Planning for improvements to the Merrimack Valley High School (MVHS) began in the mid-1990s. In 1997, the MVHS was slated for the second phase of a 10 year renovation plan. The existing building had served for almost 40 years without significant improvements. Though well maintained, it was outdated for current educational needs and operational realities. Central to the renovation plan was a cost-effective replacement for the old, expensive electric radiant heating system. The building envelope, designed for an era of much cheaper energy supplies, clearly needed improved insulation and air sealing.

Overall, the renovation plans included:

- Wood chip-fired boiler for both the Middle and High Schools
- New hydronic heating distribution system
- New air exchange / ventilation system
- Significant air sealing & insulation additions to the entire envelope, including exterior finish enhancement
- New main entrance, fitness center, exit stair towers
- Upgrade & expansion of library, food service areas, music spaces, science facilities and computer labs
- Electrical improvement (lighting, pumps, motors, controls, remote sensing etc.)
Comparing PRE and POST Renovation: 2005 and 2008

Green House Gas Emissions

- 33% Reduction in Total GHG’s
- 42% Reduction in Total GHG’s

Total Green House Gas Emissions
Per Year in Metric Tons CO₂ Equivalents

- 2005: 701 mtCO₂e/ sq ft/yr
- 2008: 473 mtCO₂e/ sq ft/yr

Green House Gas Emissions
Metric Tons GHG per Square Foot per Year

- 2005: 0.0062 mtCO₂e/ sq ft/yr
- 2008: 0.0036 mtCO₂e/ sq ft/yr

Total Energy Use, Before & After Renovation

Energy Use Intensity (EUI): A building’s total energy use is written as an annual EUI. EUI is the sum of all energy usage displayed in British Thermal Units (BTUs) per square foot (BTU/sq ft). Usually a building’s energy performance will be converted into 1000BTU/sq ft or kBTU/sq ft, annually. It is an industry-wide recognized value.

The Merrimack Valley High School is now in full operation, serving its students, setting an energy example for its communities, and creating significant savings for its taxpayers.

Energy Savings: 57%

BEFORE… **…DURING…** **…AFTER**
Comparing PRE and POST Renovation: 2005 and 2008

Cost Savings Based on Usage

Cost Use Intensity
Holding electric rates constant at $0.142/kwh before and after renovation

61% Cost Savings
Even with an increase in overall square footage

Heating Cost Comparison

FY 08 Heating Cost Comparison: If Oil vs. Wood

Renovation of existing building, exterior wall demolished to be replaced with new high performance exterior envelope.
The Merrimack Valley High School is the first school building in NH to be verified by the State Department of Education as a high performance facility. That means it has met the high performance standards adopted by the Department, using the NE-CHPS guidelines (see below), and it means that the taxpayers will receive an extra 3% bonus in School Building Aid from the State to further off-set local costs for the project.

The mission of the Collaborative for High Performance Schools (CHPS) is to facilitate the design, construction and operation of high performance schools: environments that are not only energy and resource efficient, but also healthy, comfortable, well lit, and containing the amenities for a quality education. CHPS helps facilitate and inspire change in our educational system.

The goals of CHPS are to:
- Increase student performance with better-designed and healthier facilities,
- Raise awareness of the impact and advantages of high performance schools,
- Provide professionals with better tools to facilitate effective design, construction and maintenance of high performance schools,
- Increase school energy and resource efficiency, and
- Reduce peak electric loads

Project Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>Original construction complete</td>
</tr>
<tr>
<td>2004</td>
<td>Pre-bond design for MV schools begins</td>
</tr>
<tr>
<td>2005</td>
<td>March: Bond approved</td>
</tr>
<tr>
<td>2006</td>
<td>Construction begins</td>
</tr>
<tr>
<td>2007</td>
<td>December: bidding process begins</td>
</tr>
<tr>
<td>2008</td>
<td>Construction complete</td>
</tr>
<tr>
<td>2008</td>
<td>School occupied</td>
</tr>
</tbody>
</table>

The Jordan Institute would like to thank both the Management Team and the Design Team for their enthusiastic cooperation and support in compiling the data needed to produce this fact sheet. We are pleased to present their excellent example for other school districts to study and emulate.

DESIGN TEAM

Architect
Banwell Architects, Lebanon, NH

General Contractor
Hutter Construction, Concord, NH

Civil Engineer
Nobis Engineering; Concord, NH

Electrical Engineer
Allied Engineering; Westbrook, ME

Mechanical Engineer
GWR Engineering; Shelburne, VT

Structural Engineer
Steffensen Engineering; Auburn, NH

MANAGEMENT TEAM

Superintendent
Dr. Michael Martin

Business Administrator
Robin Heins

Facilities Director / Project Administrator
Fred Reagan

Plant Manager
Neil Barry

Consultant / Advisor
Bernie Davis