

## Duct Leakage Test Requirements in Northeast Residential Building Energy Codes

| Current Res Code | State | Duct Leakage Amendments Adopted                                                   |  |
|------------------|-------|-----------------------------------------------------------------------------------|--|
| 2015 IECC        | VT    | Effective March 1, 2015:                                                          |  |
|                  |       | Post-construction: 4 CFM-25                                                       |  |
|                  |       | Rough-in: 3 CFM-25 (1), or 3 CFM-25 w/o air handler                               |  |
|                  | MD    | No changes                                                                        |  |
|                  | MA    | No changes                                                                        |  |
|                  | RI    | Post-construction: 8 CFM-25 ( <sup>†</sup> )                                      |  |
|                  |       | Rough-in: 6 CFM-25 ( <sup>†</sup> ), or 4 CFM-25 ( <sup>†</sup> ) w/o air handler |  |
| 2012 IECC        | DE    | Post-construction: 6 CFM-25 ( <sup>†</sup> )                                      |  |
|                  |       | Rough-in: 6 CFM-25 ( <sup>†</sup> ), or 4 CFM-25 ( <sup>†</sup> ) w/o air handler |  |
|                  | DC    | Post-construction: 8 CFM-25 ( <sup>†</sup> )                                      |  |
|                  |       | Rough-in: 8 CFM-25 ( <sup>†</sup> ), or 4 CFM-25 ( <sup>†</sup> ) w/o air handler |  |
| 2009 IECC        | СТ    | - No changes                                                                      |  |
|                  | NH    |                                                                                   |  |
|                  | NY    |                                                                                   |  |
|                  | PA    |                                                                                   |  |
|                  | NJ    | No technical changes, but testing was not enforced until Jan 2013                 |  |
| 2009 IECC        | ME    | No technical changes, but communities with less than 2,000                        |  |
| (not statewide)  | IVIE  | residents are exempted from adopting the 2009 IECC.                               |  |

Updated January 2015


<u>Note</u>: The arrows  $(\uparrow, \downarrow)$  indicate where limits were raised or lowered, respectively, with respect to the corresponding model code.

## 2012 / 2015 IECC duct leakage requirements:

- Post-construction: total leakage  $\leq 4$  CFM-25/100 ft<sup>2</sup> of • conditioned floor area
- Rough-in: total leakage  $\leq$  4 CFM-25/100 ft<sup>2</sup> of conditioned • floor area;  $OR \le 3 CFM-25/100 \text{ ft}^2$  without air handler

## 2009 IECC duct leakage requirements:

- Post-construction: total leakage  $\leq 12$  CFM-25/100 ft<sup>2</sup> of conditioned floor area; • OR leakage to outside  $\leq 8$  CFM-25/100 ft<sup>2</sup> of conditioned floor area
- Rough-in: total leakage  $\leq 6$  CFM-25/100 ft<sup>2</sup> of conditioned floor area; •  $OR \le 4 CFM-25/100 \text{ ft}^2$  without air handler





## Duct Testing - Total Duct Leakage vs. Leakage to Outside

Duct testing consists of pressurizing ductwork with a small, calibrated fan called a duct blaster and reading the airflow needed to do this with a manometer. There are two duct leakage tests used by building codes and standards: total duct leakage and leakage to outside.

**The total duct leakage test quantifies ALL of the air leaking from the ductwork**. This test involves pressurizing the ducts to +25 Pascals with respect to (wrt) the home, and measuring resultant airflow rate in cubic feet per minute (cfm). The duct blaster can either be connected to the air handler cabinet or to a large return. All of the registers are first sealed off (typically with tape) to isolate the ductwork from the building. The testing method for the total duct leakage test is very similar to that of a blower door test:

|    | Test Steps Building Air Leakage (blower door) |                                         | Total Duct Leakage (duct blaster)         |
|----|-----------------------------------------------|-----------------------------------------|-------------------------------------------|
| 1. | Isolate zone                                  | Close all windows/doors. Turn off all   | Seal off /tape all registers. Ensure the  |
|    | to be tested                                  | mechanical ventilation / ensure         | home and outside are at a common          |
|    |                                               | dampers are closed.                     | pressure by opening an exterior           |
|    |                                               |                                         | door/window.                              |
| 2. | Set up                                        | Assemble blower door and place in       | Connect duct blaster to air handler       |
|    | equipment                                     | door frame.                             | cabinet (or large return).                |
|    | for testing                                   | Connect two hoses to the manometer:     | Connect two hoses to the manometer:       |
|    |                                               | one goes outside, the other connects to | one goes in supply closest to the         |
|    |                                               | the fan.                                | plenum (with static pressure probe        |
|    |                                               |                                         | attached), the other connects to the fan. |
| 3. | Get Baseline                                  | Baseline home wrt outside (cover on)    | Baseline ductwork wrt home (shroud        |
|    | reading                                       |                                         | on)                                       |
| 4. | Pressurize /                                  | Depressurize home to -50 Pa wrt         | Pressurize ductwork to +25 Pa wrt         |
|    | Depressurize                                  | outside                                 | home                                      |
| 5. | Get a reading                                 | When fan stabilizes, read flow (cfm)    | When fan stabilizes, read flow (cfm)      |
|    |                                               | from manometer                          | from manometer.                           |

**The leakage to outside test, on the other hand, quantifies the ''energy loss''** – the amount of conditioned air that is leaking from ducts outside the building's pressure boundary. Having leakage to the *in*side means the air isn't going where is designed to, but it is at least staying in the home. When running the test, the main differences from the total leakage test are that (1) the leakage to outside test involves running a blower door and a duct blaster simultaneously, and (2) the registers do not need to be sealed off.

First, the house is pressurized to +25 Pascals wrt outside (as opposed to being *de*pressurized to -50 Pascals wrt outside, as in the normal blower door test). At this point, any connection between the ductwork and the outside will cause a slight depressurization of the ducts. The duct blaster is then ramped up (if necessary) until this difference is equalized, and the airflow needed to maintain this pressure is read off the manometer.