensors and controls; and
- Pump efficiency improvements.

Additional opportunities exist in lighting (20%), ventilation and cooling (HVAC), process heating, process cooling, and refrigeration.

Table 19 provides additional measure details on the most promising commercial sector opportunities.

End Use/Measure	Percent of End Use Max Achievable Potential
Machine Drive	
Motor System Optimization (Including ASD)	58.6%
Electric Supply System Improvements	10.3%
Sensors and Controls	10.1%
Lighting	
High Intensity Fluorescent Fixture (replacing HID)	35.8%
Lighting Controls	34.7%
Remote Mounted Occupancy Sensor	13.6%
Ventilation	
Variable Speed Drive Controls	50.6%
Dual Enthalpy Economizer	30.0%
Demand Controlled Ventilation	15.5%
Space Cooling	
High-Efficiency AC	56.6%
Ductless (mini split)	34.4%
Process Heating/Cooling & Refrig	
Improved Refrigeration	36.1%
Electric Supply System Improvements	27.8%
Sensors and Controls	27.2%
Water Heating	
Solar Water Heating System	61.8%
Heat Pump Water Heater	23.3%
Other	
ENERGY STAR office equipment	35.2%
"Smart" Power Strip	25.9%
Energy-Efficient Windows	20.0%

Table 19. Top Industrial Measures by End Use

DISTRIBUTED GENERATION POTENTIAL

In addition to traditional energy-efficiency resources, this report analyzes the potential for distributed generation resources, including:

- On-site solar photovoltaics (PV);
- Customer-sited wind projects; and
- Combined heat and power (CHP) projects.

On-site solar PV refers to rooftop PV systems, using solar energy to generate electricity. Similarly, customer-sited wind projects use wind energy to generate electricity.

CHP units, which generate electricity and utilize waste heat for space or water heating requirements, can be used in buildings with fairly coincident thermal and electric loads, or buildings producing combustible biomass or biogas. CHP units traditionally have been installed in hospitals, schools, and manufacturing facilities, but can be used across nearly all segments with an average annual energy load greater than about 30 kW.

Analysis included the following types of CHP units:

- Reciprocating engines
- Microturbines
- Fuel cells
- Gas turbines
- Steam turbines

Analysis also accounted for fuels used by CHP units (non-renewable CHP runs on fossil fuels, such as natural gas, while renewable CHP runs on biologically derived fuel).

The study determined technical assumptions for each distributed generation resource technology, including cost and savings information, evaluated the resources' cost-effectiveness (based on the TRC), and evaluated the potential for resources deemed cost-effective.

Technical Assumptions

Rooftop PV

Relying on the sun to generate electricity, rooftop PV systems' effectiveness depend on weather. This study focused on renewable-electricity generation potential from rooftop residential and commercial buildings.

Typically, PV generation offsets only a portion of baseline loads, and, in most cases, is considered a secondary source for a building's energy needs. PV electrical generation above the building's load feeds into the grid. This greatly depends on the PV system's size, and, for residential and commercial customers, generally occurs when buildings are unoccupied. This

study did not include large PV generation facilities (operating to sell the majority [or all] of their power to the grid) or emerging PV technologies.

On-Site Solar PV Background Data

Primary and secondary resources for installed costs of on-site solar options have been derived from:

- PacifiCorp's PV pilot program in Utah (the Solar Incentive Program);
- The State of Utah's tax incentive program;
- The California Public Utilities Commission's California Solar Initiative program database;
- The Energy Trust of Oregon;
- U.S. DOE; and
- Other online sources.

Table 20 shows installed costs, and operational and maintenance (O&M) costs per kW as well as the measure life for all three solar technologies. O&M costs include: one inverter replacement over the system's life,¹³ with an assumed PV system measure life of 30 years.¹⁴

Table 20. On-Site Solar Technology Costs and Measure Lives

Technology	Installed Costs	O&M Costs	Measure Life
	(\$/kW)*	(\$/kW)	(years)
Solar PV	\$4,550	\$24	30

*After the federal tax incentive.

Customer-Sited Wind

The initial step in evaluating wind resources in Maine required consulting a Maine wind resource map at an 80-meter height.¹⁵ This map, published by DOE's Wind Program and the National Renewable Energy Laboratory (NREL), overviews the state's wind resource potential. Higher wind areas occur at higher elevations to the west and along the coast. Coastal sites were chosen for modeling, as most of Maine's development occurs in that area.

Using Google Earth, the study examined three coastal sites with high wind resources, and appearing to be C&I sites. By using the Distributed Wind Site Analysis Tool (DSAT),¹⁶ turbine performance could be modeled at each site. Site terrain and obstacles also were fed into DSAT, providing performance estimates for particular turbines at specific locations.

¹³ Current typical module warranties cover 10 to 15 years. Solarbuzz reported April 2012 inverter costs as \$0.711 per watt: http://www.solarbuzz.com/Inverterprices.htm

¹⁴ Current typical module warranties cover 25 years; so a 30-year system life was used. NREL's Solar Advisor Model also assumes a 30-year system life.

¹⁵ http://www.windpoweringamerica.gov/wind_resource_maps.asp?stateab=me

¹⁶ http://dsat.cadmusgroup.com/

The first site was located in Bath, at an industrial area on the waterfront, where a 600 kW turbine was modeled in DSAT. A 100 kW turbine was modeled at the second site in Woolwich, with large, warehouse-type buildings and open land nearby. A third site in Cutler, along Maine's northern coast, had the best wind resource of the three sites. The Cutler site, which appeared to be a farm or small business, was used to model a 10 kW wind turbine. Turbine sizes were dictated by space available at each site.

CHP

CHP encompasses all technologies generating electricity, while heating and/or cooling a customer's facility. Generally, power generated through these technologies contributes to a utility's base load resources, rather than peak load requirements.

CHP can be used in facilities with coincident electric and thermal loads, and with average annual energy loads greater than about 30 kW. CHP can be used to offset cooling loads with an absorption chiller—also known as combined cooling heat and power (CCHP)—a technique most applicable for building segments with large cooling requirements (such as retail, groceries, hospitals, and hotels/motels).

CHP includes a standard electrical generator, but business total energy needs also are reduced by capturing the generator's waste heat, and using it for other processes. For example, a typical spark-ignition engine has electrical efficiency of only about 35%, with "lost" energy primarily waste heat. A CHP unit captures much of this waste heat, using it for space heating, water heating, or to power an absorption chiller, achieving overall efficiency up to 80%. Thus, savings can be achieved by offsetting space heating, water heating, or air conditioning usage, in addition to generating electricity.

CHP can be broadly divided into non-renewable and renewable subcategories, based on the fuels used:

- *Non-renewable CHP* includes all generators producing energy by burning fossil fuels, such as natural gas or diesel. This study only considered natural gas, an environmentally cleaner-burning fuel than diesel. This category includes CHP used in cooling applications (CCHP), where generator units are coupled with absorption chillers.
- *Renewable CHP* refers to energy generated from any plant- or animal-based (biomass) material. Biomass can be directly combusted (i.e., industrial biomass), or can be fed into an anaerobic digester to produce biogas, which then can be combusted to produce electricity. Although biomass energy is based on a renewable resource, the combustion process is not considered "clean," as it produces emission products (e.g., carbon dioxide, NOx).

The market currently offers three primary generator technologies:

- 1. Reciprocating engines (spark-ignition or compression-ignition).
- 2. Turbines (gas or steam for larger capacity [>1 MW]; or microturbines for smaller capacity [<1 MW]).
- 3. Fuel cells.

The same generators can be used with renewable or non-renewable fuels. This study evaluated the cost-effectiveness and potential for CHP systems installed at individual C&I sites. Other configurations, such as district heating systems with CHP, were not considered.

The methodology used to calculate potential for CHP resources included three key steps:

- *Cost-effectiveness screening*: determined configurations meeting the Trust's cost-effectiveness requirements, based on the TRC.
- *Technical potential*: calculated for each configuration passing the cost-effectiveness screening, using the following key data inputs:
 - Natural gas: Central Maine Power's billing data, used to determine potential by C&I market segment.
 - Biomass: Central Maine Power's billing data, used to determine size and count of paper and wood product manufacturing facilities.
 - > Biogas: National reports used to determine facilities in Maine producing biogas.
- *Achievable technical potential*: determined for each resource class, based on other programmatic successes.

Cost-Effectiveness

The study first required conducting a preliminary cost-effectiveness analysis to determine technologies to be researched further. The preliminary cost-effectiveness tests used readily available data from Maine, other state and national reports, or previous Cadmus work. If the TRC benefit-cost ratio was near or greater than one, the technology passed, and further research was conducted to refine and update assumptions using data more recent or more specific to Maine.

On-site solar PV and customer-sited wind technologies did not pass the TRC screen, and current 30% federal tax benefits were included in the TRC analysis for PV. These technologies did not receive further analysis.

Analysis examined several configurations of CHP systems, including the fuel and generator technologies previously described.

The California Self-Generation Incentive Program (SGIP)¹⁷ served as a major data source used in this analysis. Funded by California's major investor-owned utilities, the program provided incentives for individual customers to install various, distributed generation technologies, including CHP, with a maximum capacity of 5 MW from 2001 through 2008.¹⁸ SGIP's annually published reports detailed CHP system installations and operations. Though CHP incentives no longer are available, annual program evaluations continue to report CHP system performance, as participants must provide system data and feedback for five years.

¹⁷ California Self-Generation Incentive Program: http://www.cpuc.ca.gov/PUC/energy/DistGen/sgip/

¹⁸ While SGIP did not offer most CHP incentives after 2008, some systems, such as fuel cells, remain eligible for incentives.

Data on CHP technologies and costs also were obtained from EPA reports: *Catalog of CHP Technologies* and *Biomass Combined Heat and Power Catalog of Technologies*.^{19, 20}

The cost-effectiveness analysis also considered federal tax credits, currently offered for new CHP installations, but set to expire at the end of 2016.²¹ Analysis conducted with and without the tax credit found it did not change the cost-effectiveness screening results (based on requirements of TRC>1) for any configurations. While having no effect on general CHP configurations' cost-effectiveness, tax credits can improve finances for specific CHP projects.

Using the TRC B/C metric, most CHP configurations proved cost-effective in Maine. While fuel cells and natural-gas fueled microturbines did not pass the screening, the following configurations did, and therefore were included in the potential analysis:

- Biogas-fueled:
 - ➢ Gas turbine and microturbine
 - Reciprocating engine
- Biomass-fueled steam turbine
- Natural gas-fueled:
 - ➢ Gas turbine
 - Reciprocating engine

Technical Potential

Biogas

Anaerobic digesters create methane gas (biogas fuel) by breaking down liquid or solid biological wastes. Heat captured by CHP units largely maintains high temperatures required by digesters. Depending on the anaerobic digester's size, it can be installed using a variety of generators, including:

- Fuel cells
- Gas turbines
- Microturbines
- Reciprocating engines

¹⁹ Energy and Environmental Analysis (an ICF International Company). December 2008. *Catalog of CHP Technologies*. Prepared for EPA: www.epa.gov/chp/documents/catalog_chptech_full.pdf

²⁰ Energy and Environmental Analysis (an ICF International Company) and Eastern Research Group. September 2007. *Biomass Combined Heat and Power Catalog of Technologies*. Prepared for EPA: http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf

²¹ U.S. EPA Combined Heat and Power Partnership: http://www.epa.gov/chp/incentives/

Sites for anaerobic digesters include:

- Animal farms (dairy or swine)
- Landfills
- Wastewater treatment facilities

For farms, biogas amounts generated directly relate to the number and types of animals on site. Based on typical collection systems, EPA estimates anaerobic digesters prove cost-effective with farms with at least 500 head of cattle or 2,000 head of swine.²² According to the U.S. Census of Agriculture, Maine has eight dairy farms of this size, but does not have sufficiently large swine farms.²³

Similarly, the population size served by a wastewater treatment facility determines expected generation output. A cost-effective CHP installation generally requires a minimum volume of approximately 5 million gallons per day of waste. EPA reports Maine has no facilities meeting this size.²⁴ This minimum has been based on the total cost of a CHP system, including the anaerobic digester. CHP systems may be cost-effective at smaller facilities, if facilities already have a digester installed, or need to install a digester for environmental compliance.

The EPA Landfill Methane Outreach Program publishes a database of participating and candidate landfills, identifying 10 Maine landfills as candidates or potential sites for anaerobic digesters.²⁵

Industrial Biomass

Industrial biomass utilizes industry waste products for fuel. For solid industrial biomass, heat produced from combustion often powers steam turbines, with industrial biomass potential based on customers with an average annual electric load greater than 1 MW in the key biomass-producing industries of wood and paper products. The CMP customer database contained 18 such facilities, all of which the study found CHP-eligible.

Natural Gas

For all other C&I facilities, the only constraints on technical potential are:

- A CHP unit's applicability within a particular building; and
- Fuel availability.

²⁵ U.S. EPA. Landfill Methane Outreach Program: http://www.epa.gov/lmop/documents/xls/states/lmopdatame.xls

²² U.S. EPA. November 2011. Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities. Table 2.

²³ U.S. Department of Agriculture. 2007. *Census of Agriculture, Maine*. Tables 15 and 21.

²⁴ U.S. EPA. September 2007. *Biomass Combined Heat and Power Catalog of Technologies*. Page 19.

Generally, a building can be considered eligible for CHP if:

- Thermal to electric loads have a ratio between 0.5–2.5 (the range most CHP technologies operate within), with a high coincidence between these two loads; and
- Overall loads remain fairly consistent throughout the year.

Energy InsightsTM provided the overall percentage of CHP-eligible buildings by market sector, based on these ratio and load requirements. Energy Insights determined consumption parameters from secondary sources, including:

- Market surveys;
- Data from the Gas Technology Institute and the American Gas Association; and
- The EIA Commercial Buildings Energy Consumption Survey and Manufacturing Energy Consumption Survey.

Using the CMP customer database and the Energy Insights data, the study established:

- The number of CHP-eligible establishments falling within several load ranges (based on average annual peak demand); and
- Total technical potential of natural gas-fueled CHP systems for CMP customers.

For the study, CHP system sizes were based on average electric demand at a site. The best approach for sizing an actual CHP installation depends on several site-specific factors, and should be evaluated on a case-by-case basis.

To account for other utility territories in Maine, 10% was added to the technical potential calculated using CMP data.

Total Technical Potential

Table 21 shows resulting total CHP technical potential. Maine has more than 2,000 facilities with technical potential for natural gas-fueled CHP systems, and 38 sites with potential biomass or biogas systems.

Fuel	Number of Installations	Total Capacity (kW)
Natural gas	2,093	686,521
Biomass—paper/wood waste	20	61,600
Biogas—dairy farm	10	5,544
Biogas—landfill	8	1,559
Total	2,131	755,224

Achievable Potential

Non-Renewable CHP

Achievable technical potential for non-renewable CHP has been based on California's success in implementing CHP installations within SGIP, which provided incentives covering approximately 50% of system costs. Total system capacity installed through SGIP was multiplied by the ratio of Maine's C&I electricity consumption to California's, projecting achievable potential in Maine. Though the SGIP program lasted eight years, the adoption rate likely will be slightly lower in other states. In the present study, SGIP results were applied to develop a 10-year forecast for Maine.

Renewable CHP

To date, renewable CHP adoption rates have been relatively high in Maine (as indicated by 17 systems at wood or paper manufacturing facilities and two at landfill waste systems).²⁶ Cost-effectiveness analysis also showed very favorable results for biomass and biogas systems. Therefore, an estimated 10% of technical potential achievable was awarded for renewable CHP systems—a larger portion than for natural gas-fueled systems.

Total Achievable Potential

As shown in Table 22, analysis results indicate, by 2021, a cumulative achievable potential of 22 installations from all CHP technologies, with a total 12.5 MW capacity. The largest potential exists in:

- Natural gas-fueled systems (18 installations, 5.6 MW total capacity); and
- Industrial biomass applications at paper or wood product facilities (two installations, 6.2 MW total capacity).

Fuel	Number of Installations	Total Capacity (kW)
Natural gas	18	5,611
Biomass-paper/wood waste	2	6,160
Biogas—dairy farm	1	554
Biogas—landfill	1	156
Total	22	12,481

Though somewhat conservative results for achievable potential, these parallel the low interest in CHP indicated during C&I facility site visits the study conducted for the energy-efficiency potential analysis. Strong outreach efforts to key facilities might further increase achievable potential.

²⁶ Combined Heat and Power Units located in Maine: http://www.eea-inc.com/chpdata/States/ME.html

APPENDIX A. SURVEY INSTRUMENT

Efficiency Maine Potential Study Commercial/Industrial On-site Data Collection

FINAL

Site ID:	Survey Date:
Building Name:	Electric Utility:
Primary Contact:	Contact Phone:
Primary Address:	
Surveyor Name: Survey Sta	art Time: Survey End Time:
Electric Meter Information (Meter Numbers):	

Other Fuels Used Service Meter/Account Numbers:

Fuel Type	Fuel Used?	Other Info
Natural Gas		
Oil		
Propane		
Biomass		
Purchased Chilled Water / Purchased Steam		
On-site Generation		Capacity (kW): Fuel: When Used: Is waste heat used? (Y / N)
Other		

I. General Building Information

- 1. Building Type Name: ______ (if other, describe):_____
- 2. Building Type Code: _____

(Select one building type and matching code from the list below that best describes how the facility is used.)

Building Type	Building Type Code
Commercial	
Office	Com1
Retail	Com2
Grocery	Com3
Warehouse	Com4
Education	Com5
Health	Com6
Lodging	Com7
Restaurant	Com8
Agriculture	Com9
Other Commercial (Not Listed Above)	Com10
Industrial Facility (Manufacturing)	
Transportation Equipment	Ind1
Paper	Ind2
Ship & Boat Building	Ind3
Food	Ind4
Fabricated metal	Ind5
Computer & Electronic Products	Ind6
Wood Products	Ind7
Plastic and Rubber Products	Ind8
Machinery	Ind9
Printing	Ind11
Leather and Allied Products (incl. Footwear)	Ind12
Chemicals	Ind13
Furniture	Ind14
Medical Equipment & Supplies	Ind15
Mineral Products	Ind16
Beverage Manufacturing	Ind17
Miscellaneous Manufacturing (Not Listed Above)	Ind18

- 3. Is this space: ____owner-occupied? ____leased? (Check one)
- 4. Approximately how many full time employees report to this business location? _____ employees
- 5. What is the approximate floor area of this business? ______ square feet,

- 6. How many # of floors _____
- 7. Estimated exterior building wall dimensions
 - Wall 1: $H = ____ft. W = ____ft.$ Wall 2: $H = ____ft. W = ____ft.$ Wall 3: $H = ____ft. W = ____ft.$
 - Wall 4: H = _____ft. W = _____ft.
- 8. Number of buildings _____
- 9. In what year were buildings constructed? (Show year for each building)

II. Primary Building Schedule

- 10. How many hours per week does the commercial business or industrial facility operate? _____
- 11. Is this a seasonal business? _____ (yes/no)
- 12. How many months per year does the business operate? _____ months
- 13. How many holidays does your business recognize over the calendar year: _____ days
- 14. Are there any other scheduled shutdowns every year such as for summer vacation? _____ (yes/no)
- 15. If Yes, How many weeks? _____ weeks
- 16. How many months per year do you operate your primary heating systems? _____ months
- 17. How many months per year do you operate your primary cooling systems? _____ months
- 18. Do you have an Energy Management System (EMS) at this facility? _____ (yes/no)
- 19. If Yes,
 - (a) Is the system working properly? _____ (yes/no)
 - (b) What is the age of the system? _____ years

III. Efficiency Attitudes

Now I have some questions about your attitudes towards purchasing energy efficient equipment for this space. I am referring to new equipment specifically designed to be more energy efficient than other *new* models.

20. How likely would you be to purchase energy efficient equipment *instead of standard equipment when existing equipment fails and needs to be replaced?*

Very likely	
Somewhat likely	
Neutral	
Somewhat unlikely	
Very unlikely	

21. Would the likelihood of you purchasing efficient equipment *instead of standard equipment when existing* equipment fails and needs to be replaced change if you could receive a rebate covering 30% - 40% of the installed cost of the energy efficient? If Yes,

Very likely	
Somewhat likely	
Neutral	
Somewhat unlikely	
Very unlikely	

22. Would the likelihood of you purchasing efficient equipment *instead of standard equipment when existing* equipment fails and needs to be replaced change if you could receive a rebate covering 40% - 50% of the installed cost of the energy efficient? If Yes,

Very likely	
Somewhat likely	
Neutral	
Somewhat unlikely	
Very unlikely	

23. Would the likelihood of you purchasing efficient equipment *instead of standard equipment when existing* equipment fails and needs to be replaced change if you could receive a rebate covering 50% -75% of the installed cost of the energy efficient? If Yes,

Very likely	
Somewhat likely	
Neutral	
Somewhat unlikely	
Very unlikely	

- 24. When making a decision regarding energy efficient equipment, do you consider how quickly the savings will payback any additional investment that is required? _____ (yes/no)
 - If Yes,
 - (a) What payback would you require on additional investment to purchase in energy efficient equipment? Less than 1 year
 Less than 1.5 years

Less than 2 years Less than 3 years Other: less than _____ years

25. What other factors do you consider when making a decision regarding the purchase of energy efficient equipment?

Lower monthly electric bills	
Increased level of employee comfort	
Helping to protect the environment	
Improving the image or value of your business	
Receiving a rebate or tax incentive	
Recommendation of sales person, contractor, or consultant	
Other	

IV. Interior & Exterior Lighting (Excluding Refrigeration Lighting)

Lighting Fixture Inventory: Utilize maintenance staff or contact reported info as available as well as lamp and ballast stocking information to inform as much detailed information as possible. Use multiplier if location is identical to others (offices, hallway runs, etc.).

Location. Use multiple lines for locations as needed to cover unique lighting encountered.	Fixture Type	Ballast Type Unk, ESMB, MB, EB	If fluorescent, has reflector?	Tube Length (feet)	Fixture Wattage (populate for non- IFT lamps only)	Fixture Count	Lamp Type	# of Lamps Per Fixture	Weekly operating hours (by location, not fixture)	Control	Location Multiplier

Fixture Type Codes: IFT = Interior Fluorescent Tube, **INFT** = Interior Non Fluorescent Tube, **EX** = Exit Signs, OAF = Outdoor Area Fixture, Wall = Wallpack, PGF = Parking Garage Fixture

Lamp Type Codes: T5 = 5/8" Fluorescent Tube, T8 = 1" Fluorescent Tube, HPT8 = High Performance T8, RWHPT8 = Reduced Wattage HPT8, T12 = 1.5" Fluorescent Tube, T12HO = High Output T12, EST12 = Energy Saving T12, LED = LEDs, CCB = Cold Cathode Bulb, I = Incandescent, CF = Compact Fluorescent, CIR = Circline Fluorescent, MV = Mercury Vapor, PSMH = Pulse Start Metal Halide, SMH = Standard Metal Halide, HPS = High Pressure Sodium, LPS = Low Pressure Sodium, Q = Quartz/Halogen, EI = Electrodeless/Induction,

Lighting Control Codes:

M = Manual On/Off, **MD** = Manual Dimmer, **ROS** = Remote Occupancy Sensor, **SOS** = Switch Occupancy Sensor, **DLC** = Daylight - continuous dimming, **DLS** = Daylighting - stepped dimming, **EMS** = Energy Management System, TC = Time clock, **PC** = Photocell, **EMS** = Exterior Motion Sensor, **Oth** = Other

26. Other Lighting: Where manual switching is used, what percent of the time are lights turned off when an area is not in use? ______%

V. Facility Cooling, Ventilation and /HVAC Controls

Facility Cooling Systems

Item #	Туре	# of Systems	Size (Tons) 12k Btuh = 1 Ton	SEER, EER or kW/ton	Age	Manufacturer	Model #
1							
2							
3							
4							
5							
6							
7							
8							
9							

Common System Types and Abbreviations:

Cooling	Abbrev
Water Cooled Chiller	WC
Air Cooled Chiller	AC
Split System	SS
Mini-Split System	MSS
Packaged System	PS
Heat Pump	HP
Packaged Terminal Air Conditioner	PTAC
Window Unit A/C	WU
Other (specify)	

Other HVAC Questions:

- 27. Do you have programmable thermostats (or an Energy Management System) installed? (yes/no)
 - a. If yes, what percentage of the facility has them? _____
 - b. What are the setpoints? Weekdays _____days _____nights Weekends _____days _____nights
- 28. If you do not have programmable thermostats or an EMS system, do you manually adjust temperature settings when the facility is unoccupied? _____ (yes/no)
- 29. Do you have outside air economizers? _____(yes/no)
- 30. Do you have humidity controls? _____(yes/no)
- 31. Do you have VFD's on cooling tower fans? _____(yes/no)
- 32. How often do you tune the chiller and HVAC systems? _____(yes/no)
- 33. Have you had any duct sealing processes performed? _____(yes/no)
- 34. Are ducts insulated?_____ (yes/no)

V. Facility Cooling, Ventilation and /HVAC Controls (Continued)

Air Handling Units

Item #	# of Systems	Supply Fan HP	Return Fan HP	Exhaust Fan HP	Sup. Motor Eff	Ret Motor Eff	Exh Motor Eff	Capacity (CFM)	Outdoor Air %	VFD ?	Demand Control Ventilation ?
1											
2											
3											
4											
5											

Cooling Towers

Item #	Manufacturer	Model #	# Fans	HP fan	Fan Motor Eff	Pump HP	Pump Eff	Gallons per minute	Age	VFD Fan?	VFD Pump ?
1											
2											
3											
4											

- 35. Are any large air circulation fans used in the facility that are not part of the air handling units such as large ceiling fans used in agriculture or warehouses. _____ (yes/no)
 - a. If yes, how many fans___
 - b. Are any of these fans High Volume Low Speed (HVLS) Fans_____ (yes/no)
 - c. If yes, how many are HVLS?_____

VI. Building Envelope

Insulation

Wall Insulation type (From Insulation Type table below)	
Wall insulation (inches)	
Roof Insulation Type (From Insulation Type table below)	
Roof Insulation (inches)	
Ceiling Insulation Type (From Insulation Type table below)	
Ceiling Insulation (inches)	
Floor Insulation type (From Insulation table below)	
Floor Insulation (inches)	

	Insulation Types	(R /in)
BAT	Batt or Blanket	3.3
LSF	Loose fill	2.7
XPE	Expanded perlite	2.8
XPS	Expanded polystyrene	3.8-5.0
RDG	Rigid board	2.8-4.0
Ν	None	0
OTH1	Other1	
OTH2	Other2	

Windows/Fenestration	on:	G1	G2	G3	
Layers of glazing		1 2 3	1 2 3	1 2 3	
Type of glazing	C = Clear $T = Tinted$ $R = ReflectiveO = Opaque, S = Spectrally Selective$	CTROS	CTROS	CTROS	
Glazing features	N = None $L = Low E$ $G = Gas$ Filled	N L G	N L G	N L G	
Interior shading	$\mathbf{F} = Fixed$ $\mathbf{M} = Moveable$ $\mathbf{N} = None$	F M N	F M N	F M N	
Quantity of windows					
Average Window		H =	H =	H =	
Dimensions		W =	W =	W =	

VII. **Electric Water Heating**

Item No.	Water Heater Type	Storage (Gal)	Extra Tank Wrap? (Y/N)	Percent Used for Process Heat (enter 0 if DHW only)	Count	Age (Yrs)	Water temp reading	Eff.	Input Capacity (kW)	General Use in Facility (restroom, pool, process, etc.)	Manuf.	Model #
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

Water Heater Types	Abbreviation
Stand Alone Storage	SAS
On-Demand Tankless	ODT
Point of Use	POU
Booster Water Heater	BWH
Heat Pump Water Heater	HPWH
Solar Water Heater	
Assisted	SWHA
Heat Recovery	HR

36. Are hot water pipes insulated (yes/no)

37. Are the circulation pumps on a time-clock? _____(yes/no)

- 38. Is solar assisted heating used to pre-heat hot water? _____(yes/no)
- 39. Is drain water heat recovery used? _____(yes/no)

40. Is a demand controlled circulating system used? _ _(yes/no)

- 41. If water heat is non-electric, what is the fuel type? a. Natural Gas
 - b. Propane
 - c. Oil
 - d. Other_

Non HVAC Motors VIII.

Item #	Service Type	Control Type (VFD?)	Size (hp)	# of Units	Nom. Eff. %**	Avg. Age (yrs)	Avg. run hrs. per week*
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

* "Avg. run hrs. per week" estimate is required for each motor item.

** Enter Nominal Efficiency as a % or if not available, use: S=Standard H=High-efficiency P=Premium-efficiency

Motor Codes

Service Type	Control Type
P : Pump	T : Throttled
F : Fan/Blower	M : Mechanical VFD
M: Material Handling/conveyor	E : Electronic VFD
T : Machine Tool	C : Constant Speed
G : Grinding/milling	
E : Escalator	
PE : Passenger Elevator	
FE : Freight Elevator	
S : Separation	
O : Other	

IX. Refrigeration - Self Contained

Non-Commercial Refrigerator/Freezers:

Item #	Equip Code	Equipment Description	Total # of Units	Average Age (years)	Energy Star? (Y/N)	Manufacturer	Model #
1	1D	Single-door					
2	2D	Two-door ($\underline{\mathbf{T}}$ op, $\underline{\mathbf{B}}$ ottom or $\underline{\mathbf{S}}$ ide freezer)					
3	UC	Under counter					
4	UF	Upright freezer					
5	СН	Chest freezer					
6	OT	(describe)					

Self-Contained Commercial Refrigeration Equipment:

Item #	Equip Code	Size (<u>L</u> . Ft or <u>C</u> u. Ft)	# of Doors	*Amps	Voltage	Age Yrs.	Total # of units	Lighting Type Code	Lighting Control (Y/N)	Door Heater Controls (Y/N)	Zero Energy Doors (Y/N)	High Eff. Evap. Fan Motor (Y/N)	Evap. Fan Motor Control (Y/N)	Defrost Control (Y/N)
1														
2														
3														
4														
5														
6														
7														
8														
9														

*Note: Amps listed should not include defrost heater amperage.

Self-Contained Commercial Refrigeration Equipment Codes

Equip Code	Equipment Description	Lighting Type Code	Description
GDR	Glass Door Reach-In Refrigerator	FL	Fluorescent
GDF	Glass Door Reach-In Freezer	LED	LED
SDR	Solid Door Reach-In Refrigerator	I	Incandescent
SDF	Solid Door Reach-In Freezer	Ν	None
GDB	Glass door beverage cases (e.g. vendor supplied) from 2 to 4 doors		
OU	Open upright display cases (pizza, juice, etc.) usually 4,5,6 ft lengths		
IC	Island cases (cheese, sometimes produce or juice) from 8 to 16 ft long		
SC	Service cases (bakery, sometimes deli) from 4 to 8 ft long		
CD	Closed door storage cabinets (e.g. backbar storage cabinet for wine & beer)		
CF	Coffin type glass top freezer cases (usually ice cream) typically 6 or 8 ft		
ОТ	Other: self-contained refrigeration not listed above		
VM	Soft drink vending machine		
IV	Ice vending machines (hotel-sized icemaker)		

N/A 🗖

N/A 🗖

The Cadmus Group, Inc. / Energy Services Division

X. Remote Refrigeration:

Remote Refrigeration Equipment:

Item #	Equip Code	Size (<u>L</u> . Ft or <u>C</u> u. Ft)	# of Doors	Age Yrs	Total # of units	Case Lighting Type Code	Lighting Control (Y/N)	Door Heater Controls (Y/N)	Zero Energy Doors (Y/N)	High Eff. Evap. Fan Motor ECM (Y/N)	Evap. Fan Motor Control (Y/N)	Defrost Controls (Y/N)
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

Equip		Lighting Type	
Code	Equipment Description	Code	Description
RDC	Remote Refrigeration Merchandiser	FL	Fluorescent
RRIC	Remote Reach-In Cooler	LED	LED
RRIF	Remote Reach-In Freezer	1	Incandescent
WIC	Walk-In Cooler	Ν	None
WIF	Walk-In Freezer		
OTRR	Other remote refrigeration not listed above		

Compressors:

Item #	Type Code	HP	Age Yrs	Floating Head Pressure Controls (Y/N)	Heat Recovery Type Code	Serves Cases or Walk-ins?	Manufacturer	Model #
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

Compressor Type Codes

Code	Туре
Recip	Reciprocating
Screw	Screw
Rot	Rotary
Cent	Centrifugal
Scroll	Scroll
Disc	Discus

Heat Recovery Type Code

Code	Туре
N	None
W	Water Heating
S	Space heating/Reheat
0	Other

Condensers:

Item #	Type Code	Age Yrs	Fan HP (all types)	High Eff. Condenser Fan Motor ECM (Y/N)	Fan VSD (Y/N)	High Eff. Condenser Pump Motor ECM (Y/N)	Pump VSD (Y/N)
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

Condenser Type Codes

Code	Туре
A	Air Cooled
W	Water Cooled
Р	Air Cooled w/precooler
С	Close Approach

XI - Compressed Air

Item #	Description	Comp Type	Appl Type	Control Type	Drive Type	Size (hp)	# of Units	Nom. Eff. %**	Supply Pressure (psi)	Avg. Age (yrs)	Avg. run hrs per week*	Manufacturer	Model#
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													

* "Avg. run hrs per week" estimate is required for each air compressor item

** Enter Nominal Efficiency as a % or if not available, use: **S**=Standard **H**=High-efficiency **P**=Premium-efficiency

Compressor Type	Application Types	Control Type	Drive Type
RTD: Reciprocating (Two-stage, Double-	B-Blowoff Nozzles	S-Start/Stop	AC
acting)	D-Drying	L-Load/Unload	DC
RST: Reciprocating (Single-stage, Double-	H-HVAC Pneumatic	V-VSD Throttling	N : Non-electric
acting)	O-Other	T-Throttling	
RTS: Reciprocating (Two-stage, Single-acting)		O-Other	
RSS: Reciprocating (Single-stage, Single-acting)			
ST: Rotary Screw (Two-stage)			
C: Centrifugal			
O: Other			

Air Compressor Codes

- 42. Does the facility have a Leak Reduction Maintenance Program? _____(yes/no) a. If so, how often do you check for leaks? _____
- 43. Is compressed air used for blow-off _____(yes/no)
 e. If yes, what percentage of blow-off nozzles have engineered nozzles? ______

XII – Process Electric Heating

Item #	Process Code	Product Produced	# of Machines	Rated Heat Input (specify units)	Avg. Age of Equipment (yrs)	Waste Heat Recovery (Y/N)	Avg. Operating hrs. per week
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

	Process	
Process	Code	
Heat Processing	HP	
Dehydration	DHD	
Material Preparation:	MP	
Filtration	FL	
Finishing	FI	
Pulping	PLP	
Paper Preparation	PP	
Separation and Distillation	SD	
Solid-Liquid Extraction	SLE	
Plastic Molding	PM	
Washing and Drying	WD	
Drying/Curing/Baking	DCB	
Refrigeration/Freezing	RF	
Mixing and Emulsification	M&E	
Fiber Preparation	FP	
Crystallization	CR	
Screening and Separation	SS	
Exploration and Drilling	ED	
Emission Reduction Equipment	ERD	

Process Codes

- 44. If Emissions Reduction Equipment (ERD) is used what type of equipment is this?
 - a. If thermal oxiders, are they regenerative (recover heat from the process)? _____

XIII - Cooking/Food Service Equipment (Electric Only)

			Total #		Avg.			Idle			
_			of		operating	Avg.	Cooking	Energy			Interior
	Equip		Electric	Unit	hrs.	Age	Energy	Rate		Model	Volume
#	Code	Description	Units	Watts	per week	Yrs.	Efficiency	(watts)	Manufacturer	#	Ft ³
	FS	Fryer - Standard									N/A
	FLV	Fryer – Large									N/A
		Vat									
	G	Griddle									N/A
	HFHC	Hot Food					N/A				
		Holding Cabinet									
	OV	Oven (in Range									N/A
		or standalone)									
	COHS	Oven,									N/A
		Convection - Half									
		Size (1)									
	COFS	Oven, Convection									N/A
		– Full Size (2)									
	ICO	Infrared									N/A
		Conveyor Oven									
	PC	Oven, Pizza,									N/A
		Counter-top									
	PL	Oven, Pizza,									N/A
		Large									
	SC3	Steamer Cooker									N/A
		– 3 pan									
	SC4	Steamer Cooker –									N/A
		4 pan									
	SC5	Steamer Cooker –									N/A
		5 pan									NT/ A
	SC6	Steamer Cooker – 6+ pan									N/A
	EH	Exhaust Hood					N/A	N/A			N/A
1	EH	Exnaust Hood					IN/A	IN/A			1 1 /A

(1) Half-Size Convection Oven: A convection oven that is able to accept a minimum of five sheet pans measuring 18 x 13 x 1-inch.

(2) Full-Size Convection Oven: A convection oven that is able to accept a minimum of five standard full-size sheet pans measuring 18 x 26 x 1-inch.

45. Does the facility use pre-rinse spray nozzles? ______b. If so, what percentage are low flow? ______

46. How many of the exhaust hoods are demand controlled? _____

47. How many of the exhaust hoods have a make-up air supply? _____

XIV - Pool/SPA

									N/A
		# 1	1		#2	2		#3	3
Type: $S = Swimming Pool H = Hot Tub O = Other$	S	Η	0	S	Η	0	S	Н	0
What is the size of the pool (sq. ft.)?									
Dedicated water heater? If yes, note Item #									
Pool Cover in use?	Y	r	Ν		Y	Ν		Y	N
Months heated start (112)									
stop (112)									
Solar collector area in use (ft ²)									
Temperature Control Measures?		r	Ν		Y	Ν		Y	N
On-Demand Ventilation Control?			Ν		Y	Ν		Y	N

XV – Other (Time Permitting)

Item	Equip ment	Equipment	Total # of units (check one)			ENERGY STAR?	Avg. age of stock (yrs)	How often replaced? (yrs)		
#	Code	Description	0	1 - 5	6 - 20	21 - 50	> 50	Yes/No		
1	PC	Personal Computer								
2	PTR	Printer								
3	UPS	Uninterruptible Power Supply								
4	COP	Copier								
6	MON	Monitor								
10	FAX	FAX machine								
11	MFM	Multi-Function Machine								
12	POS	Point-of-Sale Terminals								
13	REG	Cash Registers								
14	SHRD	Shredder								
15	RCW	Residential Clothes Washers								
16	CCW	Commercial Clothes Washers								
17	TV	Televisions								
18	DH	Dehumidifier								
19	PEH	Portable Electric Heater								
20	EV	Electric Vehicles (That must be plugged in)								
21	FBH	Fleet Block Heaters								

XVI – Distributed Generation

- 1. How would you rate you facility's need for backup, or redundant, energy on a scale of 1-5, where 1=Useless and 5=Critical?
 - 1. Useless
 - 2. Not very important
 - 3. Somewhat important
 - 4. Very important
 - 5. Critical
 - 99 Don't know/Refused
- 2. Do you currently have any backup or emergency standby generation, base-load power generation, combined heat and power (CHP) generation, cogeneration, distributed generation, or any other onsite power generation capabilities?
 - a. Yes
 - b. No → Go to 3
 - c. Don't know/Refused → Go to 3

Resource Code	Equipment Description	kW	Fuel Type	Primary Function	% of Facility Power Needs Met (Enter Code)	Is the Heat Recovered and Used For Any Purpose? (See Note 1)	Deciding Factor to Install Equipment	Current Plans to Upgrade? (Yes/No)

Resource Codes: Solar Photovoltaic = SPV, Wind, Combined Heat & Power = CHP

Percent of Facility Power Needs Met: 1 = Less Than 10% 2 = 10% - 30% 3 = 30% - 50% 4 = >50% 5 = Backup/standby only

Note 1: If system is not wind or SPV

Ale you failina	i with the lono	wing distributed generation s	ystems.	
Technology Combined Heat and Power (CHP)	Familiarity (Yes/No)	Description (if needed) CHP, or cogeneration systems, generate both electricity and heat. A CHP system can provide up to 100% of your electric power needs, and heat to meet your space heating, hot water, and/or air-conditioning needs. These systems are typically also connected to the grid to ensure nearly 100% reliability— that is, if the system should ever fail, you still have your local power connection to keep	Would your company have an interest in installing this type of system? (Yes/No)	Intended Use (See Codes Below)
Solar Thermal or Solar Hot Water		everything running without interruption Solar thermal systems include collector tanks in which water is heated by the sun's energy.		
Photovoltaics		Photovoltaics, or PV, include solar arrays that convert the sun's energy into electricity.		
Wind turbine		Wind turbines covert the wind's energy into electricity.		

3. Are you familiar with the following distributed generation systems:

Intended Use Codes 1) Backup power for critical equipment 2) To provide for excess (peak) demand 3) To provide base load 4) To provide for all electricity needs 5) To provide for all or some heating needs 6) To provide for all or some hot water needs 7) To provide for all or some cooling needs 8) Other _____ Why might your company not be interested in such equipment? [Check all that apply] a. Don't need b. Too expensive c. Not focus of business d. Other [Verbatim] Don't know/Refused e. Do you think that the ability to manage your own electrical power production, while still being able to rely on the grid as a fallback, is a benefit or a liability? a. Benefit b. Liability c. Other _____ d. Don't know/Refused

4.

5.

APPENDIX B. FREQUENCY TABLES

Question 2, Building Type

	Frequency	Percent
Beverage	2	2%
Chemicals	1	1%
Education	7	5%
Fabricated Metal	7	5%
Furniture	2	2%
Grocery	20	15%
Health	6	5%
Lodging	2	2%
Non-Metallic Mineral	1	1%
Office	18	14%
Other Commercial	16	12%
Other Manufacturing	5	4%
Plastic and Rubber Products	3	2%
Printing	3	2%
Restaurant	15	11%
Retail	18	14%
Transportation Equipment	3	2%
Warehouse	1	1%
Wood Products	3	2%
Grand Total	133	100%

Question 2, Customer Class

	Frequency	Percent
Commercial	103	77%
Industrial	30	23%
Grand Total	133	100%

Question 3, Is this space owner occupied?

	Frequency	Percent
Leased	30	23%
Owner-Occupied	99	74%
NR/NA	4	3%
Grand Total	133	100%

	Frequency	Percent
<10	83	62%
10 - 49	37	28%
50 - 99	4	3%
100+	7	5%
NR/NA	2	2%
Grand Total	133	100%

Question 4, Approximately how many full time employees report to this business location?

Question 5, 5. What is the approximate floor area of this business?

Square Feet	Frequency	Percent
<1000	9	7%
1000 - 4999	58	44%
5000 - 9999	22	17%
10000 - 99999	36	27%
Grand Total	133	100%

Question 6, Number of Floors

	Frequency	Percent
1	94	71%
1.5	3	2%
2	21	16%
3	11	8%
35	1	1%
195	1	1%
NR/NA	2	2%
Grand Total	133	100%

Question 7.1, 7. Estimated exterior building wall dimensions

Wall 1 height (ft.)	Frequency	Percent
<10	67	50%
10 - 19	45	34%
20+	21	16%
Grand Total	133	100%

Wall 2 height (ft.)	Frequency	Percent
<10	35	26.32%
10 - 19	27	20.30%
20+	5	3.76%
NR/NA	66	49.62%
Grand Total	133	100.00%

Wall 3 height (ft.)	Frequency	Percent
<10	32	24.06%
10 - 19	27	20.30%
20+	5	3.76%
NR/NA	69	51.88%
Grand Total	133	100.00%

Wall 4 height (ft.)	Frequency	Percent
<10	30	22.56%
10 - 19	25	18.80%
20+	5	3.76%
NR/NA	73	54.89%
Grand Total	133	100.00%

Wall 1 width (ft.)	Frequency	Percent
<50	23	17.29%
50 - 99	24	18.05%
100 - 499	56	42.11%
500 +	17	12.78%
Don't know	1	0.75%
NR/NA	12	9.02%
Grand Total	133	100.00%

Wall 2 width (ft.)	Frequency	Percent
<50	25	18.80%
50 - 99	24	18.05%
100 - 499	14	10.53%
500 +	1	0.75%
Don't know	1	0.75%
NR/NA	68	51.13%
Grand Total	133	100.00%

Wall 3 width (ft.)	Frequency	Percent
<50	23	17.29%
50 - 99	21	15.79%
100 - 499	14	10.53%
500 +	1	0.75%
Don't know	1	0.75%
NR/NA	73	54.89%
Grand Total	133	100.00%

Wall 4 width (ft.)	Frequency	Percent
<50	25	18.80%
50 - 99	18	13.53%
100 - 499	12	9.02%
500 +	1	0.75%
Don't know	1	0.75%
NR/NA	76	57.14%
Grand Total	133	100.00%

Question 8, Number of buildings

	Frequency	Percent
1	109	82%
2	12	9%
3	5	4%
10	1	1%
18	2	2%
37	1	1%
39	1	1%
NR/NA	2	2%
Grand Total	133	100%

Question 9, In what year were buildings constructed?

	Frequency	Percent
Pre-1900	18	14%
1900-1949	16	12%
1950-1979	29	22%
1980-1999	27	20%
2000-2012	16	12%
Multiple responses	16	12%
Don't know	8	6%
NR/NA	3	2%
Grand Total	133	100%

Question 10, How many hours per week does the commercial business or industrial facility operate?

	Frequency	Percent
Under 40	5	4%
40-59	60	45%
60-99	40	30%
100+	23	17%
NR/NA	5	4%
Grand Total	133	100%

Question 11, Is this a seasonal business?

	Frequency	Percent
No	122	92%
Yes	8	6%
NR/NA	3	2%
Grand Total	133	100%

Question 12, How many months per year does the business operate?

	Frequency	Percent
5	2	2%
9	2	2%
10 - 11	6	5%
12	120	90%
NR/NA	3	2%
Grand Total	133	100%

Question 13, How many holidays does your business recognize over the calendar year

	Frequency	Percent
<10	95	71%
10 - 19	31	23%
20+	3	2%
Multiple responses	1	1%
NR/NA	3	2%
Grand Total	133	100%

	Frequency	Percent
No	112	84%
Yes	19	14%
NR/NA	2	2%
Grand Total	133	100%

Question 14, Are there any other scheduled shutdowns every year such as for summer vacation?

Question 15, If Yes, How many weeks?

	Frequency	Percent
0	31	23%
1	7	5%
2	3	2%
3	1	1%
6	1	1%
9	1	1%
10	4	3%
12	1	1%
NR/NA	84	63%
Grand Total	133	100%

Question 16, How many months per year do you operate your primary heating systems?

	Frequency	Percent
1	1	0.75%
2	2	1.50%
3	1	0.75%
4	2	1.50%
5	10	7.52%
6	19	14.29%
7	46	34.59%
8	43	32.33%
9	1	0.75%
10	1	0.75%
11	0	0.00%
12	5	3.76%
NR/NA	2	1.50%
Grand Total	133	100.00%

	Frequency	Percent
0	43	32.33%
1	2	1.50%
2	13	9.77%
3	16	12.03%
4	26	19.55%
5	14	10.53%
6	8	6.02%
7	3	2.26%
9	1	0.75%
10	0	0.00%
11	0	0.00%
12	3	2.26%
NR/NA	4	3.01%
Grand Total	133	100.00%

Question 17, How many months per year do you operate your primary cooling systems?

Question 18, Do you have an Energy Management System (EMS) at this facility?

	Frequency	Percent
No	118	89%
Yes	10	8%
NR/NA	5	4%
Grand Total	133	100%

Question 19, Is the system working properly?

	Frequency	Percent
No	1	0.75%
Yes	9	6.77%
NR/NA	123	92.48%
Grand Total	133	100.00%

Question 19, What is the age of the system?

Years	Frequency	Percent
0	5	3.76%
1	1	0.75%
2	1	0.75%
5	1	0.75%
6	2	1.50%
10	1	0.75%
11	2	1.50%
20	1	0.75%
40	1	0.75%
NR/NA	118	88.72%
Grand Total	133	100.00%

Question 20, How likely would you be to purchase energy efficient equipment instead of standard equipment when existing equipment fails and needs to be replaced?

	Frequency	Percent
Very unlikely	3	2.26%
Somewhat unlikely	11	8.27%
Neutral	31	23.31%
Somewhat likely	58	43.61%
Very likely	25	18.80%
NR/NA	5	3.76%
Grand Total	133	100.00%

Question 21, Would the likelihood of you purchasing efficient equipment instead of standard equipment when existing equipment fails and needs to be replaced change if you could receive a rebate covering 30% - 40% of the installed cost of the energy efficient?

	Frequency	Percent
Very unlikely	1	0.75%
Somewhat unlikely	3	2.26%
Neutral	10	7.52%
Somewhat likely	62	46.62%
Very likely	52	39.10%
NR/NA	5	3.76%
Grand Total	133	100.00%

Question 22, Would the likelihood of you purchasing efficient equipment instead of standard equipment when existing equipment fails and needs to be replaced change if you could receive a rebate covering 40% - 50% of the installed cost of the energy efficient?

	Frequency	Percent
Somewhat unlikely	2	1.50%
Neutral	3	2.26%
Somewhat likely	35	26.32%
Very likely	88	66.17%
NR/NA	5	3.76%
Grand Total	133	100.00%

Question 23, Would the likelihood of you purchasing efficient equipment instead of standard equipment when existing equipment fails and needs to be replaced change if you could receive a rebate covering 50% -75% of the installed cost of the energy efficient?

	Frequency	Percent
Somewhat unlikely	4	3.01%
Neutral	3	2.26%
Somewhat likely	12	9.02%
Very likely	109	81.95%
NR/NA	5	3.76%
Grand Total	133	100.00%

Question 24, When making a decision regarding energy efficient equipment, do you consider how quickly the savings will payback any additional investment that is required?

	Frequency	Percent
No	53	39.85%
Yes	75	56.39%
NR/NA	5	3.76%
Grand Total	133	100.00%

Question 24, If Yes, what payback would you require on additional investment to purchase in energy efficient equipment?

	Frequency	Percent
It depends upon the project.	1	0.75%
Less than 1 year	4	3.01%
Less than 1.5 years	4	3.01%
Less than 2 years	21	15.79%
Less than 3 years	28	21.05%
Other	21	15.79%
NR/NA	54	40.60%
Grand Total	133	100.00%

	Frequency	Percent	
Environment	44	33.08%	
Improved Image	56	42.11%	
Increased Comfort	46	34.59%	
Lower bills	126	94.74%	
Other	1	0.75%	
Recommendation	19	14.29%	
Tax Incentive	76	57.14%	
Grand Total	N/A	N/A	

Question 25, What other factors do you consider when making a decision regarding the purchase of energy efficient equipment?

Question 26, Other Lighting: Where manual switching is used, what percent of the time are lights turned off when an area is not in use?

% of Time	Frequency	Percent
0	11	8.27%
25	1	0.75%
30	1	0.75%
40	1	0.75%
50	2	1.50%
75	1	0.75%
80	1	0.75%
100	21	15.79%
NR/NA	94	70.68%
Grand Total	133	100.00%

Question 27, Do you have programmable thermostats (or an Energy Management System) installed?

	Frequency	Percent
No	77	57.89%
Yes	21	15.79%
NR/NA	35	26.32%
Grand Total	133	100.00%

Question 27, If yes, what percentage of the facility has them?

% of Facility	Frequency	Percent
0	7	5.26%
5	1	0.75%
15	1	0.75%
20	1	0.75%
33	1	0.75%
50	1	0.75%
60	1	0.75%
75	1	0.75%
100	11	8.27%
NR/NA	108	81.20%
Grand Total	133	100.00%

Question 27, What are the setpoints?

Weekday Day (degrees)	Frequency	Percent
55	1	0.75%
65	1	0.75%
66	2	1.50%
68	8	6.02%
69	2	1.50%
70	7	5.26%
72	3	2.26%
73	1	0.75%
Don't know	1	0.75%
NR/NA	107	80.45%
Grand Total	133	100.00%

Weekday Night (degrees)	Frequency	Percent
0	1	0.75%
55	1	0.75%
60	8	6.02%
62	1	0.75%
63	1	0.75%
64	1	0.75%
65	6	4.51%
66	1	0.75%
68	2	1.50%
70	3	2.26%
NR/NA	108	81.20%
Grand Total	133	100.00%

Weekend Day (degrees)	Frequency	Percent
55	1	0.75%
60	5	3.76%
62	1	0.75%
65	4	3.01%
66	2	1.50%
68	6	4.51%
70	4	3.01%
72	1	0.75%
73	1	0.75%
Don't know	1	0.75%
NR/NA	107	80.45%
Grand Total	133	100.00%

Weekend Night (degrees)	Frequency	Percent
0	1	0.75%
55	1	0.75%
60	10	7.52%
62	1	0.75%
64	1	0.75%
65	4	3.01%
66	2	1.50%
68	1	0.75%
686	1	0.75%
70	3	2.26%
NR/NA	108	81.20%
Grand Total	133	100.00%

Question 28, If you do not have programmable thermostats or an EMS system, do you manually adjust temperature settings when the facility is unoccupied?

	Frequency	Percent
No	49	36.84%
Yes	17	12.78%
NR/NA	67	50.38%
Grand Total	133	100.00%

Question 29, Do you have outside air economizers?

	Frequency	Percent
No	49	36.84%
Yes	5	3.76%
NR/NA	79	59.40%
Grand Total	133	100.00%

Question 30, Do you have humidity controls?

	Frequency	Percent
No	47	35.34%
Yes	6	4.51%
NR/NA	80	60.15%
Grand Total	133	100.00%

Question 31, Do you have VFD's on cooling tower fans?

	Frequency	Percent
No	41	30.83%
Yes	5	3.76%
NR/NA	87	65.41%
Grand Total	133	100.00%

Question 32, How often do you tune the chiller and HVAC systems?

	Frequency	Percent
As needed	10	7.52%
Once Per Year	17	12.78%
One Every 2 Years	4	3.01%
Other	4	3.01%
Twice Per Year	4	3.01%
when stops working	2	1.50%
NR/NA	92	69.17%
Grand Total	133	100.00%

Question 33, Have you had any duct sealing processes performed?

	Frequency	Percent
No	24	18.05%
Yes	9	6.77%
NR/NA	100	75.19%
Grand Total	133	100.00%

Question 34, Are ducts insulated?

	Frequency	Percent
No	12	9.02%
Yes	21	15.79%
NR/NA	100	75.19%
Grand Total	133	100.00%

Question VI, Insulation

	Frequency	Percent
Batt or Blanket	80	60.15%
Expanded perlite	1	0.75%
Expanded polystyrene	2	1.50%
Loose fill	14	10.53%
None	30	22.56%
Rigid board	1	0.75%
NR/NA	5	3.76%
Grand Total	133	100.00%

Wall Inches	Frequency	Percent
0	17	12.78%
1 – 4	63	47.37%
5 – 8	28	21.05%
9+	6	4.51%
Don't know	1	0.75%
NR/NA	18	13.53%
Grand Total	133	100.00%

Roof Insulation	Frequency	Percent
Batt or Blanket	23	17.29%
Expanded polystyrene	2	1.50%
Loose fill	2	1.50%
None	3	2.26%
Rigid board	11	8.27%
NR/NA	92	69.17%
Grand Total	133	100.00%

Roof Inches	Frequency	Percent
0	3	2.26%
1 - 4	12	9.02%
5 - 8	15	11.28%
9+	10	7.52%
Don't know	1	0.75%
NR/NA	92	69.17%
Grand Total	133	100.00%

Ceiling Insulation	Frequency	Percent
Batt or Blanket	53	40%
Expanded perlite	1	1%
Expanded polystyrene	1	1%
Loose fill	15	11%
None	19	14%
Rigid board	4	3%
NR/NA	40	30%
Grand Total	133	100%

Ceiling Inches	Frequency	Percent
0	11	8.27%
1 - 4	16	12.03%
5 - 8	23	17.29%
9+	33	24.81%
Don't know	1	0.75%
n/a	1	0.75%
NR/NA	48	36.09%
Grand Total	133	100.00%

Floor Insulation	Frequency	Percent
Expanded polystyrene	2	1.50%
None	55	41.35%
Rigid board	9	6.77%
NR/NA	67	50.38%
Grand Total	133	100.00%

Question VI, Windows/Fenestration

Glaze Layers 1	Frequency	Percent
1	26	19.55%
2	95	71.43%
3	1	0.75%
NR/NA	11	8.27%
Grand Total	133	100.00%

Glaze Layers 2	Frequency	Percent
1	9	7%
2	32	24%
NR/NA	92	69%
Grand Total	133	100%

Glaze Layers 3	Frequency	Percent
1	5	3.76%
2	6	4.51%
NR/NA	122	91.73%
Grand Total	133	100.00%

Glaze Type 1	Frequency	Percent
Clear	100	75.19%
Opaque	1	0.75%
Reflective	4	3.01%
Tinted	17	12.78%
NR/NA	11	8.27%
Grand Total	133	100.00%

Glaze Type 2	Frequency	Percent
Clear	33	24.81%
Tinted	8	6.02%
NR/NA	92	69.17%
Grand Total	133	100.00%

Glaze Type 3	Frequency	Percent
Clear	8	6.02%
Tinted	3	2.26%
NR/NA	122	91.73%
Grand Total	133	100.00%

Glaze Features 1	Frequency	Percent
Low E	36	27.07%
None	85	63.91%
NR/NA	12	9.02%
Grand Total	133	100.00%

Glaze Features 2	Frequency	Percent
Low E	12	9.02%
None	29	21.80%
NR/NA	92	69.17%
Grand Total	133	100.00%

Glaze Features 3	Frequency	Percent
Low E	2	1.50%
None	9	6.77%
NR/NA	122	91.73%
Grand Total	133	100.00%

Interior Shading 1	Frequency	Percent
Fixed	2	1.50%
Moveable	15	11.28%
None	105	78.95%
NR/NA	11	8.27%
Grand Total	133	100.00%

Interior Shading 2	Frequency	Percent
Fixed	1	0.75%
Moveable	3	2.26%
None	37	27.82%
NR/NA	92	69.17%
Grand Total	133	100.00%

Interior Shading 3	Frequency	Percent
Fixed	1	0.75%
Moveable	1	0.75%
None	9	6.77%
NR/NA	122	91.73%
Grand Total	133	100.00%

Window Quantity 1	Frequency	Percent
<10	85	63.91%
10-49	33	24.81%
50+	10	7.52%
NR/NA	5	3.76%
Grand Total	133	100.00%

Window Quantity 2	Frequency	Percent
<10	67	50.38%
10-49	14	10.53%
50+	2	1.50%
NR/NA	50	37.59%
Grand Total	133	100.00%

Window Quantity 3	Frequency	Percent
<10	73	54.89%
10-49	2	1.50%
NR/NA	58	43.61%
Grand Total	133	100.00%

Window Dimensions Height1 (in)	Frequency	Percent
<10	25	18.80%
10-49	56	42.11%
50+	39	29.32%
Don't know	1	0.75%
NR/NA	12	9.02%
Grand Total	133	100.00%

Window Dimensions Height2 (in)	Frequency	Percent
<10	10	7.52%
10-49	18	13.53%
50+	13	9.77%
NR/NA	92	69.17%
Grand Total	133	100.00%

Window Dimensions Height3 (in)	Frequency	Percent
<10	5	3.76%
10-49	2	1.50%
50+	4	3.01%
NR/NA	122	91.73%
Grand Total	133	100.00%

Window Dimensions Width1 (in)	Frequency	Percent
<10	24	18.05%
10-49	65	48.87%
50+	31	23.31%
Don't know	1	0.75%
NR/NA	12	9.02%
Grand Total	133	100.00%

Window Dimensions Width2 (in)	Frequency	Percent
<10	10	7.52%
10-49	16	12.03%
50+	14	10.53%
NR/NA	93	69.92%
Grand Total	133	100.00%

Window Dimensions Width3 (in)	Frequency	Percent
<10	5	3.76%
10-49	5	3.76%
50+	1	0.75%
NR/NA	122	91.73%
Grand Total	133	100.00%

Question 36, Are hot water pipes insulated?

	Frequency	Percent
No	36	27.07%
Yes	8	6.02%
NR/NA	89	66.92%
Grand Total	133	100.00%

Question 37, Are the circulation pumps on a time-clock?

	Frequency	Percent
No	41	30.83%
NR/NA	92	69.17%
Grand Total	133	100.00%

Question 38, Is solar assisted heating used to pre-heat hot water?

	Frequency	Percent
No	43	32.33%
NR/NA	90	67.67%
Grand Total	133	100.00%

Question 39, Is drain water heat recovery used?

	Frequency	Percent
No	43	32.33%
NR/NA	90	67.67%
Grand Total	133	100.00%

Question 40, Is a demand controlled circulating system used?

	Frequency	Percent
No	37	27.82%
NR/NA	96	72.18%
Grand Total	133	100.00%

Question 41, If water heat is non-electric, what is the fuel type?

	Frequency	Percent
Natural Gas	12	9.02%
Oil	39	29.32%
Other	4	3.01%
Propane	31	23.31%
NR/NA	47	35.34%
Grand Total	133	100.00%

Question 41, Other fuel types

Other	Frequency	Percent
biomass	1	0.75%
hot gas by-pass off compressors	1	0.75%
landlord	1	0.75%
off boiler	1	0.75%
oil boiler in winter	1	0.75%
on demand - new	1	0.75%
sm 20 gal electric4	1	0.75%
steam boiler	1	0.75%
wood chips	1	0.75%
NR/NA	124	93.23%
Grand Total	133	100.00%

Section XVI – Distributed Generation

How would you rate you facility's need for backup, or redundant, energy on a scale of 1-5, where 1=Useless and 5=Critical?

	Frequency	Percent
1) Useless	1	0.75%
2) Not very important	41	30.83%
3) Somewhat important	3	2.26%
4) Very important	8	6.02%
5) Critical	4	3.01%
99) Don't know/Refused	1	0.75%
NR/NA	75	56.39%
Grand Total	133	100.00%

Do you currently have any backup or emergency standby generation, base-load power generation, combined heat and power (CHP) generation, cogeneration, distributed generation, or any other onsite power generation capabilities?

	Frequency	Percent
Don't know/Refused	1	0.75%
No	41	30.83%
Yes	16	12.03%
NR/NA	75	56.39%
Grand Total	133	100.00%

Why might your company not be interested in such equipment?

	Frequency	Percent
Don't Need	40	30.08%
Too Expensive	0	0.00%
Not Focus	1	0.75%
Other	3	2.26%
Grand Total	N/A	N/A

Do you think that the ability to manage your own electrical power production, while still being able to rely on the grid as a fallback, is a benefit or a liability?

	Frequency	Percent
Don't know/Refused	2	1.50%
Benefit	5	3.76%
Liability	47	35.34%
NR/NA	79	59.40%
Grand Total	133	100.00%

Question 42, Does the facility have a Leak Reduction Maintenance Program?

	Frequency	Percent
No	21	15.79%
Yes	9	6.77%
NR/NA	103	77.44%
Grand Total	133	100.00%

Question 42, If so, how often do you check for leaks?

	Frequency	Percent
Never	2	1.50%
occasionally	3	2.26%
daily	6	4.51%
weekly	4	3.01%
Don't know	1	0.75%
NR/NA	117	87.97%
Grand Total	133	100.00%

Question 43, Is compressed air used for blow-off

	Frequency	Percent
No	22	16.54%
Yes	6	4.51%
NR/NA	105	78.95%
Grand Total	133	100.00%

% of Nozzels	Frequency	Percent
0	9	6.77%
20	1	0.75%
30	1	0.75%
100	1	0.75%
NR/NA	121	90.98%
Grand Total	133	100.00%

Question 43, If yes, what percentage of blow-off nozzles have engineered nozzles?

Question 45, Does the facility use pre-rinse spray nozzles?

	Frequency	Percent
No	21	15.79%
Yes	4	3.01%
NR/NA	108	81.20%
Grand Total	133	100.00%

Question 45, If so, what percentage are low flow?

	Frequency	Percent
0	4	3.01%
Don't know	1	0.75%
NR/NA	128	96.24%
Grand Total	133	100.00%

Question 46, How many of the exhaust hoods are demand controlled?

	Frequency	Percent
0	23	17.29%
1	1	0.75%
NR/NA	109	81.95%
Grand Total	133	100.00%

Question 47, How many of the exhaust hoods have a make-up air supply?

	Frequency	Percent
0	14	10.53%
1	8	6.02%
2	1	0.75%
NR/NA	110	82.71%
Grand Total	133	100.00%

APPENDIX C. MEASURE DATA

ifficiency Mai	Efficiency Maine - Residential Measure Database															
Measure ID	Measure Name	Home Type (SF/MF)	ROB vs. Retrofit vs. NC	Income Target	Base Annual kWh %	Ar % Savings	Annual kWh U Savings	Useful Ir Life	Incremental /Full Cost	Base Saturation	EE Saturation	Levelized Cost (- Admin)	Total Resource Cost (TRC) Ratio	Technical Potential (kWh) Savings per Measure by 2021	Economic Potential (kWh) Savings per Measure by 2021	Achievable Electricity (kWh) Savings per Measure by 2021
101	Refrigerator Retirement (and Recycling) - No Replacement	SF	Retrofit	IIA	_	100.0%	1320.0	8	\$170.00	8.40%	5.00%	\$0.020	5.24	55,829,400	55,829,400	44,658,240
102	Freezer Retirement (and Recycling) - No Replacement	SF	Retrofit	All	1320.0	100.0%	1320.0	8	\$170.00	1.90%	5.00%	\$0.020	5.24	12,628,440	12,628,440	10,105,920
103	Energy Star Electric Clothes Washer (with electric heating & electric dryer)	SF	ROB	IIA	728.0	23.3%	169.9	14	\$95.00	26.20%	56.50%	\$0.055	4.95	3,490,077	3,490,077	1,936,383
104	CEE Tier 2 Clothes Washer (with electric heating & electric dryer)	SF	ROB	All	728.0	32.0%	233.1	14	\$250.00	26.20%	56.50%	\$0.105	2.60	4,645,824	4,645,824	2,576,714
105	CEE Tier 3 Clothes Washer (with electric heating & electric dryer)	SF	ROB	All	728.0	37.7%	274.6	14	\$440.00	26.20%	56.50%	\$0.157	1.71	5,474,644	5,474,644	3,036,404
106	Energy Star Electric Clothes Washer (with non-electric heating and electric drver)	SF	ROB	All	545.3	23.5%	128.2	14	\$95.00	62.40%	56.50%	\$0.073	4.03	6,269,190	6,269,190	3,477,059
107	CEE Tier 2 Clothes Washer (with non-electric heating and electric drver)	SF	ROB	All	545.3	32.3%	175.9	14	\$250.00	62.40%	56.50%	\$0.139	2.13	8,351,886	8,351,886	4,632,450
108	CEE Tier 3 Clothes Washer Liet Tier 3 Clothes Washer Guidt Ton Alontric Anothic alontric Amond	SF	ROB	All	545.3	38.0%	207.0	14	\$440.00	62.40%	56.50%	\$U 208	1.39	9,829,018	9,829,018	5,451,755
	with non-electric neating and electric dryer) Energy Star Refrigerator	SF	ROB	+	578.8	20.0%	115.8	17	\$70.00	<u> 99.00%</u>	40.00%	\$0.052	2.26	12,395,348	12,395,348	5,541,262
110	CEE Tier 2 Refrigerator	SF	ROB	All	578.8	25.0%	144.7	17	\$150.00	99.00%	40.00%	\$0.089	1.32	15,033,317	15,033,317	6,720,592
	CEE Tier 3 Refrigerator	SF	ROB		578.8	30.0%	173.7	17	\$225.00	99.00% 20 E006	40.00%	\$0.111 \$0.058	1.06	18,046,214 12 242 544	12 245,214	8,067,497 0.214.200
112	Energy Star Dehumidifier	SF	ROB		1167.8	18.8%	219.6	12	\$25.00	33.50%	78.00%	\$0.012	1.0 <i>7</i> 8.88	8,578,796	8,578,796	5,704,630
114 115	Energy Star Dishwasher (electric water heating) Energy Star Dishwasher (non-alactric water heating)	SF	ROB		355.0 1611	16.9% 16.4%	60.0 26.4	10	\$12.00	15.10% 40.10%	47.00%	\$0.025 \$0.057	7.88	2,545,020	2,545,020 3 6.41 220	1,951,860 2 702 820
116	Energy State Distrivessment (non-energine water meating) Energy State Electric Clothes Washer (with Joerstin bioteric Antornis Antornis	SF 33	NC	IIV	728.0	23.3%	169.9	14	\$95.00	11.53%	0.00%	\$0.055	4.95	3,071,220	328,310	250,821
117	<u>twrur erecurtic meaning ac erecuric ur yer j</u> CEEF Tie Z Clothes Washer (with electric heatin of alectric driver)	SF	NC	All	728.0	32.0%	233.1	14	\$250.00	11.53%	0.00%	\$0.105	2.60	436,988	436,988	333,276
118	CEE Tier 3 Clothes Washer (with electric heating & electric drver)	SF	NC	ΠA	728.0	37.7%	274.6	14	\$440.00	11.53%	0.00%	\$0.157	1.71	514,947	514,947	392,733
119	Energy Star Electric Clothes Washer (with non-electric heating and electric driver)	SF	NC	All	545.3	23.5%	128.2	14	\$95.00	84.53%	0.00%	\$0.073	4.03	1,816,263	1,816,263	1,386,645
120	CEE Tier 2 Clothes Washer (with non-electric heating and electric dryer)	SF	NC	All	545.3	32.3%	175.9	14	\$250.00	84.53%	0.00%	\$0.139	2.13	2,419,753	2,419,753	1,847,140
121	CEE Tier 3 Clothes Washer (with non-electric heating and electric drver)	SF	NC	IIV	545.3	38.0%	207.0	14	\$440.00	84.53%	%00.0	\$0.208	1.39	2,847,716	2,847,716	2,173,829
	Energy Star Refrigerator	SF	NC	All	578.8	20.0%	115.8	17	\$70.00	111.84%	0.00%	\$0.052	2.26	2,171,366	2,171,366	1,657,330
	CEE Tier 2 Refrigerator CEE Tier 3 Refrigerator	45 H	NC	All All	_	25.0%	144.7	17	\$150.00	111.84% 111.84%	0.00%	\$0.089	1.32	2,633,540 3.161.340	2,633,540 3 161 340	2,010,172 2 413 040
	Ebergy Star Freezer	SF S	NC	UI VII	-	30.0% 10.0%	67.0	11	\$33.00	26.32%	0.00%	\$0.058	1.89	3,101,370 869,526	3,101,370 869,526	663,702
126	Star Dehumidifier	SF	NC	All		18.8%	219.6	12	\$25.00	26.32%	0.00%	\$0.012	8.88	2,850,228	2,850,228	2,175,556
127 128	Energy Star Dishwasher (electric water heating) Energy Star Dishwasher (non-electric water heating)	ξł	NC	All	_	16.9% 16.4%	60.0 26.4	10	\$12.00 \$12.00	10.74% 78.74%	0.00% 0.00%	\$0.057	7.88 3.99	317,640 $1,024,980$	317,640 1,024,980	242,460 782,364
129	Refrigerator Retirement (and Recycling) - No Replacement	MF	Retrofit		0.0	100.0%	1320.0	8	\$170.00	15.60%	5.00%	\$0.020	5.24	16,878,840	16,878,840	13,506,240
130	Freezer Retirement (and Recycling) - No Replacement	MF	Retrofit	All	1320.0	100.0%	1320.0	8	\$170.00	0.40%	5.00%	\$0.020	5.24	432,960	432,960	348,480
131	Energy Star Electric Clothes Washer (with electric heating & electric dryer)	MF	ROB	All	728.0	23.3%	169.9	14	\$95.00	18.90%	56.50%	\$0.055	4.95	409,878	409,878	227,540
132	CEE Tier 2 Clothes Washer (with electric heating & electric dryer)	MF	ROB	IIA	728.0	32.0%	233.1	14	\$250.00	18.90%	56.50%	\$0.105	2.60	545,594	545,594	303,211
133	CEE Tier 3 Clothes Washer (with electric heating & electric dryer)	MF	ROB	IIA	728.0	37.7%	274.6	14	\$440.00	18.90%	56.50%	\$0.157	1.71	642,929	642,929	357,305
134	Energy Star Electric Clothes Washer (with non-electric heating and electric dryer)	MF	ROB	IIV	545.3	23.5%	128.2	14	\$95.00	51.20%	56.50%	\$0.073	4.03	837,447	837,447	464,095
135	CEE Tier 2 Clothes Washer (with non-electric heating and electric dryer)	MF	ROB	All	545.3	32.3%	175.9	14	\$250.00	51.20%	56.50%	\$0.139	2.13	1,115,496	1,115,496	618,176
136	CEE Tier 3 Clothes Washer (with non-electric heating and electric dryer)	MF	ROB	IIV	545.3	38.0%	207.0	14	\$440.00	51.20%	56.50%	\$0.208	1.39	1,312,786	1,312,786	727,508
137	Energy Star Refrigerator	MF	ROB		578.8	20.0%	115.8	17	\$70.00	100.00%	40.00%	\$0.052	2.26	2,038,196	2,038,196	910,883
138 139	CEE Tier 2 Refrigerator CEE Tier 3 Refrigerator	MF	ROB	All	_	25.0% 30.0%	144.7 173.7	17	\$150.00 \$225.00	100.00% 100.00%	40.00% 40.00%	\$0.111	1.32 1.06	2,472,055 2,967,491	2,472,055 2,967,491	1,105,219 1,326,721
140	Energy Star Freezer	MF	ROB			10.0%	67.0	11	\$33.00	17.10%	12.00%	\$0.058	1.89	869,928	869,928	578,746
141 142	Energy Star Dehumiditier Energy Star Dishwasher (electric water heating)	MF	ROB	All	355.0	18.8% 16.9%	60.0 60.0	12	\$12.00	14.80% 16.80%	78.00% 47.00%	\$0.025	8.88 7.88	616,913 460,920	616,913 460,920	409,811 353,760
143	Energy Star Dishwasher (non-electric water heating)	MF	ROB			16.4%	26.4	10	\$12.00	36.50%	47.00%	\$0.057	3.99	440,642	440,642	337,920
144	butergy start becure courtes washer (with electric heating & electric dryer)	MF	NC	All	728.0	23.3%	169.9	14	\$95.00	18.90%	0.00%	\$0.055	4.95	59,816	59,816	45,712

	Achievable Electricity (kWh) Savings per Measure by 2021	60,829	71,681	93,306	124,198	146,164	164,552	199,686 239,706	47,838	135,945 $42,240$	40,313	30,147,032	0 8 FE 1 73 1	0,334,724 13,985,114	1,500,762	20,008,414	32,219,003 2,210,160	1,449,334	0 720.178	1,177,334	239,662	7,684,568 4 021 435	535,920	4,907,796	0 1019587	1,666,803	302,119	4.659.027	263,400	161,081 0	41,770	68,286 28.770	351,799	640,193	31,110	62,844,581	84,088,186	8,992,321	10,858,160	18,160,615	41,382,655	10,695,459	32,099,216 6,479,667	10,110,368
	Economic Potential (kWh) Savings per Measure by 2021	79,474	93,652	122,272	162,724	191,504	215,735	261,907 314,397	62,913	1/8,331 55,260	52,800	37,683,711	10 402 544	17,481,656	1,875,952	25,010,109	2,762,760	3,895,411	0 1.935.876	3,164,737	644,214	13,868,274 7 257 520	1,440,360	6,134,587	0 1 2 7 4 3 2 2	2,083,240	377,625	5,822.873	329,220	432,841	112,409	183,765 77 350	634,980	1,155,262	83,610	86,682,162	132,452,601	14,445,514	15,613,901	31,790,960	23,766,047	13,369,330	43,304,248 8,489,078	18,392,444
	Technical Potential (kWh) Savings per Measure by 2021	79,474	93,652	122,272	162,724	191,504	215,735	261,907 314,397	62,913	1/8,331 55,260	52,800	37,683,711	10,202,555	17,481,656	1,875,952	25,010,109	2,762,760	3,895,411	1,893,466 1.935.876	3,164,737	644,214	13,868,274 7 257 520	1,440,360	6,134,587	2,981,875	2,083,240	377,625	3,199,816 5.822.873	329,220	432,841 210 304	112,409	183,765 77 350	634,980	1,155,262	83,610	86,682,162	132,452,601	14,445,514	15,613,901	31,790,960	23,766,047	13,369,330	43,304,248 8,489,078	18,392,444
	Total Resource t Cost (TRC) Ratio	2.60	1.71	4.03	2.13	1.39	2.26	1.32 1.06	1.89	8.88 7.88	3.99	1.64	0.78	5.20	7.47	62.53 120.00	5.97	1.64	0.78	5.20	7.47	62.53 120.80	5.97	1.64	5 00	5.20	7.47	02.53 120.80	5.97	1.64 0.78	5.09	5.20 7.47	62.53	120.80	5.97	7.12	10.47	12.27	17.68	2.28	1.35	3.80	5.25 7.12	10.47
	Levelized Cost (- Admin)	\$0.105	\$0.157	\$0.073	\$0.139	\$0.208	\$0.052	\$0.089 \$0.111	\$0.058	\$0.025	\$0.057	\$0.053	\$0.109 \$0.017	\$0.017	\$0.012	\$0.001 \$0.001	\$0.017	\$0.053	\$0.109	\$0.017	\$0.012	\$0.001	\$0.017	\$0.053	\$0.017	\$0.017	\$0.012 \$0.001	\$0.001	\$0.017	\$0.053	\$0.017	\$0.017	\$0.001	\$0.001	/10.0\$	\$0.017	\$0.012	\$0.010	\$0.007	\$0.056	\$0.111	\$0.054 \$0.020	\$0.017	\$0.012
	EE Saturation	0.00%	0.00%	%00.0	0.00%	%00.0	0.00%	0.00% 0.00%	0.00%	0.00% 0.00%	0.00%	10.00%	10.00%	28.00%	69.00%	68.00%	75.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.00%	78 00%	28.00%	%00.69	68.00%	75.00%	%0000 %0000	0.00%	0.00% 0.00%	0.00%	0.00%	0.00%	5.00%	33.00%	33.00%	33.00%	33.00%	33.00%	33.00%	33.00% 0.00%	%00.0
	Base Saturation	18.90%	18.90%	51.20%	51.20%	51.20%	100.00%	100.00% 100.00%	17.10%	14.80% 16.80%	36.50%	100.00%	100.00%	69.50%	48.30%	108.31%	91.29% 69.50%	100.00%	100.00% 97.37%	97.37%	55.26%	206.58%	97.37%	100.00%	100.00% 50.88%	50.88%	59.72%	81.07%	50.88%	100.00%	50.88%	50.88%	85.13%	81.07%	50.88%	594.00%	4104.00%	4104.00%	4104.00%	4104.00%	4104.00%	4408.00%	200.00% 594.00%	4104.00%
	Incremental /Full Cost	\$250.00	\$440.00	\$95.00	\$250.00	\$440.00	\$70.00	\$150.00 \$225.00	\$33.00	\$25.00 \$12.00	\$12.00	\$15.00	\$15.00 *F.00	\$8.00	\$1.00	\$1.00	\$1.80	\$15.00	\$15.00 \$5.00	\$8.00	\$1.00	\$1.00	\$1.80	\$15.00	\$5.00	\$8.00	\$1.00	\$1.00	\$1.80	\$15.00 \$15.00	\$5.00	\$8.00 \$1.00	\$1.00	\$1.00	\$1.80	\$4.00	\$1.55	\$1.55	\$1.55	\$20.00	\$29.40	\$3.00 *20.00	\$20.00	\$1.55
	h Useful Life	14	14	14	14	14	17	17	11	12	10	4	4	4	4	9	9 4	4	4	4	4	9	4	4	4	4	4	9	4	4	4	4	6	9	4	10	10	10	10	20	20	20	20 10	10
	Annual kWh savings		274.6	128.2	175.9	207.0	115.8	144.7 173.7	67.0	219.6	26.4	79.0	38.4 90.4	00.0 131.8	23.6	136.1	30.0	79.0	38.4 80.6	131.8	23.6	7601	30.0	79.0	38.4 80.6	131.8	23.6	260.1	30.0	79.0 38.4	80.6	131.8 23.6	136.1	260.1	30.0	29.0	16.5	19.4	27.9	27.3	20.4	4.3 76.7	76.2	16.5
	I % Savings		37.7%	23.5%	32.3%	38.0%		25.0% 30.0%	\square	18.8% 16.9%			- 10.00/	-	\mathbb{H}		36.3%		_	32.4%		+	-		10,80%	32.4%	_	_	36.3%		+	32.4%	-	_		72.7%	67.4%	64.2%	68.1%	-	+	_	72.7%	
	Base Base me Annual cet kWh		728.0	545.3	545.3	545.3	57	578.8	673.0	355.0	161.1	•	_	406.7	\square		82.7	•		Ħ			8	•		40		544.8 615.1	82.7	•						39.9	24.5	30.2		+	27.7		39.9	
	vs. It vs. Income		All	All	All	: VII		All All				ofit All	t		B All		B All						ŀ	ofit All						All All		All		_	All	B All	B All	B All	B All			_	S All	
	e ROB vs. e Retrofit vs. IF) NC		NC	NC	NC	NC	NC	NN	Ň	žž	N	Retrofi	Retrofi	ROB	ROB	ROB	ROB	NC	NC	NC	N	NC	NC	Retrofit	Retrofit	ROB	RO	RO	RO	NC	N	NC	NC	NC	NC.	ROB	ROB	ROB	ROB	RO	RO	ROI	NC	NC
	Home Type (SF/MF)	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	SF	SF	SF	SF	SF	SF	SF	SF SF	SF	SF	SF	SF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	SF	SF	SF	SF	SF	SF	SF	¥ ¦?	SF
Efficiency Maine - Residential Measure Database	e ID Measure Name	CEE Tier 2 Clothes Wa (with electric heating		Energy Star Electric Clothes Washer (with non-electric heating and electric dryer)		CEE Tier 3 Clothes Washer (with non-electric heating and electric drver)	Energy Star Refrigerator	CEE Tier 2 Refrigerator CEE Tier 3 Refrigerator	ergy Sta	Energy Star Dehumidifier Energy Star Dishwasher (electric water heating)	Energy Star Dishwasher (non-electric water heating)	Gontrolled Power Strips - Entertainment Center	Controlled Power Strips - Home Office	HE Internal Power Supplies (ou+ Desktop) HE Internal Power Supplies (ES Desktop)			LCD Computer Monitors		Controlled Power Strips - Home Office HE Internal Power Sunnlies (80+ Deskton)			HE Televisions (<50") HE Televisions (<50")			Lontrolled Power Strips - Home Uffice HE Internal Downer Sumuliae (804, Deckton)		HE	HE	LCD Computer Monitors	Controlled Power Strips - Entertainment Center	HE Internal Power Supplies (80+ Desktop)	HE Internal Power Supplies (ES Desktop) HF Lantons	HE Televisions (<50")	HE Televisions (>50")	LCD Computer Monitors Lighting	ENERGY STAR Specialty CFL	ENERGY STAR Standard CFL (14 W CFL replacing 60 W incandescent)		ENERCY STAR Standard CFL [23 W CFL replacing 100 W incandescent]		LED Lighting (screw-in)			
Efficiency	Measure ID	145	146	147	148	149	150	151 152	153	154	156	201	202	204	205	206	208	209	210	212	213	214	216	217	218	220	221	223	224	225	227	228	230	231	232	301	302	303	304	305	306	307	309	310

c Achievable I Electricity ngs (kWh) Savings re per Measure by 2021		2,299,121	2,316,330			7 6,159,943	5 1,083,053	1,534,393			3 2,612,869	$\left \right $	561,660	90,622	127,785	128,703	345,028	95,860 241,150		9 5,968,151 88 65,564,412		-	+	300.706	,	287,143		143,221 0		5 1,044,659 3 1.479,218	\square	9 818,023	104	$\left \right $	323,018 142,659	$\left \right $	0	5 37,584,755	-	++		457,692
Economic Potential gs (kWh) Savings e per Measure by 2021	2,005,906	2,168,156	4,414,491	3,300,152 1.856.467	6,013,134	10,781,027	1,175,805	1,270,900	2,587,642	_	3,524,728	471,632	1,021,800	111,414	120,419	245,299	183,379	334,135	1 0 C 3 0 E 0	10,629,589		_	4,763,574	393.638	4,326,529	376,057 2 085 919	920,129	224,063	1,951,732	1,421,605	1,190,411	1,022,319	137,455		_	87,331		50,794,315		0	37,403,17	595,968
Technical Potential (kWh) Savings per Measure by 2021	2,005,906	2,168,156	4,414,491	3,300,152 1.856.467	6,013,134	10,781,027	1,175,805	1,270,900	2,587,642	1,934,450	1,088,200 3,524,728	471,632	1,021,800	111,414	120,419	245,299	183,379	103,137 334,135	7 01 0 01 0	/,816,018 88,456,934	9,027,587	14 433 953	3,608,744	96,850,657 289 359	3,274,789	376,057 2 085 919	920,129	169,595 3 585 535	1,327,250	1,421,605	1,190,411	674,775 15 062 244	93,615	106,264	420,025 189,025	57,802	1,127,330	50,794,315	5,908,240	180,730	37,403,172	595,968
Total Resource Ost Cost (TRC)	12.27	17.68		3.80		10.47	12.27	17.68	2.28	_		$\left \right $	10.47	12.27	17.68	2.28	1.35	5.25	1 22	2.14	3.78	2 69	1.56	0.59	2.14	3.78	2.69	1.56	1.11	3.78	3.42	1.43	1.11	3.78	3.42	1.43		3.18		H		10.80
Levelized Cost on (- Admin)	\$0.010				\$0.020					-	6 \$0.020 6 \$0.020		\$0.012	\$0.010	\$0.007		\$0.111		¢0.080		6 \$0.024	_		6 \$0.333 50.080		\$0.024		\$0.052				6 \$0.057	_	\$0.024	+	$\left \right $				6 \$0.745		
EE on Saturation	% 0.00%	% 0.00%			% 0.00%	_	% 33.00%	% 33.00%	% 33.00%		% 33.00% % 33.00%	$\left \right $	% 0.00%	% 0.00%	% 0.00%		_	% 0.00%		6 10.00%	6 20.00%	-	+	6 10.00%		0.00%		_	\vdash	6 15.00% 5 72.50%		6 25.80%	+	$\left \right $	-	$\left \right $		20.00%	-	50.00%		
ull Base Saturation	4104.00%	4104.00%	4104.00%	4104.00% 4408.00%	200.00%	2052.00%	2052.00%	2052.00%	2052.00%	2052.00%	2204.00%	297.00%	2052.00%	2052.00%	2052.00%	2052.009	2052.00%	100.00%	33 E00	33.50% 33.50%	33.50%	50.40% 110.250	33.50%	33.50%	12.00%	12.00%	42.00%	12.00%	30.50%	30.50%	61.00%	30.50%	30.50%	30.50%	50.00%	30.50%	30.50%	9.70%	9.70%	2.20%	42.40%	42.40%
Incremental /Full Cost	\$1.55	\$1.55	\$20.00	\$29.40 \$3.00	\$20.00	\$1.55	\$1.55	\$1.55	\$20.00	\$29.40	\$20.00	\$4.00	\$1.55	\$1.55	\$1.55	\$20.00	\$29.40 \$2.00	\$20.00	#1E1 00	\$1,051.00	\$15.00	\$15.00	\$35.00	\$151.00	\$1,051.00	\$15.00	\$15.00	\$35.00 \$10 500 00	\$151.00	\$15.00	\$15.00	\$35.00	\$151.00	\$15.00 ¢15.00	\$15.00	\$35.00	\$4,600.00	\$450.00	\$450.00	\$300.00	\$416.40 *1 951 61	\$1,456.50
h Useful Life	10	10	20	20	20	10	10	10	20	20	20	10	10	10	10	20	20	20	5	13	13	م م	7	20	13	13	6	7	13	9	<u>,</u>	7	13	13	6		20	10	10	20	25	25
Annual kWh ss Savings	19.4	27.9	27.3	20.4	76.2	16.5	19.4	27.9	27.3	20.4	4.3 76.2	29.0	16.5	19.4	27.9	27.3	20.4	4.3 76.2	106.6	2214.2	63.6 770.7	220.3 44 4	114.7	2424.3 195.6	2214.2	63.6 220.3	44.4	114.7 2424.3	164.8	63.6 213.6	56.5	104.7	164.8	63.6 212 £	212.0	104.7	2042.3	1235.0		31.0	228.0	6.0
e al % Savings	64.2%	68.1%		44.9%	\vdash	67.4%	64.2%	68.1%	77.7%		44.9% 6 75.8%	$\left \right $	67.4%	64.2%	68.1%	+	-	44.9% 6 75.8%		.5 54.8%	1.7 77.8%	_		P0.5 60.0%	+	L.7 77.8%		3 35.0%	+			6 34.5%		\square	_	3.6 34.5%	_	.5 66.5%			_	.0 0.4%
Base Income Annual Target kWh		All 41.0	All 35.1	All 27.7 All 9.5		All 24.5	All 30.2	All 41.0	All 35.2	_	All 100.6		All 24.5	All 30.2	All 41.0	35	All 27.7	All 100.6		All 4040.5 All 4040.5	All 81.7	13	32	All 4040 All 4040	404	All 81.7 All 1101	13	All 327.3 All 4040.5	Ħ	All 81.7 All 1068	\square		All 3403.8 All 3403.8		All 1068.2 All 177.7	30	All 3403	All 1857.5	All 1857		All 1568 NI 1568	NLI 1568.0
Retrofit vs. Inc NC Tai	NC /	NC /	$\left \right $	NC	$\left \cdot \right $	ROB A	ROB /	ROB /	ROB /	_	ROB /		NC	NC /	NC /		+			ROB /	Retrofit /			Retrofit /		NC		NC NC		Retrofit / Retrofit /			NC NC				NC	ROB /	NC	ţ,	ROB /	
Home Type R((SF/MF)	SF	SF	SF	SF SF	SF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	Ę	SF SF	SF			SF F	SF	SF	SF	SF F	MF	MF		MF	+	MF	MF	MF	MF	SF	SF	+		SF SF
aine - Residential Measure Database Measure Name	nt)	ENERGY STAR Standard CFL [23 W CFL replacing 100 W incandescent]	ENERGY STAR Dedicated CFL Fixture	LED Lighting (screw-in) ; 2012-2019 LED Lighting (screw-in) : 2020 and later	ENERGY STAR Dedicated Exterior Fixture	ENERGY STAR Speciary Cri- ENERGY STAR Standard CFL (14 W CFT Standard Action	LT W CI PLEASE W MILAILOSCOM) ENERGY STRR Standard CEL (19 W CFL rendstand 75 W incandescent)	ENERGY STAR Standard CFL [23 W CFL renlacing 100 W incandescent]	ENERGY STAR Dedicated CFL Fixture	LED Lighting (screw-in); 2012-2019	LEU Lighting (screw-in) ; 2020 and later ENERGY STAR Dedicated Exterior Fixture	ENERGY STAR Specialty CFL	ENERGY STAR Standard CFL (14 W CFL replacing 60 W incandescent)	ENERGY STAR Standard CFL (19 W CFL replacing 75 W incandescent)	ENERGY STAR Standard CFL [23 W CFL renlacing 100 W incandescent]	ENERGY STAR Dedicated CFL Fixture	LED Lighting (screw-in) ; 2012-2019	LED Lignting (screw-in) ; 2020 and later ENERGY STAR Dedicated Exterior Fixture	Water Heating	Etricient Storage Lank Water Heater Heat Pump DHW	Hotwater Pipe wrap	Low Flow Showerheads Low Flow Faurets	Tank Wrap	Solar Water Heating w/ Electric Storage Back-Up Efficient Storage Tank Water Heater	Heat Pump DHW	Hotwater Pipe wrap	Low Flow Faucets	Tank Wrap Solar Water Heating w/ Flectric Storage Back-Hn	Efficient Storage Tank Water Heater	Hotwater Pipe wrap Low Flow Showerheads	Low Flow Faucets	Tank Wrap Color Wotton Unotine of Florence Commendation	botar water neating w/ Electric storage back-up Efficient Storage Tank Water Heater	Hotwater Pipe wrap	Low Flow Snowerneads Low Flow Faucets	Tank Wrap	Solar Water Heating w/ Electric Storage Back-Up Other	Pool Pump & Motor	Pool Pump & Motor HVAC (Envelope)	Improved Incoded	Energy Star Windows	Improved Attic/Roof Insulation (R-0 to R-49) Improved Attic/Roof Insulation (R-19 to R-49)
Efficiency Ma Measure ID	311	312	313	314 315	316	318	319	320	321	322	323 324	325	326	327	328	329	330	331 332	400	401 402	403	404	406	407 408	409	410	412	413	415	416 417	418	419	420	422	424	425	426 500	501	502 600	603	604 405	909

	Achievable Electricity (kWh) Savings per Measure by 2021	80,754	211,140 27.760	9.961.744	1,758,458	31,651	7,977,846 819400	4,753,115	144,600	838,785	999,260 176340	12,801,459	0 2 257 770	0	654,237	1,698,240	145,058 612,074	0	016 210	169.824	204,374	729,218	24,224	0	0	0	31,815,708	2,430,648	023,024 0		0	31,162,343 0	0	1,922,949	131.926	0	0	14.407.393	0	0	0 2 5 0 8 5 1 9	443,828	0	0 0	27,296,386	0	0	205,539 36,300	0	0	0 1,830,612
	Economic Potential (kWh) Savings per Measure by 2021	105,174	263,580 46 506	12.937.314	2,283,307	41,075	26,694,846 1 019 430	6,187,901	180,750	1,091,966	1,243,197 220 425	16,413,891	0 7 806 241	0	857,187	2,224,320	189,994 801.682	0	1 200 202	1,200,200 222.432	265,489	2,464,014	31,728	c	0	0	42,991,842	3,283,456	1,015,094 0	0	0 011 200 11	41,22/,110 0	0	2,519,130	239,096 172.835	0	0	0 18.869.575	0	0	3 390 804	601,128	0	0	0 36,621,151	0	0	269,205 46,948	0	0	0 2,401,448
	Technical Potential (kWh) Savings per Measure by 2021	105,174	76 506	12.937.314	2,283,307	41,075	26,694,846 1 019 430	6,187,901	180,750	1,091,966	220425	16,413,891	3,284,031	579,510	857,187	2,224,320	189,994 801.682	9,268	206 006 1	222.432	265,489	2,464,014	31,728	1 546 752	1,040,/32 854,784	1,193,984	42,991,842	3,283,456	3.190.194	4,438,136	5,779,899	41,227,110 617.892	863,412	2,519,130	239,096 172.835	336,315	467,852	009,290 18,869,575	317,477	173,940	243,210 3 390 804	601,128	518,365	721,111 939171	36,621,151	15,312	21,344	269,205 46.948	46,530	64,672	84,224 2,401,448
	T otal Resource Cost (TRC) Ratio	1.62	9.53 0 5 3	4.62	4.62	1.21	10.98 10.40	1.55	10.40	1.55	9.15	5.08	0.71 5 08	0.71	1.72	4.99	1.71 12.70	0.0	1012	4.67	1.03	12.42	1.39	0 5 0	0.26	0.33	2.57	5.52	2.99 0.63	0.45	0.39	0.39	0.33	2.57	25.52	0.63	0.45	1.36	0.24	0.08	0.18 2 5 5	5.52	0.63	0.45	1.17	0.23	0.18	2.57	0.63	0.45	0.39 1.87
	Levelized Cost (- Admin)	\$16.388	1221\$	\$0.110	\$0.110	\$0.745	\$0.038	\$0.350	\$0.052	\$0.350	\$0.059	\$0.116	\$0.116 \$0.116	\$0.795	\$0.413	201.02	\$0.049	\$1 1 <u>7</u> 0	\$1.17U \$1.078	\$0.130	\$0.807	\$0.170	\$0.635	\$0.148	889.0\$	\$0.654	\$0.042	\$0.034 ¢0.020	\$0.146	\$0.204	\$0.235 \$0.002	\$0.048	\$0.618	\$0.042 #0.024	\$0.039 \$0.039	\$0.146	\$0.204 ¢0.225	\$0.067	\$0.316	\$1.197 ¢1.100	\$0.042	\$0.034	\$0.146	\$0.204 \$0.235	\$0.077	\$1.197	\$1.211	\$0.042 \$0.034	\$0.146	\$0.204	\$0.235 \$0.047
	EE Saturation	48.00%	99.00% 00.00%	50.00%	50.00%	50.00%	27.00% 99.00%	48.00%	99.00%	48.00%	99.00% 99.00%	60.00%	45.00%	45.00%	0.00%	0.00%	0.00%	0.00%	0.000	0.00%	50.00%	19.50%	0.00%	40 00%	40.00% 20.00%	20.00%	20.00%	20.00%	13.00% 20.00%	20.00%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	40.00%	20.00%	20.00%	20.00%	20.00%	20.00%	0.00%	0.00%	0.00%	0.00% 0.00%	0.00%	0.00%	0.00%
	Base Saturation	42.40%	42.40%	9.40%	9.40%	0.50%	9.40% 9.40%	9.40%	9.40%	9.40%	9.40%	9.40%	9.40% 0.40%	9.40%	42.40%	9.40%	9.40% 9.40%	9.40%	0.4002	9.40%	36.20%	36.20%	36.20%	3 200%	3.20%	3.20%	25.80%	1.60%	4.00% 86.80%	86.80%	86.80%	0.90% 16.60%	16.60%	13.00%	4.00%	65.00%	65.00%	5.00%	8.40%	8.40%	8.40% 12 50%	1.80%	83.20%	83.20% 83.20%	8.90%	8.40%	8.40%	12.50%	83.20%	83.20%	83.20% 8.90%
	Incremental /Full Cost	\$1,456.50	\$2,558.U8 \$7 558.08	\$721.50	\$721.50	\$300.00	\$416.40 \$1 854 61	\$1,456.50	\$1,854.61	\$1,456.50	\$2,558.08	\$1,660.41	\$1,660.41 \$1,660.41	\$1,660.41	\$220.00	\$550.00	\$125.40	\$34.65	¢100.0E	\$92.40	\$178.38	\$247.50	\$132.00	\$115.00	\$1,220.00	\$1,629.00	\$200.00	\$200.00 \$ 43 F0	\$40.00	\$80.00	\$120.00	\$1.220.00	\$1,629.00	\$200.00	\$43.50	\$40.00	\$80.00 #120.00	\$5,500.00	\$115.00	\$989.00	\$200.00	\$200.00	\$40.00	\$80.00 \$120.00	\$4,500.00	\$989.00	\$1,398.00	\$200.00 \$200.00	\$40.00	\$80.00	\$120.00 \$2,500.00
	Useful Life	25	22 75	15	15	20	25 25	25	25	25	25	25	25	25	20	15	20	25	76	25	20	25	20	Ľ	ر 18	18	18	18	12	12	12	18	18	18	19	12	12	15	ъ	18	18	18	12	12	15	18	18	18	12	12	12 15
	Annual kWh Savings	6.0	138.0	611.0	611.0	31.0	734.0 2410.0	281.0	2410.0	281.0	2939.0	969.0	141.0	141.0	41.0	480.0	41.0 173.0	2.0	260.0	48.0	17.0	98.0	16.0	177.0	146.0	205.0	393.0	484.0	87.6 30.0	43.0	56.0	155.0	217.0	393.0	484.0 87.6	30.0	43.0	7657.0	83.0	68.0	393.0	484.0	30.0	43.0 56.0	5419.0	68.0	95.0	393.0 484.0	30.0	43.0	56.0 4921.0
	% Savings		8.1% 8.1%				10.3%										3.1%		_				_	10.00%				-	9.1%	\vdash		11.5%			- 62.0%	9.1%		1/.1%						13.1%							17.1%
	B: K	1568.0	1706.0	7126.0	7126.0	1770.0	7126.0	7126.0	9255.0	7126.0	10065.0	8095.0	7126.0	7126.0	1343.0	5899.0	1343.0 5899.0				828.0			1770.0	1264.0	1264.0		- 111 0	328.0	328.0	328.0	1343.0	1343.0		- 141.3	328.0	328.0	320.0 18710.0	828.0	591.0			328.0	328.0	12520.0	586.0	586.0		328.0	328.0	328.0 11507.0
	/s. Income Target	_	fit NLI		t,	fit All			t		fit NLI	-			All	All	All				fit All			+	III AII					-	_			All	All	All	All	IIV	t					All All	t			All	All	All	All
	e ROB vs. F) NC	Retrofit	Detrofi	Retrofi	Retrofi	Retrofi	Retrofit	Retrofi	Retrofi	Retrofit	Retrofit	Retrofit	Retrofit Detrofit	Retrofit	NC	NC	NC	NC	NIC	NC	Retrofit	ROB	NC	Ratro	ROB	ROB	Retrofit	Retrofit	ROB	ROB	ROB	NC	NC	NC	NC	NC	NC	NC	Retrofi	ROB	Rotrofi	Retrofit	ROB	ROB	Retrofi	NC	NC	NC	NC	NC	NC
	Home Type (SF/MF)	SF	7 8	2 H	SF	SF	35 B	SF	SF	FP F	* #	SF	3 8	SF	SF	R F	τ, τ,			r r	MF	MF	MF	H	ч Ч	SF	SF	FP F	7 7	SF	SF 5	7 7	SF	R R	7 7	SF	F F	7 F	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF
Efficiency Maine - Residential Measure Database	D Measure Name	Improved Attic/Roof Insulation (R-19 to R-49)	Improved Wall Insulation (K-U to K-LL)	Improved Air Sealing	Improved Air Sealing	Improved Duct Sealing	Energy Star Windows Immroved Attic/RoofInsulation (R-0 to R-49)	Improved Attic/Roof Insulation (R-19 to R-49)	Improved Attic/Roof Insulation (R-0 to R-49)	Improved Attic/Roof Insulation (R-19 to R-49)	Improved Wall Insulation (K-U to K-11) Improved Wall Insulation (R-O to R-11)	Improved Floor Insulation (R-0 to R-19)	Improved Floor Insulation (K-19 to K-30)	Floor Insulation	Improved Duct Sealing	Improved Air Sealing	Improved Duct Sealing Energy Star Windows	Improved Attic/Roof Insulation (R-49 - Grade II to Grade I)	Immunity Moll Inculation (B 20 Funds III to Funds D	Improved Floor Insulation (R-30 - Grade II to Grade I)	Improved Duct Sealing	Energy Star Windows	Improved Duct Sealing	HVAC (Equipment) ACTime-Itin	AC 1 UITE- UP Central AC Tier 1 (15 SEER)	Central AC Tier 2 (16 SEER)	ECM Furnace Fan - heating	ECM Furnace Fan - heating and cooling	HE Venulauon Fan Room AC - Energy Star	Room AC - SEHA Tier 1	Room AC - SEHA Tier 2	Ductless Mini-Split HP (Replacing Electric Baseboard) Central AC Tier 1 (15 SEER)	Central AC Tier 2 (16 SEER)	ECM Furnace Fan - heating	ECM Furnace Fan - heating and cooling HF Ventilation Fan	Room AC - Energy Star	Room AC - SEHA Tier 1	NOULIAC - SELIA LIEL 2 Ductless Mini-Split HP (Replacing Electric Baseboard)	AC Tune-Up	Central AC Tier 1 (15 SEER)	Central AU 11er 2 (10 SEEK) FCM Furnare Fan - heating	ECM Furnace Fan - heating and cooling	Room AC - Energy Star	Room AC - SEHA Tier 1 Room AC - SEHA Tier 2	Ductless Mini-Split HP (Replacing Electric Baseboard)	Central AC Tier 1 (15 SEER)	Central AC Tier 2 (16 SEER)	ECM Furnace Fan - heating ECM Furnace Fan - heating and cooling	Room AC - Energy Star	Room AC - SEHA Tier 1	Room AC - SEHA Tier 2 Ductless Mini-Split HP (Replacing Electric Baseboard)
Efficiency N	Measure ID	608	609	615	616	617	618 619	620	621	622	623 674	625	626 627	628	630	635	636 637	638	067	640	643	644	648	701	702	703	704	705	707	708	709	712	713	714	716	717	710	720	722	723	725	726	727	728	730	732	733	735	736	737	738 739

Database
Measure
Commercial
y Maine -
Efficiency

LINUCUULY MA											
		ROB vs. Retrofit vs.		Annual kWh	11 co. 6.4 T t fe.	Incremental /Full Levelized Cost	Levelized Cost	S B	Technical Potential (kWh) Savings per Measure	Economic Potential (kWh) Savings per Measure	Achievable Electricity (kWh) Savings per Measure
100	Annliances Commiters Office Equinment	MC	20 Davines	Savings		CUSE	(IIIIIII -)	Natio	ny 2021	UY 2021	ny 2021
102	Energy Star office equipment including computers, monitors, consists multi-function machines	ROB	25%	858.0	4	\$300.00	\$0.087	0.96	40,396,099	0	0
103	Energy Efficient "Smart" Power Strip for PC/Monitor/Printer	Retrofit	70%	867.8	4	\$35.70	\$0.010	8.18	44,809,450	44,809,450	32,006,750
104	EZ Save Monitor Power Management Software	Retrofit	15%	30.0	2	\$26.00	\$0.510	0.17	4,087,116	0	0
150	Ventilation										
151	Dual Enthalpy Economizer - from Fixed Damper	ROB	22%	3400.0	10	\$800.00	\$0.017	3.52	67,401,437	67,401,437	37,598,081
152	Dual Enthalpy Economizer - from Dry Bulb	ROB	16%	2500.0	10	\$400.00	\$0.011	5.18	49,019,227	49,019,227	27,344,059
153	Demand-Controlled Ventilation	ROB	25%	8000.0	15	\$2,100.00	\$0.018	13.52	67,554,336	67,554,336	32,349,964
157	Variable Speed Drive Control, 15 HP	Retrofit	30%	12000.0	20	\$3,465.00	\$0.014	5.99	16,903,863	16,903,863	13,110,801
158	Variable Speed Drive Control, 5 HP	Retrofit	30%	4000.0	20	\$1,925.00	\$0.024	3.60	46,579,404	46,579,404	36,127,440
160	Variable Speed Drive Control, 40 HP I mnroved Duct Sealing	ROR	30% 70%	32000.0	20	\$0,280.00 \$0.20	\$0.010	8.82 4.85	46,579,404 38540173	46,579,404 38540173	36,127,440 13 970 813
	[1] optimized by the second Material (FCDMG)	ava	1 402	0.7.0	0	#300.00	¢0.012	002	E 367 003	E 367 003	3 210 502
161	ыесстопісану-сопілицатец гегіпапелт мадлет мотогу (выгміз)	KUB	14%0	94/.0	10	\$200.0U	\$U.U.12	1.34	266,706,c	266,706,6	2,319,505
162	High Volume Low Speed Fans	Retrofit	15%	184.0	10	\$7,000.00	\$3.804	0.02	1,180,662	0	0
200	Pools			1							
201	Energy Efficient Pool Pump with controls	ROB	67%	1235.0	10	\$450.00	\$0.036	2.12	3,844,346	3,844,346	2,819,187
202	Solar Pool Heating	Retrofit	40%	46072.7	20	\$4,000.00	\$0.004	19.85	419,885	419,885	331,488
203	Heat Pump Pool Heater	Retrofit	75%	9411.8	10	\$2,500.00	\$0.027	3.37	1,828,061	1,828,061	1,340,578
204	High efficiency spas/hot tubs	ROB	40%	250.0	10	\$300.00	\$0.120	0.75	206,766	0	0
300	Envelope	, , ,			0		01004	1007			110
302	Integrated Building Design	ROB	40%	530000.0	30	\$166,226.40	\$0.010	10.95	16,668,581	16,668,581	4,444,955
303	Energy Efficient Windows	ROB	20%	7.0	30	\$0.51	\$0.002	37.26	46,474,699	46,474,699	8,114,630
304	Ceiling insulation to R32	Retrofit	2%	0.1	15	\$1.04	\$0.516	0.17	4,989,800	0	0
305	Below Grade Insulation to R6	Retrofit	1%	0.0	30	\$1.04	\$1.026	0.08	2,273,890	0	0
306	Wall Insulation to R12	Retrofit	2%	0.1	15	\$4.20	\$2.396	0.04	3,792,880	0	0
307	Roof Insulation to R-18	Retrofit	4%	0.0	20	\$1.36	\$3.887	0.02	5,365,419	0	0
320	Water Heating										
321	Heat Pump Water Heater	ROB	43%	14155.0	14	\$4,067.01	\$0.021	4.30	22,553,607	22,553,607	12,717,497
322	Booster Water Heater	ROB	13%	625.0	10	\$951.37	\$0.152	0.59	1,043,569	0	0
626 ACS	Polin of Use Water Reduing Solar Water Heating System	Betrofit	7.00	0.040 10825 0	10	C0.400¢	\$0.067	0.40 1 20	12 270 627	U 13 370 677	ט 10 קקק קקא
325	High Efficiency Electric Water Heater	ROB	5%	256.0	13	\$70.00	\$0.021	4.22	763.798	763.798	27.978
	Low Flow Pre-Rinse Spray Nozzle (included in 2006 Federal	Retrofit	550%	1227.0	L L	\$35 DD	\$0.006	1897	3 809 293	3 809 293	2 902 318
326	Standards) (Electric HW)		2 22		5 .						
327	Faucet Aerators	Retrofit	9%	89.0 201.0	10	\$6.00 *20.00	\$0.007	13.28	1,737,285	1,737,285	1,042,371
328	Low-Flow Showerheads	Ketront	12%	304.0	Π	\$30.90	01U.U	8.81	241,245	241,245	144,/4/
329	Commercial Dishwasher (Under Counter Hi-Temp, Electric DHW)	ROB	43%	7471.0	10	\$1,000.00	\$0.013	6.69	686,281	686,281	498,258
330	Commercial Dishwasher (Single Tank Conveyor Hi-Temp, - Electric DHW)	ROB	32%	19235.0	20	\$270.00	\$0.001	122.79	233,564	233,564	58,391
331	Commercial Clothes washers - Water Heating Savings	ROB	55%	426.6	10	\$360.00	\$0.084	1.67	839,719	839,719	545,081
333	Ozone Commercial laundry System	Retrofit	65%	194219.8	7	\$65,000.00	\$0.048	1.89	525,342	525,342	262,671
334	Drain water Heat Recovery Water Heater	ROB	25%	251.3	20	\$350.00	\$0.070	1.24	1,579,196	1,579,196	614,132
335	Hot Water Circulation Pump Time-Clock	Retrofit	5%	1673.0	10	\$132.00	\$0.008	11.34	539,990	539,990	359,993
336	Hot Water (DHW) Pipe Insulation	Retrofit	2%	33.0	6	\$15.00	\$0.076	1.19	184,266	184,266	140,042
337	Refrigeration Heat Recovery	Retrofit	10%	1825.0	15	\$2,861.00	\$0.105	0.84	715,890	0	0
340	Space Cooling - Chillers										
341	Centrifugal Chiller, 0.51 kW/ton, 300 tons	ROB	15%	21600.0	25	\$16,200.00	\$0.030	2.86	14,366,843	14,366,843	4,031,293
342	Centrifugal Chiller, 0.51 kW/ton, 500 tons	ROB	15%	36000.0	25	\$27,000.00	\$0.030	2.86	14,366,843	14,366,843	4,031,293

Database	
Measure	
Commercial	
Maine -	
Efficiency	

EIIICIEIICS ME											
		ROB vs. Retrofit vs.		Annual kWh		Incremental /Full Levelized Cost	Levelized Cost	Total Resource Cost (TRC)	Technical Potential (kWh) Savings ner Measure	Economic Potential (kWh) Savings ner Measure	Achievable Electricity (kWh) Savings ner Measure
Measure ID	Measure Name	NC	% Savings	Savings	Useful Life	Cost	(- Admin)		by 2021	by 2021	by 2021
343	Centrifugal Chiller, Optimal Design, 0.4 kW/ton, 500 tons	ROB Dotuofit	33%	80000.0	25	\$60,000.00 ¢E 100.00	\$0.030 \$0.024	2.86	1,161,217 E ADE 610	1,161,217 E ADE 610	325,834
345	Cullier Tune Up/Diagnostics - 300 ton Chiller Tune IIn/Diagnostics - 500 ton	Retrofit	0%0 80%	25600.0	10	\$3,100.00	\$0.033	2.54	5.405.610	5.405.610	3,243,300
360	HVAC Controls		2		5		0 0 0 0				
361	Programmable Thermostats	Retrofit	4%	1637.0	5 2	\$28.00	\$0.003	24.54	17,925,500	17,925,500	13,200,350
362	EMS install	Retrofit	10%	0.5	10	\$0.29	\$0.058	5.07	34,734,957	34,734,957	26,931,509
363	EMS Optimization	Retrofit	1%	0.1	5	\$0.06	\$0.225	1.87	2,392,365	1,728,501	1,836,001
364	Hotel Guest Room Occupancy Control System	ROB	%0	342.0	15	\$100.00	\$0.019	4.46	359,601	359,601	189,264
380	Space Cooling - Unitary and Split AC		1001		,	00 01 4	0=0.04				
381	HVAC Advanced Tune-Up	ROB	10%	826.0	2, 2	\$450.00	\$0.272	0.31	6,637,172	0	0
382	High Efficiency AC - Unitary & Split Systems (CEE Tier 1)	ROB	26%	3379.0	15	\$910.00 #1.200.00	\$0.018	4.84	16,236,917	16,236,917	7,731,865
383 384	High Efficiency AC - Unitary & Split Systems (CEE Tier 2) Ductlace fmini culit1	RUB Retrofit	30%	3767.0	15	\$1,200.00 \$910.00	\$0.021	4.09 2.29	21,463,032 14 544 772	21,463,032 14 544 772	10,860,811 11 31 2 600
385	pucuess (mmi spin) PTAC	ROB	04.0C	46.7	15	\$75.00	\$0.107	0.81	219.519	219.519	000/215/11
400	Cooking										
401	Energy Star HE Steamer	ROB	55%	9774.0	12	\$1,500.00	\$0.013	10.07	1,440,595	1,440,595	825,341
402	HE Combination Oven	ROB	66%	12745.8	10	\$8,442.00	\$0.066	1.35	404,472	404,472	278,074
403	Energy Star Electric convection oven	ROB	12%	1859.0	12	\$50.00	\$0.002	40.65	74,676	74,676	42,783
404	Energy Star HE Fryer	ROB	6%	1179.0	12	\$260.00	\$0.018	4.96	195,689	195,689	112,114
405	Energy Star High Efficiency Griddle	ROB	15%	2595.0	12	\$60.00	\$0.002	47.29	379,672	379,672	217,520
406	Induction Cooktops	ROB	20%	784.0	11	\$3,000.00	\$0.348	0.26	122,567	0	0
407	Energy Star HE Holding Cabinet	ROB	60%	3942.0	12	\$1,800.00	\$0.038	2.39	1,181,897	1,181,897	677,129
408	Demand Ventilation Control	ROB	60%	2500.0	12	\$10,000.00	\$0.333	0.27	487,941	0	0
500	Lighting										
501	Lamp & Ballast Retrofit (HPT8 Replacing T12)	ROB	17%	50.8	13	\$37.00	\$0.056	1.57	20,942,483	20,942,483	9,005,049
502	Lamp & Ballast Retrofit (HPT8 Reduced Wattage Replacing Standard T8)	ROB	35%	87.9	13	\$37.00	\$0.032	2.72	6,305,820	6,305,820	0
503	High Efficiency Fluorescent Fixture (HP T8 Troffer Replacing T12)	ROB	25%	84.4	13	\$97.00	\$0.088	1.00	30,874,508	30,874,508	0
60.0	High Efficiency Fluorescent Fixture (HP T8 Reduced Wattage	ROB	33%	115.1	13	\$97.00	\$0.065	1.36	5,993,251	5,993,251	0
505	Replacing 1 o J Fluorescent Fixture with Reflectors	ROB	29%	98.9	13	\$85.50	\$0.066	1.33	64.889.670	64.889.670	39.628.479
506	Low Glare Recessed T5/HP T8 (replacing T12)	ROB	34%	108.8	13	\$171.00	\$0.121	0.73	42,185,141	0	0
507	Low Glare Recessed T5/HP T8 Reduced Wattage (replacing T8)	ROB	49%	209.7	13	\$171.00	\$0.063	1.41	9,006,473	9,006,473	0
508	New Fluorescent Fixtures T5/HP T8 (replacing T12)	ROB	15%	46.1	13	\$88.00	\$0.147	0.60	18,631,911	0	0
FUG	New Fluorescent Fixtures T5/HP T8 reduced wattage (replacing T8)	ROB	55%	167.6	13	\$80.00	\$0.037	2.40	10,123,400	10,123,400	0
510	Pendant Mounted Indirect Fluorescent Fixtures	ROB	13%	28.7	15	\$99.00	\$0.230	0.38	87,049	0	0
511	High Intensity Fluorescent Fixture (replacing HID)	ROB	45%	389.0	13	\$213.00	\$0.042	2.10	4,826,285	4,826,285	1,539,558
512	HID Fixture Upgrade - Pulse Start Metal Halide	ROB	21%	320.0	15	\$37.50	\$0.008	11.30	0	0	0
513	CFL Fixture	Retrofit	38%	57.3	13	\$76.00	\$0.102	0.86	3,254,602	0	0
514	CFL Screw-in	Retrofit	68%	148.0	3	\$3.00	\$0.007	12.63	32,832,917	32,832,917	21,269,261
515	Ceramic Metal Halide	ROB	72%	420.3	15	\$105.00	\$0.017	5.30	278,581	278,581	133,627
516	Metal Halide Track	Retrofit	72%	382.0	15	\$291.67	\$0.051	1.74	278,581	278,581	200,440
517	Halogen Infra-Red Bulb	ROB	20%	40.0	1	\$6.00	\$0.115	0.76	580,378	0	0
518	Induction Fluorescent 23W	ROB	43%	49.9	6	\$22.00	\$0.049	1.76	1,253,902	1,253,902	902,188
519 520	Integrated Ballast MH 25W	ROB	72%	185.4 240.7	11	\$35.00	\$0.021 \$0.029	4.12	419,162 204 059	419,162 204 050	301,588 195 240
520	Usid Gathoute Downingin	ROB	84%	2759	13	\$81.00	\$0.023	3.91	2 535 487	2 535 487	1 309 562
523	LED Exit Sign	ROB	88%	96.4	13	\$47.00	\$0.038	2.35	2,391.489	2,391.489	0
2			~~~~		2		1 1 1 1 1 1)) i		->-/+>>/=	, ,

Database	
Measure	
Commercial	
y Maine -	
Efficienc	

		ROB vs.						Total Resource	Technical Potential (kWh) Savings	Economic Potential (kWh) Savings	Achievable Electricity (kWh) Savings
Measure ID	Measure Name	NC NC	% Savings	Savings	Useful Life	Cost	Levenzeu cust (- Admin)		bet measure by 2021	bet measure by 2021	by 2021
524	LED Outdoor Area Fixture	ROB	66%	751.6	13	\$341.00	\$0.035	2.53	60,430,583	60,430,583	37,117,595
525 E76	LED Parking Garage Fixture	ROB	71%	635.1	13	\$343.00 *20.50	\$0.042 \$0.027	2.12	4,122,620 E 048 028	4,122,620 E 040 020	2,536,997
527	LED Strew In LED Strew In	ROB	/3% 81%	165.4	13	\$55.00	\$0.026 \$0.026	3.45	31.268.307	31.268.307	15.856.887
528	LED Traffic / Pedestrian Signals	ROB	92%	485.3	10	\$102.67	\$0.021	4.08	0	0	0
529	LED Wallpack	ROB	73%	657.0	13	\$120.00	\$0.014	6.28	21,651,111	21,651,111	13,307,894
550	Lighting Controls										
551	Controls for HID (Hi/Lo)	Retrofit	30%	78.3	6	\$50.00	\$0.071	1.21	6,123,317	6,123,317	4,886,284
552	Controls for H.I.F.	ROB	42%	152.9	10	\$74.00	\$0.048	1.78	15,626,359	15,626,359	12,114,818
553	Daylight Dimming	Retrofit	30%	89.0	6	\$288.00 ******	\$0.360 *0.127	0.24	53,856,308	0	0
554 FFF	Daylight Dimming - New Construction	Retrofit	30%	252.0	9	\$288.00	\$0.127	0.68	5,987,567	0	0
555 556	Remote Mounted Occupancy Sensor Switch Mounted Occupancy Sensor	RUB	30%	592.0 353.0	10	\$120.00 \$50.00	\$0.020	4.25 5.16	43,470,206 43,470,206	43,470,206 42,470,206	33,922,003 22 022 002
557	3witch mountee Occupancy sensor 15% More Efficient Design - New Construction	ROB	30% 15%	27000.0	15	\$4.000.00	\$0.010	01.0 8.95	43,47,0,200 13.750.567	13.750.567	7.078.446
558	30% More Efficient Design - New Construction	ROB	30%	54000.0	15	\$8,000.00	\$0.010	8.95	28,044,268	28,044,268	14,518,981
009	Refrigeration										
605	Commercial Reach-In Freezer - Tier 1	ROB	34%	2403.0	6	\$123.33	\$0.006	14.88	5,007,643	5,007,643	3,739,885
615	Commercial Reach-In Freezer - Tier 2	ROB	54%	3810.7	6	\$246.67	\$0.007	11.80	7,941,098	7,941,098	5,930,694
608	H.E. Evaporative Fan Motors	Retrofit	30%	462.5	15	\$60.00	\$0.00	10.02	78,408,662	78,408,662	62,139,187
610	Door Heater Controls	Retrofit	13%	3500.0	10	\$300.00	\$0.010	9.88	11,518,948	11,518,948	9,156,872
601	Vending Miser for Soft Drink Vending Machines	Retrofit	46%	1635.0	10	\$160.00	\$0.007	8.66	33,186,629	33,186,629	24,336,861
602	Refrigerated Case Covers	Retrofit	6%	2900.0	4	\$150.00	\$0.013	6.56	2,920,501	2,920,501	2,256,751
606	Commercial Ice-makers	ROB	14%	368.5	6	\$50.00	\$0.015	5.63	5,649,131	5,649,131	4,142,696
609	Zero-Energy Doors	ROB	20%	1800.0	10	\$290.00	\$0.016	5.26	17,363,968	17,363,968	13,730,006
604	Commercial Reach-In Cooler - Tier 1	ROB	35%	837.7	6	\$125.00	\$0.017	5.12	3,732,553	3,732,553	2,787,603
614	Commercial Reach-In Cooler - Tier 2	ROB	61%	1450.0	6	\$250.00	\$0.019	4.43	6,461,044	6,461,044	4,825,337
612	Floating Head Pressure Control	Retrofit	8%	2000.0	10	\$734.00	\$0.037	2.31	6,790,258	6,790,258	5,375,025
611	Discus and Scroll Compressors	ROB	8%	1500.0	13	\$825.00	\$0.042	2.05	10,221,185	10,221,185	5,729,895
616 207	ECM case fan motors	ROB	33%	550.0	r 1	\$120.00 \$2.254.00	\$0.044 \$0.0F0	1.93	17,842,736	17,842,736	13,787,569
210	Evaporator Fan Motor Controls	Retront	30%	2600.0	15	\$2,254.00 \$2,024.00	\$0.050 1010	1.50	12,8/4,283 0107 710	12,0/4,203	10,222,01
613	kerngeration Heat Recovery LED Lighting in Refrigeration	Retrofit	10% 50%	150.4	15	\$2,861.00	\$0.1.11 \$0.111	0.84	8,102,518 15,232,183	0 0	
617	Efficient low-temp compressor	ROB	1%	283.5	13	\$552.00	\$0.150	0.58	1,335,272	0	0
603	Refrigeration Economizer	Retrofit	30%	600.0	15	\$2,558.00	\$0.284	0.30	4,049,477	0	0
700	Space Heating										
701	High Efficiency Heat Pump	ROB	8%	2918.0	15	\$1,000.00	\$0.023	3.84	2,506,620	2,506,620	1,172,250
702	Hydronic Heat Pump	ROB	34%	10875.0	15	\$3,465.00	\$0.021	4.13	11,922,579	11,922,579	5,740,501
703	Ductless (mini split)	Retrofit	30%	1596.0	15	\$2,625.00	\$0.110	2.29	10,645,160	10,645,160	8,279,569
715	Compressed Air										
716	Efficient Air Compressors	ROB	19%	18424.2	10	\$5,002.00	\$0.027	3.29	1,447,749	1,447,749	1,004,535
717	Automatic Drains	ROB	75%	650.0	5	\$200.00	\$0.062	1.45	5,151,333	5,151,333	3,571,679
718	Cycling Dryers	ROB	35%	1170.0	10	\$750.00	\$0.064	1.39	1,213,928	1,213,928	837,349
719	Low Pressure Drop-Filters	Retrofit	3%	1105.1	3	\$40.00	\$0.012	7.41	257,048	257,048	178,443
720	Air-Entraining Air Nozzles	Retrofit	46%	800.0	10	\$14.00	\$0.002	51.00	8,165,493	8,165,493	6,202,448
721	Receiver Capacity Addition	ROB	10%	9158.8	10	\$2,000.00	\$0.022	4.09	865,007	865,007	600,425
740	Transformers										
741	Energy Efficient Transformers - CEE Tier 1	ROB	1%	295.0	30	\$1,306.00	\$0.148	0.61	1,195,986	0	0
742	Energy Efficient Transformers - CEE Tier 2	ROB	1%	480.8	30	\$1,478.00	\$0.102	0.88	437,286	0	0
784	Other Enerov Star Compliant Single Door Refrigerator	ROB	20%	95.0	12	\$30.00	\$0.026	3.27	935,029	935.029	588.72.2
785	Commercial Clothes washers - Non-Water Heating Savings	ROB	55%	47.4	10	\$40.00	\$0.084	1.00	213,298	213,298	0
					,		1 1 1 1 1 1 1 1 H	i			,

	mic Achievable ttial Achievable avings (kWh) Savings asure Per Measure by 7021	+	,200 4,159,697				_	7.	+	26(0	9,200 2,245,257		0		0	-		,000 3,273,030 875 8,677	7								857 234,514 857 234,514		,325 2,550,457	9	60 52,539	0	5,29		,857 7,752,000		/42 52,419 567 0		,904 U 173 D	3,50					2	374 509,753
	Technical Economic Potential Potential (kWh) Savings (kWh) Savings per Measure Per Measure hv 2021 hv 2021		5,392,200 5,392,200		7,747,114 7,747,114	5,244,000 5,244,000	_		_	615	908,743 0	12,859,200 12,859,200				1,837,766 0			4,140,000 4,140,000 736.875 736.875				93,918 0				ν 20.	390,857 390,857 390,857 390,857		3,387,325 3,387,325	8,349,678 8,349,678	68,460 68,460	6.323.369 0	11,1	6	9,966,857 9,966,857		9/0//42 9/0//42 555.667 555.667		L,439,904 L,439,904 538 133 528 133			793,647 793,647			38,245,962 38,245,962	
	Total Resource Cost (TRC) Ratio		3.52 5,3		13.52 7,7	5.99 5,2					0.02	37.26 12.			_	0.02 1,8			4 7 7: 4 7 7:				0.84 9					20.2 20.2 30		24.54 3,3	5.07 8,3	1.87 6	0.31 6.3			2.29 9,9		777 51		1 36 L,4	-	0.73 1,9				2.10 38,	
	II Levelized Cost		\$0.0295	\$0.02	\$0.02	\$0.02	\$0.04	\$0.01	\$0.03	\$0.02 \$1.60	\$4.09	\$0.0042	\$0.6958	\$1.7807	\$3.2319	\$5.7203	¢0.0770	\$0.0070	\$0.0274	\$0.1025	\$0.007	\$0.0867	\$0.1410		\$0.0480	\$0.0480	\$0.0480	\$0.0409	C01004	\$0.0038	\$0.0720	\$0.2527	\$0.2888	\$0.0242	\$0.0287	\$0.0996	¢0.0730	\$0.0422	#0.0744 #0.1150	0C11.0¢	\$0.0866	\$0.1574	\$0.0816	\$0.1911	\$0.0478	\$0.0548	
	Incremental /Full Levelized Cost Coet C Admin	CUSE	\$800.00	\$400.00	\$2,100.00	\$3,465.00	\$1,925.00	\$6,280.00	\$0.20	\$200.00	00.000,7\$	\$0.51	\$1.04	\$1.04	\$4.20	\$1.36	FO 220 P.\$	TU.100,4¢	\$70.00	\$350.00	\$132.00	\$15.00	\$2,861.00		\$16,200.00	\$27,000.00	\$60,000.00 #F 100.00	\$8 500.00	nn nn rínt	\$28.00	\$0.29	\$0.06	\$450.00	\$910.00	\$1,200.00	\$910.00	\$37.00	\$37.00	\$97.00	00.79\$	\$85.50	\$171.00	\$171.00	\$88.00	\$210.00	\$213.00	1111 1 13
	and I life. الدمانيا ا		10	10	15	20	20	20	20	10	10	30	15	30	15	20	77	14 20	13	20	10	9	15		25	25	C2	10	OT	5	10	S	2	15	15	15	12	13	13	13	13	13	13	13	13	13	¥
	66 Cavines	20 300 M	22.0%	16.0%	25.0%	30.0%	30.0%	30.0%	7.0%	14.0%	15.0%	20.0%	1.9%	0.7%	1.7%	4.0%	100 CV	43.0%	5 30%	2.5.0%	5.0%	2.0%	9.8%		15.0%	15.0%	33.0%	8.0% 8.0%	0.0.0	4.1%	10.0%	0.5%	10.0%	25.8%	28.8%	30.0%	16 706	10./% 34.5%	04.57U	27.80%	22.0% 28.7%	33.6%	49.3%	14.9%	55.5%	44.6%	X.1 100
	ROB vs. Retrofit vs. NC	N	ROB	ROB	ROB	Retrofit	Retrofit	Retrofit	ROB	ROB	Ketrofit	ROB	Retrofit	Retrofit	Retrofit	Retrofit	ava	Date 64	ROR	ROB	Retrofit	Retrofit	Retrofit		ROB	ROB	RUB	Retrofit	TICO DOLL	Retrofit	Retrofit	Retrofit	ROB	ROB	ROB	Retrofit	aUd	ROB	DOR	ROB	ROB	ROB	ROB	ROB	ROB	ROB	KUK
Efficiency Maine - Industrial Measure Database	ameN armaeM	Vantilation	Dual Enthalpy Economizer - from Fixed Damper	Dual Enthalpy Economizer - from Dry Bulb	Demand-Controlled Ventilation	Variable Speed Drive Control, 15 HP	Variable Speed Drive Control, 5 HP	Variable Speed Drive Control, 40 HP	Improved Duct Sealing	Electronically-Commutated Permanent Magnet Motors (ECPMs)	Ingit Volutite Low Speed Fails Building Envelope	Energy Efficient Windows	Ceiling insulation to R32	Below Grade Insulation to R6	Wall Insulation to R12	Koof Insulation to K-18	Water reaung	real Fump Water reater	- Joual Water realing System Hinh Efficiency Flectric Mater Heater	Drain water Heat Recovery Water Heater	Hot Water Circulation Pump Time-Clock	Hot Water (DHW) Pipe Insulation	Refrigeration Heat Recovery	Space Cooling - Chillers	Centritugal Chiller, 0.51 kW/ton, 300 tons	Centritugal Chiller, 0.51 kW/ton, 500 tons	Certification Chiller, Uptimal Design, U.4 KW/1001, 5UU 1005	Uniner Lune Up/Diagnostics - 300 tott Chiller Tune Hn/Diagnostics - 500 ton	HVAC Controls	Programmable Thermostats	EMS install	EMS Optimization	#VALUE: HVAC Advanced Tune-Up	High Efficiency AC - Unitary & Split Systems (CEE Tier 1)	High Efficiency AC - Unitary & Split Systems (CEE Tier 2)	Ductless (mini split)	Lighting I amn 8. Ballact Datrofit (HDT8 Danlacinn T12)	Lämp & Ballast Retrofit (HPT8 Reptacting 112) I amp & Ballast Retrofit (HPT8 Reduced Wattane Renlacion Standard	Latrip & Dailast Retruiti (TPT I o Reduced Wattage Reptacting Statidatu Hinh Efficiency Fluorescent Eiviture (HD T 8 Troffer Denlacing T19)	High Efficiency Fluorescent Fixture (HP 18 Holler Replacing 112) High Efficiency Fluorescent Eixture (HD 18 Peduced Mattane Renlacing	Fluorescent Fixture with Reflectors	Low Glare Recessed T5/HP T8 (replacing T12)	Low Glare Recessed T5/HP T8 Reduced Wattage (replacing T8)	New Fluorescent Fixtures T5/HP T8 (replacing T12)	New Fluorescent Fixtures T5/HP T8 reduced wattage (replacing T8)	High Intensity Fluorescent Fixture (replacing HID)	
Efficiency Ma	() елизее М	150	151	152	153	157	158	159	160	161	300 300	303	304	305	306	307	120	170	324 375	334	335	336	337	340	341	342	343	344 345	360	361	362	363	381 381	382	383	384	500 501	502	502 503	505 504	505 505	506	507	508	509	511	523

EIIICICIIC M	EINCIENCY MAINE - INTURSULATION DE DATADASE									
							Total	Technical Potential	Economic Potential	Achievable Electricity
		ROB vs. Retrofit vs.			Incremental /Full Levelized Cost	Levelized Cost	Resource Cost (TRC)	(kWh) Savings per Measure	(kWh) Savings per Measure	(kWh) Savings per Measure
Measure ID	D Measure Name	NC	% Savings	Useful Life	Cost	(- Admin)	Ratio	by 2021	by 2021	by 2021
529	LED Wallpack	ROB	73.2%	13	\$120.00	\$0.0183	6.28	2,097,352	2,097,352	1,288,272
550	Lighting Controls									
551	Controls for HID (Hi/Lo)	Retrofit	30.0%	6	\$50.00	\$0.0859	1.21	14,844,158	14,844,158	11,845,338
552	Controls for H.I.F.	ROB	42.3%	10	\$74.00	\$0.0597	1.78	14,176,087	14,176,087	9,944,419
555	Remote Mounted Occupancy Sensor	ROB	30.0%	10	\$120.00	\$0.0250	4.25	11,461,489	11,461,489	8,522,646
556	Switch Mounted Occupancy Sensor	ROB	30.0%	10	\$59.00	\$0.0206	5.16	323,273	323,273	257,965
780	Other									
784	Energy Star Compliant Single Door Refrigerator	ROB	20.0%	12	\$30.00	\$0.0336	3.27	3,360,086	3,360,086	2,117,127
102	Energy Star office equipment including computers, monitors, copiers,	ROB	25.0%	4	\$300.00	\$0.0963	0.96	6,583,656	0	0
103	Energy Efficient "Smart" Power Strip for PC/Monitor/Printer	Retrofit	70.0%	4	\$35.70	\$0.0113	8.18	4,847,035	4,847,035	2,908,221
104	EZ Save Monitor Power Management Software	Retrofit	15.0%	2	\$26.00	\$0.5375	0.17	814,964	0	0
800	Machine Drive									
801	Sensors & Controls	ROB	3.0%	15	\$0.00	\$0.0130	9.51	36,773,810	36,773,810	17,356,303
802	Energy Information System	ROB	1.0%	15	\$0.00	\$0.0571	2.17	11,757,694	11,757,694	5,548,563
803	Electric Supply System Improvements	ROB	3.0%	15	\$0.00	\$0.0094	13.25	37,551,692	37,551,692	17,724,683
804	Advanced Efficient Motors	ROB	2.3%	25	\$0.00	\$0.0314	4.64	21,912,440	21,912,440	6,204,671
805	Industrial Motor Management	ROB	1.0%	5	\$0.00	\$0.0177	5.63	9,603,248	9,603,248	6,798,258
806	Advanced Lubricants	ROB	2.6%	1	\$0.00	\$0.0661	1.44	5,586,062	5,586,062	3,954,080
807	Motor System Optimization (Including ASD)	ROB	19.0%	15	\$0.00	\$0.0087	21.21	215,125,712	215,125,712	101,584,670
808	Pump System Efficiency Improvements	ROB	17.0%	15	\$0.00	\$0.0075	16.61	21,532,071	21,532,071	10,163,701
809	Fan System Improvements	ROB	3.5%	15	\$0.00	\$0.0224	5.54	4,178,221	4,178,221	1,971,840
820	Process Cooling & Refrigeration									
821	Sensors & Controls	ROB	3.0%	15	\$0.00	\$0.0130	9.51	3,768,712	3,768,712	1,814,440
822	Energy Information System	ROB	1.0%	15	\$0.00	\$0.0571	2.17	1,228,978	1,228,978	591,666
823	Electric Supply System Improvements	ROB	3.0%	15	\$0.00	\$0.0094	13.25	3,852,312	3,852,312	1,854,764
824	Improved Refrigeration	ROB	16.4%	15	\$0.00	\$0.0031	40.54	11,708,334	11,708,334	5,727,463
830	Process Heating									
831	Sensors & Controls	ROB	3.0%	15	\$0.00	\$0.0130	9.51	5,144,095	5,144,095	2,498,148
832	Energy Information System	ROB	1.0%	15	\$0.00	\$0.0571	2.17	1,676,520	1,676,520	814,123
833	Electric Supply System Improvements	ROB	3.0%	15	\$0.00	\$0.0094	13.25	5,261,258	5,261,258	2,555,211