ENERGY FACT The Jordan Institute SHEET Building Climate Change Solutions **ERRIMACK VALLEY HIGH**

This picture shows the shell of the Construction began in 2005 and end significant energy savings.

Planning for improvemen School (MVHS) began in the mid-1990s. In 1997, the MVHS was slated for the second phase of a 10 year renovation plan. The existing building had served for almost 40 years without significant improvements. Though well maintained, it was outdated for current educational needs and operational realities. Central to the renovation plan was a cost-effective replacement for the old, expensive electric radiant heating system. The building envelope, designed for an era of much cheaper energy supplies, clearly needed improved insulation and air sealing.

Summary

Building Type: Public High School

Total Project Size: 113,000 ft² + additions of 28,000 ft² = $141,000 \text{ ft}^2$

Students Served: 900 (approx)

Faculty/Staff: 60 (approx)

Project Scope: Thorough renovation

Original Building Date: 1967

Location: Penacook, NH

with space additions

Date Completed: 2008

Overall, the renovation plans included:

- Wood chip-fired boiler for both the Middle and High Schools
- New hydronic heating distribution system
- New air exchange / ventilation system
- Significant air sealing & insulation additions to the entire envelope, including exterior finish enhancement
- New main entrance, fitness center, exit stair towers
- Upgrade & expansion of library, food service areas, music spaces, science facilities and computer labs
- Electrical improvement (lighting, pumps, motors, controls, remote sensing etc.

original building being insulated and air sealed. ded in 2008. The school has already seen	Certifications: NE CHPS Verified (Collaborative for High Performance Schools)
	Total Project Cost: \$12.4 M
	Cost per square foot: \$88
its to the Merrimack Valley High	

Comparing PRE and POST Renovation: 2005 and 2008

Green House Gas Emmissions

Per Year in Metric Tons CO₂ Equivalents 33% Reduction in Total GHG's

Green House Gas Emissions Metric Tons GHG per Square Foot per Year 42% Reduction in Total GHG's

Total Energy Use, Before & After Renovation

The Merrimack Valley High School is now in full operation, serving its students, setting an energy example for its communities, and creating significant savings for its taxpayers.

Energy Use Intensity (EUI): A building's total energy use is written as an annual EUI. EUI is the sum of all energy usage displayed in British Thermal Units (BTUs) per square foot (BTU/sq ft). Usually a building's energy performance will be converted into 1000BTU/sq ft or kBTU/sq ft, annually. It is an industry-wide recognized value.

Comparing PRE and POST Renovation: 2005 and 2008

Cost Use Intensity Holding electric rates constant at \$0.142/kwh before and after renovation

Cost Savings Based on Usage

Cost Use Intensity

Using historic electric rate for 2005 (\$0.06/kwh) and actual electric rate for 2008 (\$.142/kwh)

<u>BEFORE</u>: Primary Heating from **electricity** with no mechanical ventilation, smaller square footage. <u>AFTER</u>: Primary Heating from **wood chips** with mechanical ventilations, higher plug loads, more square footage.

Cost Use Intensity (CUI): This is the sum of all annual energy costs per square foot (\$\$/sq ft). This is also an industry-wide recognized value.

Heating Cost Comparison • •

Renovation of existing building, exterior wall demolished to be replaced with new high performance exterior envelope.

CHPS—Collaborative for High Performance Schools

The Merrimack Valley High School is the first school building in NH to be verified by the State Department of Education as a high performance facility. That means it has met the high performance standards adopted by the Department, using the NE-CHPS guidelines (see below), and it means that the taxpayers will receive an extra 3% bonus in School Building Aid from the State to further off-set local costs for the project.

The mission of the Collaborative for High Performance Schools (CHPS) is to facilitate the design, construction and operation of high performance schools: environments that are not only energy and resource efficient, but also healthy, comfortable, well lit, and containing the amenities for a quality education. CHPS helps facilitate and inspire change in our educational system.

The goals of CHPS are to:

- · Increase student performance with better-designed and healthier facilities,
- · Raise awareness of the impact and advantages of high performance schools,
- Provide professionals with better tools to facilitate effective design, construction and maintenance of high performance schools,
- Increase school energy and resource efficiency, and
- Reduce peak electric loads

DESIGN TEAM

Architect Banwell Architects, Lebanon, NH

General Contractor Hutter Construction, Concord, NH

Civil Engineer Nobis Engineering; Concord, NH

Electrical Engineer Allied Engineering; Westbrook, ME

Mechanical Engineer GWR Engineering; Shelburne, VT

Structural Engineer Steffensen Engineering; Auburn, NH

MANAGEMENT TEAM

Superintendent Dr. Michael Martin

Business Administrator Robin Heins

Facilities Director / Project Administrator Fred Reagan

> Plant Manager Neil Barry

Consultant / Advisor Bernie Davis

The Jordan Institute would like to thank both the Management Team and the Design Team for their enthusiastic cooperation and support in compiling the data needed to produce this fact sheet. We are pleased to present their excellent example for other school districts to study and emulate. The Jordan Institute 11 Stickney Avenue 2nd Floor Concord, NH 03301

Phone: 603.226.1009 Fax: 603.226.0042

Email: info@thejordaninstitute.org