About NEEP:
NEEP transforms the way we use and think about energy. We are a non-profit organization that builds partnerships among the efficiency industry, communities, businesses and policymakers in the Northeast and Mid-Atlantic states. Through advocacy, collaboration, and education, we accelerate energy efficiency and make visible its impacts on the region, the economy, the planet, and future generations.

About NE-CHPS
The Northeast Collaborative for High Performance Schools Criteria (NE-CHPS) was developed to promote operational energy savings and sustainable design features in school construction and major renovations throughout the region. NEEP’s vision is that the work done today on High Performance Schools will pave the way for the development of zero net energy schools, schools that consume no more energy than they produce, on a broader scale throughout the region. NE-CHPS is based on the pioneering Collaborative for High Performance Schools’ Guidelines, but has been tailored by NEEP to the climate, building codes, and educational priorities of the Northeastern United States.

About CHPS
The Collaborative for High Performance Schools believes kids learn better in schools with good lighting, clean air, and comfortable classrooms. That’s why CHPS works with schools and experts to make changes to ensure that every child has the best possible learning environment with the smallest impact on the planet. CHPS helps facilitate and inspire change in our educational system. The goals of CHPS are to fundamentally change the design, construction and operation of schools to:
- Protect student and staff health, and enhance the learning environments of school children everywhere
- Conserve energy, water, and other natural resources
- Reduce waste, pollution, and environmental degradation

Cover Photo Credit: Abbot-Downing School (Concord, New Hampshire) photo provided by Ed Wonsek Art Works and HMFH Architects.
ACKNOWLEDGEMENTS

After an extended stakeholder engagement and public comment period, Northeast Energy Efficiency Partnerships (NEEP) has revised the NE-CHPS Criteria for high performance schools. This effort is intended to help accelerate the development of high performance and zero net energy (ZNE) schools in the Northeast and Mid-Atlantic states. NE-CHPS 3.1’s development was led by members of NEEP’s High Performance Buildings team, Carolyn Sarno and Brian Buckley, as well as CHPS’ Technical Associate Nick Semon.

NEEP would like to recognize and thank the High Performance Schools Regional Leadership group for its invaluable contributions and participation in the development of this roadmap.

Carlos Desousa Garcia Galuska Desousa Engineers
Carolyn Day DBA-W Architects
Cathy Hilgendorf Vermont Department of Education
Chris Armstrong Stephen Turner Inc.
Cynthia Veit U.S. EPA Region One
Ingrid Moulton Banwell Architects
Jeff Forward Forward Thinking Consultants
Jessica Hing U.S. EPA Region One
Joseph Da Silva Rhode Island Department of Education
Karen Verrengia Cranston, Rhode Island Public Schools
Kathy Arthur NSTAR
Ken Wertz Sharon, Massachusetts Public Schools
Linda Darveau U.S. EPA Region One
Lisa Capone Massachusetts Department of Energy Resources
Manuel Cordero Rhode Island Department of Education
Mario Carreno Rhode Island Department of Education
Marjorie Schoonmaker New Hampshire Department of Education
Mark Stafford National Grid
Mark Wills ASHRAE (formerly)
Martine Dion SMMA Architects
Michele M. Fiano NYSERDA
Norman Etkind Vermont Superintendents Association
Patrick Coleman Massachusetts Department of Energy Resources
Paul Anastasi Newton, Massachusetts Public Schools
Paul Leveille The Jordan Institute
Puja Vohra National Grid
Richard Donnelly Vermont Energy Investment Corporation
Robert Cerio Ocean State Energy Resources
Timothy Duffy Rhode Island Association of School Committees
Tom Coughlin National Grid
Walter Hoefler Long Island Power Authority (formerly)
Wilbur Yoder Rhode Island School of Design

The Following NEEP staff served as reviewers and provided feedback, input, and edits: Carolyn Sarno, Jim O’Reilly, Kevin Rose, Brian Buckley, Claire Miziolek, and David Lis.

NEEP would also like to recognize Energy & Resource Solutions (ERS) for their development of NE-CHPS Version 1.0 - 2.0.
Collaborative for High Performance Schools

This content is adapted from the CHPS National Core Criteria by permission of The Collaborative for High Performance Schools (CHPS). The Collaborative for High Performance Schools®, CHPS®, the CHPS logo, and the Green Apple Awards® are registered trademarks with the United States Patent and Trademark Office. The CHPS CriteriaTM, CHPS National Core CriteriaTM, CHPS VerifiedTM, CHPS Verified LeaderTM, CHPS DesignedTM, CHPS PreFABTM, Operations Report CardTM, ORCTM copyrighted by CHPS, Inc. In addition, enhancements and additions to this and previous NE-CHPS Criteria versions are copyrighted by the Northeast Energy Efficiency Partnerships (NEEP).

End users of the NE-CHPS Criteria are permitted to use and/or copy the content without further Consent. However, CHPS, Inc. prior permission must be granted in order to relicense, publish or develop derivative works from CHPS copyrighted materials.

The CHPS Core Criteria Version 1.0 was originally developed by an ad-hoc committee of CHPS stakeholders in 2009 as both a framework and process to establish a national definition for healthy, high performance schools while encouraging local flexibility. In addition, the Core Criteria represents a facilitated process to reduce the development time and expense of state and regional adaptations of the CHPS Criteria.

Over the intervening four years CHPS has successfully piloted the use of the Core Criteria in three states - Massachusetts (an update of the first edition of MA-CHPS), Virginia, and Hawaii. Using the Core Criteria as a common starting point cut the development time in half. Version 2.0 of the National Core Criteria incorporates lessons learned from these pilots and other previous CHPS Criteria adaptations.

The CHPS National Core Criteria Version 2.0 was developed by the CHPS National Technical Committee under the leadership of:

- Committee Co-chairs: John Zinner and Jim Ogden
- Integration & Steering subcommittee chair: Christopher Gerber
- Indoor Environmental Quality subcommittee co-chairs: Toni Stein and Leo Cedolin
- Energy subcommittee chair: Charles Eley, vice-chair Maureen Guttman
- Water & Site subcommittee chair: Chris Duncan
- Materials & Waste Management subcommittee chair: Melanie Jacobson
- Operations & Metrics subcommittee chair: Rob Samish
- Facilitators: Kristin Parineh, Julie Duncan, Nick Semon, and Ed Wansing
- Notice and Editing: Ariel Dekovic
- Technical Editor: Bill Orr

CHPS thanks all of the members of the National Technical Committee for their time and contributions during the Core Criteria update process. See the complete membership of the CHPS National Technical Committee at: http://www.chps.net/national-technical-committee.

This publication is designed to provide accurate and authoritative information with regard to the subject matters covered. However, although great care has been taken in the compilation and publication of this manual, it is published with the understanding that (1) the publisher and authors make no guarantee that the manual meets all federal, state, and local statutory, regulatory, or other requirements, and (2) the publisher and authors are not engaged in rendering professional advice via this manual or their work and/or affiliation with CHPS, Inc. The publisher and authors cannot be responsible for errors or omissions, or any agency’s interpretations, applications, and changes of regulations or specifications described in this publication. Use of any provision contained herein is the sole responsibility of the specifier.
Introduction ... 1

Table II: Renovation Requirements ... 6

INTEGRATION .. 8

II 1.0 – Integrated Design ... 8

II 1.1 – Enhanced Integrated Design .. 9

II 2.1 – District Level Commitment .. 13

II 3.1 – School Master Plan ... 16

II.4.1 – High Performance Transition Plan .. 18

II 5.0 – Educational Display ... 21

II 5.1 – Demonstration Area ... 21

II 6.1 – Educational Integration .. 24

II 7.1 – Climate Change Action / Carbon Footprint Reporting .. 27

II 8.0 – Crime Prevention Through Environmental Design ... 31

II 9.1 – Innovation ... 33

OPERATIONS & METRICS .. 36

OM 1.0 – Facility Staff & Occupant Training .. 36

OM 2.1 – Post-Occupancy Transition .. 40

OM 3.0 – Performance Benchmarking ... 43

OM 4.1 – High Performance Operations .. 46

OM 5.0 – Systems Maintenance Plan .. 49

OM 6.0 – Indoor Environmental Management Plan ... 52

OM 7.1 – Green Cleaning .. 54

OM 8.0 – Integrated Pest Management .. 56

OM 9.0 – Anti-Idling Measures .. 58

OM 10.1 – Green Power .. 60

OM 11.0 – ENERGY STAR Equipment and Appliances .. 63

OM 12.1 – Computerized Maintenance Management System ... 65
INDOOR ENVIRONMENTAL QUALITY

EQ 1.0 - HVAC Design – ASHRAE 62.1

EQ 1.1 – Enhanced Filtration

EQ 1.2 – Dedicated Outdoor Air System

EQ 2.0 – Pollutant & Chemical Source Control

EQ 3.0 – Outdoor Moisture Management

EQ 4.1 – Ducted Returns

EQ 5.1 – Construction Indoor Air Quality Management

EQ 5.2 – Construction Moisture Management

EQ 6.1 – Post Construction Indoor Air Quality

EQ 7.0 – Low Emitting Materials

EQ 7.1 - Additional Low Emitting Materials

EQ 8.1 – Low Radon

EQ 9.1 – Thermal Comfort – ASHRAE 55

EQ 10.1 – Individual Controllability

EQ 10.2 – Controllability of Systems

EQ 11.0 – Daylighting: Glare Protection

EQ 11.1 – Daylight Availability

EQ 12.0 – Views Prerequisite

EQ 12.1 – Additional Views

EQ 13.1 – Electric Lighting Performance

EQ 13.2 – Superior Electric Lighting Performance

EQ 14.0 – Acoustical Performance

EQ 14.1 – Enhanced Acoustical Performance

EQ 15.1 – Low-EMF Wiring

EQ 15.2 – Low-EMF Best Practices

EQ 16.1 – High Intensity Fluorescent Fixtures
ENERGY

EE 1.0 – Energy Performance

EE 1.1 – Superior Energy Performance

EE 2.1 – Zero Net Energy Capable

EE 3.0 – Commissioning

EE 3.1 – Additional Commissioning Qualifications

EE 3.2 – Building Envelope Commissioning

EE 3.3 – Enhanced Commissioning

EE 4.0 – Environmental Preferable Refrigerants

EE 5.1 – Energy Management System

EE 5.2 – Advanced Energy Management System and Submetering

EE 6.1 – Natural Ventilation & Energy Conservation Interlocks

EE 7.0 – Local Energy Efficiency Incentives and Assistance

EE 8.1 – Variable Air Volume Systems

EE 9.1 – Renewable Energy Performance Monitoring

EE 10.1 – Electric Vehicle Charging

WATER

WE 1.0 – Minimum Reduction in Indoor Potable Water Use

WE 2.1 – Reduce Potable Water Use for Sewage Conveyance

WE 3.0 – Irrigation & Exterior Water Budget / Use Reduction

WE 4.1 – Reduce Potable Water Use for Non Recreational Landscaping Areas

WE 5.1 – Reduce Potable Water Use for Recreational Landscaping Areas

WE 6.0 – Irrigation Systems Commissioning

WE 7.1 – Rainwater Collection and Storage

WE 8.1 – Water Management system

SITES
SS 1.0 – Site Selection ... 216
SS 2.1 – Environmentally Sensitive Land / Preserve Greenspace & Parklands 221
SS 3.1 – Minimize Site Disturbance ... 226
SS 4.1 – Construction Site Runoff Control / Sedimentation ... 230
SS 5.1 – Post Construction Stormwater Management .. 233
SS 6.1 – Central Location .. 239
SS 7.1 – Located Near Public Transportation ... 243
SS 8.1 – Joint-Use of Facilities .. 245
SS 9.1 – Human Powered Transportation .. 250
SS 10.1 – Reduce Heat Islands – Landscaping / Sites .. 254
SS 11.1 – Reduce Heat Islands – Cool Roofs .. 257
SS 12.1 – Avoid Light Pollution and Unnecessary Lighting ... 260
SS 13.1 – School Gardens .. 264
SS 14.1 – Use Locally Native Plants for Landscape .. 268
SS 15.0 – Site and Building Best Practices .. 270

MATERIALS & WASTE MANAGEMENT ... 273
MW 1.0 – Storage & Collection of Recyclables ... 273
MW 2.0 – Minimum Construction Site Waste Management ... 276
MW 2.1 – Construction Site Waste Management .. 276
MW 3.1 – Single Attribute – Recycled Content .. 279
MW 4.1 – Single Attribute – Rapidly Renewable Materials ... 285
MW 5.1 – Single Attribute – Certified Wood ... 289
MW 6.1 – Single Attribute – Materials Reuse ... 291
MW 7.1 – Multi-Attribute Material Selection ... 294
MW 8.1 – Building Reuse – Exterior .. 297
MW 9.1 – Building Reuse – Interior ... 299
MW 10.1 – Health Product Related Information Reporting for Building Products 301
Introduction

The Northeast CHPS Verified Program (NE-CHPS) has been designed to provide guidance and verification for new school projects, renovations, and new schools on existing campuses to achieve high performance goals. The tables below summarize the criteria and how they apply to different project types.

New for this version of NE-CHPS, all criteria, including prerequisites, have been assigned points. This does not change the nature of any item marked as a prerequisite – they must still be pursued by all projects as indicated in the criteria. By assigning points to prerequisites, it allows for a more accurate accounting of the relative importance and level of effort associated with each individual section. For example, prerequisites account for nearly a third of all points in Indoor Environmental Quality. Without assigning points to prerequisites, that section seems relatively less important than it truly is.

New construction projects, including new buildings on existing campuses, must achieve at least 110 points total. This includes points associated with all prerequisites. Major renovations must achieve at least 85 points, although they only need to achieve the prerequisites as outlined in Table II below.

CHPS Verified Leader™ is a higher level of recognition for school projects that perform well beyond minimum eligibility requirements. CHPS Verified Leaders should be CHPS Verified™, and have inspirational designs that incorporate their high performance features into architectural expression. The school should be an image of environmental and social responsibility, and must be balanced in providing benefits to student health and student performance, resource conservation and the environment. To be eligible for recognition as a CHPS Verified Leader, a new school or building on an existing campus project must earn a minimum of 160 points. A modernization project must earn a minimum of 135 points to be recognized as CHPS Verified Leader project.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration and Innovation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1.0</td>
<td>Integrated Design</td>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>II 1.1</td>
<td>Enhanced Integrated Design</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>II 2.1</td>
<td>District Level Commitment</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II 3.1</td>
<td>School Master Plan</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II 4.1</td>
<td>High Performance Transition Plan</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II 5.0</td>
<td>Educational Display</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>II 5.1</td>
<td>Demonstration Area</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II 6.1</td>
<td>Educational Integration</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>II 7.1</td>
<td>Climate Change Action / Carbon Footprint Reporting</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>II 8.0</td>
<td>Crime Prevention through Environmental Design</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>II 9.1</td>
<td>Innovation</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I&I Subtotal</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations & Metrics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OM 1.0</td>
<td>Facility Staff and Occupant Training</td>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>OM 2.1</td>
<td>Post Occupancy Transition</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>OM 3.0</td>
<td>Performance Benchmarking</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>OM 4.1</td>
<td>High Performance Operations</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>OM 5.0</td>
<td>Systems Maintenance Plan</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>OM 6.0</td>
<td>Indoor Environmental Management Plan</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>OM 7.1</td>
<td>Green Cleaning</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>OM 8.0</td>
<td>Integrated Pest Management</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>OM 9.0</td>
<td>Anti-Idling Measures</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>OM 10.1</td>
<td>Green Power</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>OM 11.0</td>
<td>ENERGY STAR Equipment and Appliances</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>OM 12.1</td>
<td>Computerized Maintenance Management System</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O&M Subtotal</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Environmental Quality</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 1.0</td>
<td>HVAC Design - ASHRAE 62.1</td>
<td>P</td>
<td>8</td>
</tr>
<tr>
<td>EQ</td>
<td>Description</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Enhanced Filtration</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Dedicated Outdoor Air System</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Pollutant and Chemical Source Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Ducted Returns</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Construction Indoor Air Quality Management</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Construction Moisture Management</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Post Construction Indoor Air Quality</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Outdoor Moisture Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Low Emitting Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>Additional Low Emitting Materials</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Low Radon</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Thermal Comfort - ASHRAE 55</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Individual Controllability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Controllability of Systems</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>Daylighting: Glare Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Daylight Availability</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>Views</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Additional Views</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Electric Lighting Performance</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>Superior Electric Lighting Performance</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>Acoustical Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Enhanced Acoustical Performance</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Low-EMF Wiring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>Low-EMF Best Practices</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>High Intensity Fluorescent Fixtures</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

IEQ Subtotal: 76

Energy

<table>
<thead>
<tr>
<th>EE</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Energy Performance</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Superior Energy Performance</td>
<td>40</td>
</tr>
<tr>
<td>2.1</td>
<td>Zero Net Energy Capable</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>Commissioning</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Additional Commissioning Qualifications</td>
<td>1</td>
</tr>
</tbody>
</table>

Energy Subtotal: 40

Total: 116
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3.2</td>
<td>Building Envelope Commissioning</td>
<td>1</td>
</tr>
<tr>
<td>EE 3.3</td>
<td>Enhanced Commissioning</td>
<td>1</td>
</tr>
<tr>
<td>EE 4.0</td>
<td>Environmentally Preferable Refrigerants</td>
<td>P</td>
</tr>
<tr>
<td>EE 5.1</td>
<td>Energy Management System</td>
<td></td>
</tr>
<tr>
<td>EE 5.2</td>
<td>Advanced Energy Management System and Submetering</td>
<td></td>
</tr>
<tr>
<td>EE 6.1</td>
<td>Natural Ventilation and Energy Conservation Interlocks</td>
<td></td>
</tr>
<tr>
<td>EE 7.0</td>
<td>Local Energy Efficiency Incentive and Assistance</td>
<td>P</td>
</tr>
<tr>
<td>EE 8.1</td>
<td>Variable Air Volume Systems</td>
<td></td>
</tr>
<tr>
<td>EE 9.1</td>
<td>Renewable Energy Performance Monitoring</td>
<td></td>
</tr>
<tr>
<td>EE 10.1</td>
<td>Electric Vehicle Charging</td>
<td></td>
</tr>
</tbody>
</table>

Energy Subtotal: 68

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE 1.0</td>
<td>Minimum Reduction in Indoor Potable Water Use</td>
<td>P</td>
</tr>
<tr>
<td>WE 2.1</td>
<td>Reduce Potable Water Use for Sewage Conveyance</td>
<td></td>
</tr>
<tr>
<td>WE 3.0</td>
<td>Irrigation and Exterior Water Budget - Use Reduction</td>
<td>P</td>
</tr>
<tr>
<td>WE 4.1</td>
<td>Reduce Potable Water Use for Non-Recreational Landscaping</td>
<td></td>
</tr>
<tr>
<td>WE 5.1</td>
<td>Reduce Potable Water Use for Recreational Landscaping</td>
<td></td>
</tr>
<tr>
<td>WE 6.0</td>
<td>Irrigation Systems Commissioning</td>
<td>P</td>
</tr>
<tr>
<td>WE 7.1</td>
<td>Rainwater Collection and Storage</td>
<td></td>
</tr>
<tr>
<td>WE 8.1</td>
<td>Water Management System</td>
<td></td>
</tr>
</tbody>
</table>

Water Subtotal: 21

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 1.0</td>
<td>Site Selection</td>
<td>P</td>
</tr>
<tr>
<td>SS 2.1</td>
<td>Environmentally Sensitive Land</td>
<td></td>
</tr>
<tr>
<td>SS 3.1</td>
<td>Minimize Site Disturbance</td>
<td></td>
</tr>
<tr>
<td>SS 4.1</td>
<td>Construction Site Runoff Control and Sedimentation</td>
<td></td>
</tr>
<tr>
<td>SS 5.1</td>
<td>Poste Construction Stormwater Management</td>
<td></td>
</tr>
<tr>
<td>SS 6.1</td>
<td>Central location</td>
<td></td>
</tr>
<tr>
<td>SS 7.1</td>
<td>Located Near Public Transportation</td>
<td></td>
</tr>
<tr>
<td>SS 8.1</td>
<td>Joint-Use of Facilities</td>
<td></td>
</tr>
<tr>
<td>SS 9.1</td>
<td>Human-Powered Transportation</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Points</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>SS 10.1</td>
<td>Reduce Heat Islands - Landscaping and Sites</td>
<td>1</td>
</tr>
<tr>
<td>SS 11.1</td>
<td>Reduce Heat Islands - Cool Roofs and Green Walls</td>
<td>1</td>
</tr>
<tr>
<td>SS 12.1</td>
<td>Avoid Light Pollution and Unnecessary Lighting</td>
<td>2</td>
</tr>
<tr>
<td>SS 13.1</td>
<td>School Gardens</td>
<td>1</td>
</tr>
<tr>
<td>SS 14.1</td>
<td>Use Locally Native Plants for Landscape</td>
<td>1</td>
</tr>
<tr>
<td>SS 15.0</td>
<td>Site and Building Best Practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sites Subtotal</td>
<td>22</td>
</tr>
</tbody>
</table>

Materials and Waste Management

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW 1.0</td>
<td>Storage and Collection of Recyclables</td>
<td></td>
</tr>
<tr>
<td>MW 2.0</td>
<td>Minimum Construction Site Waste Management</td>
<td></td>
</tr>
<tr>
<td>MW 2.1</td>
<td>Construction Site Waste Management</td>
<td></td>
</tr>
<tr>
<td>MW 3.1</td>
<td>Single Attribute - Recycled Content</td>
<td>2</td>
</tr>
<tr>
<td>MW 4.1</td>
<td>Single Attribute - Rapidly Renewable Materials</td>
<td>1</td>
</tr>
<tr>
<td>MW 5.1</td>
<td>Single Attribute - Certified Wood</td>
<td>1</td>
</tr>
<tr>
<td>MW 6.1</td>
<td>Single Attribute - Materials Reuse</td>
<td>1</td>
</tr>
<tr>
<td>MW 7.1</td>
<td>Multi-Attribute Materials Selection</td>
<td>2</td>
</tr>
<tr>
<td>MW 8.1</td>
<td>Building Reuse - Exterior</td>
<td>2</td>
</tr>
<tr>
<td>MW 9.1</td>
<td>Building Reuse - Interior</td>
<td>1</td>
</tr>
<tr>
<td>MW 10.1</td>
<td>Health Product Related Information Reporting</td>
<td>1</td>
</tr>
<tr>
<td>MW 11.1</td>
<td>Locally Produced Materials</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>M&W Subtotal</td>
<td>19</td>
</tr>
</tbody>
</table>

Total Points 250
Table II: Renovation Requirements

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>HVAC Renovation</th>
<th>Lighting Renovation</th>
<th>Envelope Renovation</th>
<th>Interior Renovation</th>
<th>Site Renovation</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prerequisites are limited to the scope of work of the project unless noted otherwise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integration

<table>
<thead>
<tr>
<th>Requirement</th>
<th>HVAC</th>
<th>Lighting</th>
<th>Envelope</th>
<th>Interior</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1.0 Integrated Design</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Operations and Maintenance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>HVAC</th>
<th>Lighting</th>
<th>Envelope</th>
<th>Interior</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM 1.0 Facility Staff & Occupant Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Staff</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Teacher and Administrative Staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 3.0 Performance Benchmarking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt Policy</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite applies only for systems that are within scope of work and for teacher and administrative staff, if affected.

Prerequisite applies when more than 50% of school is within pertinent scope of work.

Deferrals:

For Phased Renovation projects

Schools can be incrementally recognized if in conjunction with a High Performance Transition Plan (HPTP). See II4.1.

Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Requirement</th>
<th>HVAC</th>
<th>Lighting</th>
<th>Envelope</th>
<th>Interior</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 1.0 HVAC Design – ASHRAE 62.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Filtration (MERV 11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ.7.0 Low-Emitting Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paints and Coatings</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooring Systems</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Composite Wood</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EQ.11.0 Daylighting: Glare Protection</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
EQ.14.0 Acoustical Performance*

<table>
<thead>
<tr>
<th>Component</th>
<th>Requisite Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverberation</td>
<td>x</td>
</tr>
<tr>
<td>HVAC Background noise</td>
<td>x</td>
</tr>
<tr>
<td>Exterior Source noise</td>
<td>x</td>
</tr>
</tbody>
</table>

*Alternatively use the HPTP to request a mitigation plan compliance pathway.

Energy

<table>
<thead>
<tr>
<th>EE.1.0 Energy Performance</th>
<th>x x x</th>
<th>Components of ASHRAE 62.1 are triggered by specific scope.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE.3.0 Commissioning</td>
<td>x x</td>
<td></td>
</tr>
</tbody>
</table>

Water

- All prerequisites triggered by scope.

Site

| SS.1.0 Site Selection | x | US EPA Facility Assessment in School Siting Guidelines. |

Materials and Waste Management

| MW 1.0 Storage and Collection of Recyclables | x x |

Required only in classrooms where any interior changes are made to walls.

Required when HVAC equipment & ductwork and any envelope improvement is within scope. Only impacted classrooms need to comply.

Required only in classrooms where exterior windows or exterior walls are within the scope of work.

*Alternatively use the HPTP to request a mitigation plan compliance pathway.
Integrated Design

Intent

Integrate high performance goals into district planning in early programming and in ongoing decision-making to maximize system integration, and the associated efficiencies and cost benefits of high performance schools, as well as identify other sustainable opportunities.

II 1.0 – Integrated Design

II 1.1 – Enhanced Integrated Design

Integrated design is the consideration and design of all building systems and components together. It brings together the various disciplines involved in designing a building to develop and review their recommendations as a whole. It recognizes that each discipline’s recommendations have an impact on other aspects of the building. For example, the HVAC system selection and design should take into consideration the building envelope and other building systems such as lighting and daylighting. A lack of teamwork can result in oversized systems or systems that are optimized for non-typical conditions. Integrated design allows professionals working in various disciplines to take advantage of efficiencies that are not apparent when they work in isolation. The earlier the integration is introduced into the design process the greater the benefit for both new construction and renovation projects.

<table>
<thead>
<tr>
<th>II 1.0 – Integrated Design</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 points</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement
Prerequisite
II 1.0.1
Conduct a minimum of two integrated design team workshops that identify the project’s high performance goals, ensure the incorporation of all CHPS prerequisites, and target the appropriate CHPS credits and best practices as an ongoing part of programming and design decision making. The outcome shall be a plan of how each prerequisite and credit will be implemented, the person responsible, and a timeline of key deliverables or implementation procedures.

The first workshop must take place prior to the end of the schematic design phase. For renovations, the first workshop must take place during the planning phase. The second workshop must occur prior to the beginning of the construction documentation phase.

For each workshop, attendees must include representatives of project team members under contract that have responsibility for a CHPS prerequisite or credit, such as:

- Owner Representatives Group – Owner’s Project Manager, Facilities Maintenance Representative, District or School Capital Project Staff, Utility Representative, and Commissioning Agent
- Construction Representatives Group – Construction Manager, General Contractor, and Major Subcontractors.
- School Occupants Representatives Group – Principal, Teachers, Special Education Representatives, Students, Parents, Operations Staff, and Community Members.
- Commissioning Agent – Optional but strongly encouraged participant.

Prerequisite
II 1.0.2
Engage the project’s construction team, such as the General Contractor, key mechanical and electrical subcontractors, and/or Prime Contractors depending on the project delivery method, during the design phase, prior to beginning the construction documents. The Contractor shall provide sustainability, constructability, and document coordination reviews. The Contractor may present value engineering options, and schedule and cost data as needed for the Owner and the design team to make fully-informed decisions in the best interest of the project.

II 1.1 – Enhanced Integrated Design

<table>
<thead>
<tr>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 point</td>
</tr>
</tbody>
</table>

Applicability

<table>
<thead>
<tr>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

<table>
<thead>
<tr>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>
2 points II 1.1.1 Hold an integrated design workshop late in the design phase (construction documents) to ‘quality check’ the documents for sustainable features and continued achievability of the earlier identified prerequisites and credits with an emphasis on maintenance and operational aspects of the buildings systems. School staff in charge of HVAC controls, and maintenance, lighting, cleaning, landscaping, recycling, trash collection, lighting, and consumables purchasing are required to attend.

Hold an integrated design workshop during the early part of construction, which also includes the general contractor and major subcontractors to convey the integrated design intent, discuss implementation issues and the continued achievability and action items related to earlier identified prerequisites and credits.

OR

2 points II 1.1.2 Utilize Building Information Modeling (BIM) to create a model of the project including architectural and structural elements, above ceiling coordination, and at least two of the following: plumbing, mechanical and/or electrical design.

Implementation

II 1.0-1.1

Assign a facilitator to oversee the integrated design workshops. The most likely candidates are school project manager or the project’s sustainability consultant. While the design architect can be the facilitator, it is recommended that the facilitator not be the lead design architect to minimize him/her acting within dual roles and maximize their open participation as a key member of the project team.

Submit the agenda, attendee list and workshop minutes, for each integrated design workshop. Invitation to the workshops of additional relevant stakeholders is encouraged. These stakeholders may positively contribute to the discussion by providing a unique perspective. This is especially true of those who will be impacted by or responsible for the selected green building strategies long-term. The workshop minutes shall include high performance project goals, implementation procedures, topics needing further investigation or research, and team members responsible for each prerequisite and targeted credit.

Planning documents (e.g. Education Specifications and Owner Project Requirements) and procurement documents (e.g. Requests for Proposals and contracts) should reference project team member participation in these workshops where possible to ensure associated costs are covered for participation and ensure attendance of appropriate consultants is complied with. Participation via telephone or videoconference can assist with minimizing consultant travel expenses.

The CHPS Verified Application Templates and/or Scorecard are efficient tools to record the results. In addition, if time and resources allow, software programs are becoming available that can be used during the workshops to provide immediate feedback on the feasibility of the strategies being considered.

Keep in mind that although a high performance integrated workshop is an important first step in achieving the benefits of high performance schools, a collaborative team process should be
carried out through continual interdisciplinary dialogue all the way through the completion of construction and into post-occupancy. In addition, although only two integrated design workshops are required, depending on the district’s and team’s level of high performance schools knowledge and experience, and/or the complexity of the project, more workshops may be beneficial to ensure optimum results.

It is encouraged, but not required, that additional integrated design and construction workshops are held after construction and post-occupancy, to discuss lessons learned for future projects, and to highlight any pertinent maintenance and operations issues. If in project is located in a seasonal climate, it is suggested that a workshop session be scheduled during both the heating and cooling season.

II 1.1.2

Building Information Modeling (BIM) is the process of using three-dimensional modeling software to generate and manage building design, construction and operations management. The process produces a model that encompasses building geometry, spatial relationships, systems analysis, orientation, geographic information, and quantities and properties of building components. BIM can be used to demonstrate the entire building life cycle, including the processes of construction and facility operation. It is recommended, but not required, that the contractor input as built conditions into the model for facilities operation management.

The following software programs are acceptable to meet this criterion, or a CHPS approved equivalent: Autodesk Revit, Bentley BIM, and Tekla Structures.

Documentation Requirements

Plan Sheet Approach

Design Review Requirements

II 1.0.1 – Construction drawings must incorporate the CHPS Scorecard provided through the CHPS Verified Program. Agenda, attendee list and workshop minutes for each integrated design workshop.

II 1.0.2 – Provide specifications that indicate the required scope of work for all parties. Submit meeting agendas and attendee lists with identifying roles for all four required workshops.

II 1.1.3 – Construction drawings submittal must include BIM model with required features.

Construction Review Requirements

II 1.1.1 – Provide proof of the General Contractors involvement through contract or letter, including commitment and work completed. Submit meeting agendas and attendee lists with identifying roles for all four required workshops.

Submit meeting minutes that outline high performance goals, implementation procedures, topics needing further investigation or research, and a CHPS scorecard with attempted prerequisites and credits with team members responsible for each prerequisite and targeted credit

II 1.1.2 –.
Resources

- American Institute of Architects (AIA) Center for Integrated Practice: www.aia.org/cip
District Level Commitment

Intent
Integrate high performance goals into district planning.

II 2.1 – District Level Commitment
School and district leaders who institutionalize high performance programs are not just building better schools; they are protecting student and staff health, improving student performance, and lowering the district’s operating expenses. Institutionalizing high performance schools allows districts to leverage suppliers and vendors for products and services that comply with high performance school standards; standardize specifications and building strategies to minimize time and expenses; and maximize the benefits of high performance schools on a district-wide basis.

<table>
<thead>
<tr>
<th>II 2.1 – District Level Commitment</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects</td>
<td>Design Review Construction Review Performance Review</td>
</tr>
</tbody>
</table>

Requirement
| 1 point | II 2.1.1 | The District, School Board, Board of Trustees, or other appropriate school leadership must maintain an active, free CHPS Membership and must pass a board or trustee-level resolution that mandates compliance with CHPS and CHPS best practices for the corresponding project type as follows to further formalize district-wide commitment to high performance schools.

Meet or exceed the CHPS qualifying threshold using the CHPS Criteria for:

- New Schools
- Major Renovation projects
- Phased Renovation projects in accordance with a High Performance Transition Plan (II 4.1)
- New Buildings on an Existing Campus
- Additions to an Existing Building
- Prefabricated Classrooms

| OR 1 point | II 2.1.2 | The District, School Board, Board of Trustees, or other appropriate school leadership must pass a board or trustee-level resolution that mandates conducting of the CHPS Operations Report Card™ (ORC) (OM.3.0) district-wide.

Implementation

The district must be a CHPS Member and maintain membership by submitting an annual report to CHPS in a format to be provided. Upon passing a high performance resolution, the board or trustee level resolution (or other appropriate governing authority) must be submitted and approved by CHPS. The submitted authority’s governing relationship to the project in question should be demonstrated and explained as part of the submittal documentation.

CHPS School Members receive membership benefits from CHPS for free and agree to annual reporting requirements on how they are meeting their commitment. The CHPS website has additional membership information, a sample board or trustee level resolutions, and other resources.

Where applicable, state or jurisdiction (county, city or district in the case of the District of Columbia) green / high performance building legislation requiring CHPS compliance (or CHPS as an equivalent rating system to LEED where specifically legislated) for all school facility projects may accompany local board or trustee-level resolutions as additional evidence of formalized commitment.

The CHPS Operations Report Card (ORC) benchmarks the current performance of existing schools, provides a report card of results, and makes suggestions for improvement. These assessments take place in seven categories: energy efficiency, thermal comfort, visual comfort, indoor air quality, acoustics, water conservation, and
waste reduction. The ORC is an interactive online tool. While designed for district-wide deployment over multiple school sites, it is also useful to single public schools, charter schools and private schools. The ORC provides schools with a simple, understandable score to communicate where their school currently stands on the spectrum of high-performance.

Documentation Requirements

Design Review Requirements

Provide a PDF of approved Governing Board-Level Resolution(s). (Provide only if the resolution is not already on file with CHPS. Resolutions on file with CHPS are listed at www.chps.net/dev/Drupal/node/356)

Provide a PDF of Board-Level Resolution. (Provide only if the resolution is not already on file with CHPS. Resolutions on file with CHPS are listed at www.chps.net)

Resources

- Current high performance district resolutions and the CHPS sample resolutions: www.chps.net/dev/Drupal/node/356
- CHPS Operations Report Card: www.chps.net/orc
- CHPS School Membership Program: www.chps.net/dev/Drupal/node/17
- CHPS PreFAB Program for pre-approval of prefabricated, modular and relocatable classroom models: www.chps.net/dev/Drupal/node/640
- CHPS High Performance Product Database, which includes a category of CHPS PreFAB pre-approved classroom models: www.chps.net/products
School Master Plan

While a school is being designed or renovated it is important to consider the needs the school may have in the future, and how those needs may be met while keeping high performance principles in mind. It is also important to have a master plan in place to ensure that the intent of the design or renovation is carried out when the school is renovated and maintained in its future.

II 3.1 – School Master Plan

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

1 point II 3.1.1

Develop a School Master Plan for the site and facilities of an individual school in collaboration with school board members and community stakeholders that:

- Supports the continued compliance with high performance strategies followed in these Criteria.
- Assess and plan for future transportation impacts on the school and flexibility for addition of alternative forms of transportation.
- Assess and plan for the possibility of increased and decreased student enrollment.
- Assess using the school for emergency preparedness such as a shelter.
- Assess and plan for future high performance upgrades and renovations by documenting the life expectancy of major systems and materials, and documenting opportunities for high performance replacement such as reuse or recycle.
- Identifies current and future opportunities for pedestrian and bike connections to surrounding neighborhoods, community services and bike paths.

Implementation
The School Master Plan should cover 10 to 15 years from the school opening or a major renovation being completed. Some school districts may already have a master plan, so a new plan may not be needed. The existing plan can be reviewed for compliance with the above requirements.

This point for a School Master Plan applies to new schools, new buildings on an existing campus, and major renovation projects if the School Master Plan is developed for the entire school site, not just the portion of the school being renovated or built.

Documentation Requirements

Design Review Requirements

Submit School Master Plan

Resources

High Performance Transition Plan

Intent

Ensure that existing schools that are modernized incrementally and often face special circumstances have the opportunity to achieve high performance over time and be recognized by CHPS.

When an existing school is being modernized / renovated in whole or in part it is important to consider the needs the school may have in the future, and how those needs may be met while keeping high performance principles in mind. A High Performance Transition Plan may be used, as an abbreviated way, to address phased renovations and its possible effect on the overall campus. These are projects that incrementally renovate schools over time with the final result achieving CHPS recognition.

II.4.1 – High Performance Transition Plan

<table>
<thead>
<tr>
<th>II.4.1 – High Performance Transition Plan</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

Renovation projects.

Verification

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement

1 point

II.4.1 For Phased Renovation projects that are unable in the first phase of work to achieve all the prerequisites but will meet CHPS criteria in an incremental fashion, develop a High Performance Transition Plan (HPTP).

See appropriate state addendum for additional reporting requirements.

Implementation

The High Performance Transition Plan (HPTP) is intended for existing schools and can be used in addition to a School Master Plan. It could be used multiple times on a school campus for specific projects. With the understanding that renovation projects will range from relatively minor, phased projects to large-scale improvements that transform a campus, the possibility for a specific project to address all aspects of the CHPS Criteria will often be limited. The term ‘phased renovation’ reflects discrete projects of limited scope which occur over a longer period of time but which are still considered to be on the ‘Pathway to CHPS’. These Phased Renovations are in contrast to large scale Major Renovations that are completed as a singular project within a discrete period of time which are transformational for the school and typically can meet CHPS requirements.
As a result of these project type differences, the CHPS provides this path for incremental improvements to be recognized.

The High Performance Transition Plan serves as a preliminary assessment of existing conditions undergoing renovation and will identify the opportunities for achieving specific points within the CHPS scorecard over a projected period of time. The High Performance Transition Plan would identify ‘deferred’ credits that cannot be completed within a particular “phased” project due to the prioritization or sequencing of the work. In addition, the High Performance Transition Plan would identify those prerequisites that can never be met due to the existing conditions of the school. For such constraints, an alternative improvement or mitigation must be identified which can serve to offset the prerequisite(s) that cannot be achieved.

With consideration of financial constraints, the preparation of the High Performance Transition Plan is intended as an exercise that can be achieved without significant burden to the program budget. The High Performance Transition Plan will serve as a cohesive guide from which subsequent projects will be defined. As a phase of work is completed, notify CHPS of the credits achieved for proper record keeping and acknowledgement.

The High Performance Transition Plan should include the following components:

- Evaluate existing campus building stock related to this project to identify elements with sustainable opportunities (‘good bones’) and those that are problematic.
- Establish the priorities and goals for each prerequisite and credit to be pursued in the CHPS Criteria.
- Develop a sequencing schedule for the credits to be pursued for the project. Specific calendar milestones are not required.
- Develop a rough order of magnitude budget model.
- Establish the existing baseline performance and energy benchmarking of the project area prior to the renovation. This baseline may be established by conducting the appropriate sections of the Operations Report Card (also see OM 3.0 and OM 4.1).
- Outline a plan to address how deferred prerequisites will be met in subsequent phases of work. Establish a time limit, e.g. 3-5 years.

Prepare a summary report which includes a written narrative of the high performance goals for the campus, a completed CHPS scorecard, a site plan annotating the improvements to be addressed with the baseline conditions noted, a schedule for implementation and a rough order of magnitude budget model.

See also the appropriate state addendum for additional reporting requirements. Not all states may have additional requirements.
Documentation Requirements

Design Review Requirements

Submit a copy of the High Performance Transition Plan and a copy of a CHPS scorecard indicating which prerequisites and credits have been previously met and which are to be targeted in the scope of the current phased project.

The summary report shall include a written narrative of the high performance goals for the campus, a completed CHPS Criteria scorecard, a site plan annotating the improvements to be addressed with the baseline conditions noted, a schedule for implementation and a rough order of magnitude budget model.

Resources

- CHPS Operations Report Card™: www.chps.net/orc
Educational Display

Intent

Raise the community’s knowledge about the basics and benefits of high performance schools.

Using the school as a learning tool, students, staff, and the community can benefit by having an educational display to illustrate the healthy, efficient, environmentally sustainable features of the school.

The educational display may have further connections in II 6.1 – Educational Integration.

<table>
<thead>
<tr>
<th>II 5.0 – Educational Display</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

1 point
II 5.0
Provide a permanent display on the school site that describes the high performance features that are part of the school’s design.

<table>
<thead>
<tr>
<th>II 5.1 – Demonstration Area</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
Create demonstration areas for three of the five major high performance categories of the Criteria: Indoor Environmental Quality, Energy, Water, Site, and Materials and Waste Management.

Within these demonstration sites at least one feature of a high performance category must be showcased. Each demonstration area must explain how the high performance features work, its environmental and economic benefits, and how it exemplifies a holistic and integrated approach to sustainable design.

Implementation

II 5.0

Provide a labeled plan showing the location of the display. The permanent educational display must be located in a prominent location at the school, such as in the main entry lobby. The display shall include a list of all CHPS high performance features with a statement of the intent and an explanation of each feature. Visual aids or drawings can be used to illustrate features as needed. Include a map of the school and grounds pointing to location(s) where demonstration areas of the sustainable features can be seen.

The display may be electronic and interactive, but must be physically present at the school site and dedicated for this purpose. It may not be a virtual display only accessible via computer, unless that computer is permanently located as described above. It is recommended that it is designed so that it can be updated periodically.

Schools are encouraged, but not required, to use the Educational Display in conjunction with plans made for credit II 6.1 – Educational Integration.

II 5.1

Create demonstration areas for three out of the five major high performance categories in CHPS Criteria. A comprehensive, interactive kiosk in the lobby is a great resource, but it may serve as only one of the three required demonstration areas. Each demonstration area will showcase a minimum of one feature included in a high performance category. This feature will have been utilized in the design of the new school, new building, or renovation project. The design of the demonstration areas may include, but are not limited to, signage, kiosks, cut-always, meters, graphic illustrations, artistic murals, videos, real-time displays, or other design elements. For example, a demonstration area could be a meter of resource flows/usage, or a visual display of electrical generation provided by the photovoltaic. The display may be electronic and interactive, but must be physically present at the school site and dedicated for this function. It may not be a virtual display only accessible via computer, unless that computer is permanently located as described above.

When choosing materials or media to portray a high performance feature, ensure that they align with the other intents of a high performance school. For example, a kiosk
made out of on-site recycled materials, or an electronic display labeled by ENERGY STAR®.

Documentation Requirements

II 5.0 Design Review Requirements

Construction drawings must include the location and details of display, describing all main high performance features, as well as materials specifications of any permanent display.

II 5.0 Construction Review Requirements

Submit at least two, and up to six photos of the installed educational display. At least one photo must show the context/location of the display, and at least one photo must show readable details of the content of the display.

II 5.1 Design Review Requirements

Submit construction documents that include the prominent location of and details of each of the three demonstration areas, and actual content of any signage, describing how the high performance features work, the environmental and economic benefits, and how it exemplifies a holistic and integrated approach to sustainable design, as well as materials specifications of each of the demonstration areas/displays.

II 5.1 Construction Review Requirements

Submit two or three photos of each of the installed demonstration areas with a brief description of each. One of the two required minimum photos must show the Demonstration Area in context, and the other required photo must be a close-up and/or show readable detail of any signage. Thus a total of 6 minimum, and up to 9 photos should be submitted. Explain any changes from the Design Review submittals of this credit.

Resources

- Minnesota Department of Natural Resources, Environmental Education Resources: www.dnr.state.mn.us/education/ee/examples.html
Educational Integration

Intent
Use the school as a learning tool by connecting the concepts of high performance design with a hands-on curriculum.

Using the school as a learning tool, students gain knowledge in concepts of high performance design including indoor environmental quality, energy efficiency, water conservation, materials and waste management, sustainable sites, and operational policies through hands-on science, technology, engineering and math (STEM) curriculum.

<table>
<thead>
<tr>
<th>II 6.1 – Educational Integration</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
II 6.1.1 Present an educational plan and letter of commitment from the District, School Board, Board of Trustees, or other appropriate school leadership stating that the sustainability education will occur on yearly basis. The educational program should consist of 2 primary components:

- Science, technology, engineering, or math (STEM) hands-on learning (at least 15 students engaged in minimum of 10 classroom hours of curriculum) that explores high performance design features. This core group of learners, or CHPS Champions, will be responsible for educational outreach within their school community.

- Educational outreach efforts to share the CHPS high performance design with the school community.

II 6.1.2 Identify the CHPS Champions (at least 15 students) and support staff (at least 2). CHPS champions will engage in at least 10 classroom hours of curriculum to explore the high performance design features. At least one of four high performance areas must be covered.

II 6.1.3 Educate entire student community (100% of student population) on high performance design. Each student should be exposed to at least one design feature, exposing them to level appropriate learning-outcome relevant information.

II 6.1.4 Educational integration should incorporate the educational display and/or demonstration areas.

Implementation

Educational integration considers people, curriculum, educational outreach, and documentation.

Personnel

- Identify the CHPS Champions group. The group size can range from whole school population to a small cluster, with a minimum number of 15 students. It could be a classroom, grade level, after school club or student government or even the entire school. If the group is more than 4 classrooms, the project may claim one innovation point via II 9.1.

- Create a support team on the side of educators and staff (minimal of 2 people). The support staff should have at least one educator. It is preferred, but not required that facilities staff is involved in technical support of the curriculum.

- Together, the CHPS Champions and the support staff will be responsible for the educating the entire school community (100% of student population).

Curriculum
• Review mission of CHPS and all features of high performance design. It is encouraged that demonstration areas are incorporated in the overview (See Demonstration Areas criterion).

• Select or design age-appropriate standards-based curriculum covering at least one of four high performance design topics (See resources). Ensure students engage for a minimum of 10 classroom hours, which can include classroom instruction, educational event, homework or a site visit.

Educational Outreach

• Each student at a school site will learn about high performance design schools and how it benefits the school community from the social, economic and performance perspectives. At least one academic hour should be spent on this. The CHPS Champions can creatively come up with the educational strategy that can range from an educational assembly to publication of educational materials that includes a discussion. (See resources).

Documentation Requirements

Construction Review

Present an educational plan and letter of commitment, or Board Resolution if appropriate, from the Governing Board stating that the sustainability education will occur on a yearly basis.

Submit any curriculum outlines, preliminary lesson plans, or project-based learning activities to be utilized in conjunction with high performance school features. Include a narrative of the District or School’s intent to implement this educational integration with a proposed typical timeline and identification of the CHPS Champion and any educators or staff involved.

Performance Review

Provide 4-6 photographs of educational display and demonstration areas showing CHPS Champion and/or teacher engaging with students.

Resources

• Minnesota Department of Natural Resources, Environmental Education Resources: www.dnr.state.mn.us/education/ee/examples.html

• North American Association For Environmental Education, Excellence in Environmental Education: Guidelines for Learning (K-12): http://resources.spaces3.com/47edc444-7bd4-4093-918b-7964644cce75.pdf
The CHPS community believes that all schools should be making steps to reducing emissions of greenhouse (GHG) gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) that contribute to climate change. Understanding and monitoring emissions can be a powerful tool to reducing waste and inefficiency. A school’s contribution to climate change begins with the impact of materials and resources used in the construction, or renovation of the school. It continues through the operation of building systems, and transportation choices to and from school. The largest non-building contributor to GHG emissions is transportation to and from the school site. Within the building envelope the largest contributor is electric lighting, followed by heating and cooling. Lastly schools contribute to GHG emissions at the end of their life cycle, when schools are re-used or deconstructed.

II7.1 – Climate Change Action / Carbon Footprint Reporting

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
2 points
II 7.1.1
Develop a GHG Inventory to establish a baseline of the school's carbon footprint using the Clean Air-Cool Planet Campus Carbon Calculator, or equivalent, to calculate and report Scopes 1, 2, and 3 emissions. The report shall include a brief statement identifying GHG reduction opportunities related to the specific inventory results.

1 point
II 7.2.1
Develop and implement a District-approved Climate Action Plan (CAP) that includes annual reporting of GHG emissions to raise awareness of the school community’s carbon footprint, and engage students, staff, and community in reducing the footprint. The Plan must identify measures which reduce the reduce GHG emissions by 25% from the baseline year within 10 years, and 50% within 25 years. The CAP shall address Scopes 1, 2, and 3 emissions and, at a minimum, the following CHPS criteria:

- SS 7.1 Public Transportation OR SS 9.1 Human Powered Transportation
- SS 3.1 Minimize Site Disturbance
- EE 1.1 Superior Energy Performance (Minimum of 30% savings beyond IECC or ASHRAE 90.1)
- MW 2.1 Construction Site Waste Management (Recycle, compost, and/or salvage at least 75% (by weight) of the non-hazardous construction and demolition debris.)
- EQ 13.2 Superior Electric Lighting

Approved annual inventorying, calculating, and reporting tools include the Clean Air-Cool Planet Campus Carbon Calculator, Climate Registry Online Reporting Tool software, or equivalent tool supporting the year-over-year documentation of Scope 1, 2, and 3 emissions.

Implementation

Completion of the Clean Air-Cool Planet Campus Carbon Calculator may be done online or using offline templates. Alternative campus carbon footprint calculators may be utilized, and must include scopes 1, 2, and 3 GHG emissions reporting. For projects without historical data available, such as for energy or transportation, estimates based on simulations or comparable projects may be used for the purpose of establishing a baseline. The report shall identify the sources of estimated data.

A copy of the completed Statement of Intent signed by the District, School Board, Board of Trustees, or other appropriate school leadership must be submitted to CHPS along with proof of registration.

For projects that are only a fraction of an entire campus, the inventory may cover emissions for the entire campus, but a summary within the inventory should be included which identifies the portions of emissions associated with the project being submitted for verification.
• For the Climate Action Plan point, a copy of the board-approved Climate Action Plan must be submitted along with a copy of the Climate Action Plan. The Climate Action Plan may cover emissions reporting for an entire campus, but a summary must be submitted which identifies the portions of emissions associated with the project being submitted for verification.

If possible, the climate action plan should be aligned with the high performance transition plan, if projects are pursuing credit II 4.1

Documentation Requirements

Design Review

None

Construction Review

For II.7.1.1:

Submit a copy of the baseline GHG inventory and/or GHG inventory completed post project completion, using the Campus Carbon Calculator or equivalent protocol.

For II.7.1.2:

Submit a copy of the completed Board Resolution committing the District to a Climate Action Plan, or Statement of Intent signed by the Governing Board to CHPS along with proof of any optional Climate Registry or Campus Carbon Calculator online registration.

Resources

• CHPS Approved Climate Action Registries: www.chps.net/dev/Drupal/node/515
• Clean Air – Cool Planet Campus Carbon Calculator: cleanair-coolplanet.org/
• The Climate Action Registry: www.theclimateregistry.org/
The design of learning environments can dramatically affect behavior, feelings, and how we view others. While schools in the United States remain relatively safe, any amount of violence is unacceptable. Crime Prevention Through Environmental Design (CPTED) principles focus on reducing crime opportunities and on promoting positive social behavior. The CPTED Principles are:

- Natural surveillance
- Natural access control
- Territorial reinforcement
- Maintenance and management

There are strong overlaps and synergies among the four CPTED principles. In practice, it may be useful to recognize the principles as different facets to a single design strategy. The implementation of strategies may benefit schools by creating a warm and welcoming environment, fostering a sense of physical and social order, sending a positive message to students and parents, maximizing the presence of authority figures, and managing access to all school areas.

To incorporate CPTED Principles effectively, schools must involve those responsible for design, use, and maintenance. Key stakeholders include school officials, teachers, designers, and local emergency response agencies. The most effective CPTED strategies are those that improve the quality of the learning environment. This is in contrast to implementing visually affronting security or target hardening measures such as armed security patrols or razor wire fences. Some effective CPTED strategies include:

- Clear sight lines between interior rooms and circulation spaces
- Adequate site lighting at drop-off/pick-up areas, trash enclosure, and along pedestrian paths
- Eliminating concealed and isolated routes between buildings and within interior
- Avoid entrapment by eliminating unnecessary doors or gates such as at restrooms
- Promote land use mix to encourage activities during critical time periods
- Create a sense of ownership through maintenance and management
II 8.0 – Crime Prevention Through Environmental Design

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 points</td>
<td></td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement

Prerequisite

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 8.0.1</td>
<td>Conduct a CPTED workshop with key project stakeholders and a CPTED professional at the beginning of, or before, schematic design to identify site, building and interior issues, and define strategies aligned with CPTED principles for addressing them in a CPTED Plan. Key project stakeholders must include representatives of the designers, users, and emergency responders.</td>
</tr>
<tr>
<td>II 8.0.2</td>
<td>The CPTED Plan must articulate strategies categorized by CPTED Principle.</td>
</tr>
<tr>
<td>II 8.0.3</td>
<td>The design team must incorporate these strategies in the project design. The CPTED professional shall review the design prior to construction and provide comments as necessary to align the design with CPTED Principles.</td>
</tr>
</tbody>
</table>

Implementation

The CPTED Plan will be provided to the CHPS review team, along with the review comments that align the originally proposed strategies with the actual design response.

CPTED professionals may be certified by a national or regional authority. Local law enforcement personnel also qualify as CPTED professionals for the intent of this criteria.

Documentation Requirements

Design Review

Submit a copy of the CPTED Plan to the CHPS review team, along with the review comments that align the originally proposed strategies with the actual design response. Reference construction documents that indicate the incorporation of the CPTED principles. Include the agenda, minutes, and list of attendees from the CPTED workshop. Also include credentials of the CPTED professional who participated in the workshop.

Construction Review

Provide a letter from the CPTED professional indicating that the project as built complies with the CPTED plan. Any deviations from the original plan shall be justified.
Resources

- CEFPI Safe Schools Planning Guide: media.cefpi.org/SafeSchoolsGuide.pdf
- Department of Health and Human Services, Centers for Disease Control and Prevention, Youth Risk Behavioral Surveillance, 2007: www.cdc.gov/mmwr/PDF/SS/SS5505.pdf
- International CPTED Association: www.cpted.net/
Innovation

The purpose of this criterion is to encourage school project teams to be creative and to take advantage of and/or test new technologies or strategies for improving the health and performance of students, schools and the environment. The innovation may take an existing CHPS criterion to a new height, or take a direction not offered by the CHPS Criteria.

II 9.1 – Innovation

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All CHPS Verified™ projects.</td>
<td>4 points</td>
</tr>
</tbody>
</table>

Verification
- Design Review
- **Construction Review**
- Performance Review

Requirement

4 points

II 9.1

Implement new technologies or strategies that does at least one of the following not currently offered in the CHPS rating program:

- Improves the health and performance of students and staff.
- Improves the performance and efficiency of school facilities, or operation of those facilities.
- Improves the natural environment.

OR

The innovation points can reward exceptional performance in an existing criterion area through submission of a narrative explaining how the intent was exceeded by a significant amount.

Implementation

The point value of the criterion will be determined during the CHPS Verified review process by the CHPS Verified review team. A maximum of 2 points will be awarded per strategy, technology, or for exceptional performance beyond an existing threshold. Points will be awarded based on the technology or strategy’s ability to:
• Improve the health and performance of students and staff.
• Improve the performance and efficiency of school facilities, or operation of those facilities.
• Improve the natural environment.

The CHPS Criteria are designed to be a comprehensive guide to high performance design, but as new technologies and creative designs evolve, there is a responsibility to support and encourage them. These points are also offered for communities that go beyond what is required by the Criteria and push to achieve exceptional performance, health, educational and environmental benefits, place-based novel solutions, and excellent policies.

As innovation points are achieved by projects, they will be made publicly available on the CHPS website.

Ideas for innovation points are listed below:

• Producing a surplus of energy on a net annualized basis, which exceeds Zero Net Energy School per EE 2.1
• Implementing a recycling program where there is no existing infrastructure per MW 1.0
• Divert construction and demolition waste per MW 2.1 at a 90% rate for 1 point and 95% rate for 2 points.
• During the construction phase, pledge to apply dust suppression controls, restrict idling, and reduce exhaust emissions according to the Green During Construction Indoor Air Quality Pledge, available at: http://www.coshnetwork.org/node/223
• Provide a published Health Product Declaration (HPD) with a disclosure level of 1,000 ppm for at least 40 permanently installed products from at least five manufacturers in accordance with MW 10.1 for 1 point.
• Establish an alternative fuel demonstration project involving at least one bus and public outreach for one point, or utilize alternative fuel vehicles for 20% of the bus fleet or 50% of the maintenance fleet for two points. Alternative fuels include compressed natural gas, biodiesel, or hybrid electric-diesel.
• Create a more expansive education initiative per II 6.1 for 1 point.

For each new credit attempted: 1) define the credit and its purpose; 2) describe the proposed criteria for compliance including any applicable standards; 3) identify documentation requirements that verify compliance with the proposed credit; 4) submit a narrative describing how the credit reflects environmental health, sustainability, and safety practices, and 5) submit documentation identified in 3).

OR
If the Innovation point is for exceptional performance in an existing criterion area, then submit a narrative of the design approach, including an explanation of how the original intent was exceeded by a significant amount.

Documentation Requirements

Design Review

For each *new* credit attempted: 1) define the credit and its purpose; 2) describe the proposed criteria for compliance including any applicable standards; 3) identify documentation requirements that verify compliance with the proposed credit; 4) submit a narrative describing how the credit reflects sustainable or environmental health and safety practices, and 5) submit documentation identified in 3).

For claiming credit for exceptional performance in an existing credit area, submit a narrative of the design approach, including an explanation of how the original credit was exceeded by a significant amount.

Construction Review

Varies depending on innovations.

Resources

- CHPS Innovation Library: www.chps.net
Facility Staff & Occupant Training

The design and construction of the school may incorporate all the latest high performance features, yet problems can occur simply because important information is not transferred from the design and construction teams to the school facilities and maintenance staff, or to the building occupants. Training the facilities and maintenance staff is essential to the performance of the building, but is often not performed or is hastily completed.

Provide students, teachers and staff with more in-depth knowledge for each aspect of high performance design on their school site, including how they interact with the facilities’ systems and features to maintain and effectively receive the high performance benefits. Training the teachers and administration staff in how they can control their room environments provides them with an understanding that will also help the facilities staff keep the building performing optimally.

For example, maintaining energy savings and thermal comfort by correctly operating HVAC systems; achieving continued energy savings from lighting systems and the continued reduction of plug loads; maintain visual comfort from effective daylight and especially proper control of shading devices; maintaining air quality by populating spaces with low emitting furniture, using green cleaning products or employing natural ventilation, etc.

<table>
<thead>
<tr>
<th>OM 1.0 – Facility Staff & Occupant Training</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement
Implementation

Facility Staff Training.

Provide Operations & Maintenance training for facilities and maintenance staff on all major building systems from bulleted list in the EE 3.0 Commissioning Prerequisite. It is typical to specify training requirements in the construction contract and subsequently, the general contractor arranges for equipment vendors, controls contractors etc. to teach building operators how to use and maintain their new equipment. The training may be overseen by the commissioning agent to ensure that the facilities staff receives the materials and hours of training stipulated in the construction contract. It is vital that facility and maintenance staff attend these training sessions.

Compile an Operations & Maintenance Manual. The manual should provide detailed O&M information for all equipment and products installed. It should be specifically written for maintenance and facility staff. The construction contractor typically furnishes the O&M manuals and the commissioning agent reviews the completed O&M Manual for completeness and clarity.
Teachers and Administrative Staff Training

Create a brief and concise classroom “User’s Guide” for teachers and administrative staff explaining how to operate their room lighting and HVAC systems. A User’s Guide shall be posted in every regularly occupied room of the school.

Conduct Operations & Maintenance training for staff. Provide a short introduction for all school staff, including teachers, explaining how classroom systems work, such as lighting and temperature controls. This training shall include, at a minimum, how to use the following systems if they are installed in the school:

- The commissioning agent shall be responsible for reviewing all training documentation.
- Temperature controls
- Set points for HVAC systems
- Fan controls
- Electric lighting controls
- Daylight controls, including blinds, shades, and light shelves
- Occupancy sensors
- Operable windows

Training shall take place within 30 days of occupancy, and it shall be conducted by the facilities director, commissioning agent, or other similarly expert personnel. Training shall be conducted with the installed building systems. PowerPoint presentations alone are not sufficient, but they may be used in conjunction with demonstrations of the actual equipment. Training shall take place at a mandatory staff meeting, and attendance shall be documented.

The principal of the school or the district superintendent must also submit a signed letter indicating that annual training will take place to educate teachers and staff about the high performance features and controls in their classrooms. The training shall be fundamentally similar to the initial training after construction is complete. The intent is to be sure that new and existing staff are using the classrooms are designed on an ongoing basis.

Training in future years shall be done at the direction of the LEA in conjunction with the facilities manager. The trainer may be the facilities manager or an appointee of the facilities manager.

Documentation Requirements

Design Review Requirements
Submit specifications indicating that the commissioning agent will have the appropriate scope of work for reviewing training materials. Also submit specifications indicating who shall have responsibility for creating all training materials.

Construction Review Requirements

Provide the training manual for facilities staff or a link if offered through the school’s website. Provide a copy of training materials, training date, and attendee list for initial facilities staff training session(s).

Also provide training materials for teachers and administrative staff. Provide a copy of training date and attendee list for initial teacher and administrator training session. Also include a signed letter from the principal or superintendent committing to annual training as outlined in the prerequisite

Resources

- ASHRAE Guideline 16: The HVAC Commissioning Process
Post-Occupancy Transition

Numerous post occupancy studies over the past decade highlight that one of the most common and significant causes of underperforming buildings is the lack of communication and understanding of effective operations and user behavior. A Post-Occupancy Transition requirements aims to address these weaknesses by both capturing feedback from the users and operators to enable the design team and facilities staff to adjust systems and to refine the transfer the knowledge of the design intent and operation from the design team to the users and facilities operators in a three part process:

Reach Out – with a brief Post Occupancy Survey to obtain feedback.

Engage – in an integrated post-occupancy transition meeting 3 months after substantial completion with the essential engagement of all parties for success ensures that the occupants understand how to control and best use their buildings, are comfortable, can work effectively, and have realistic expectations. It ensures that operators are efficiently running systems and meeting the needs of the users and that the entire group balances saving energy and staying comfortable, noise versus ventilation, daylight and shading devices versus the impact on energy use and technology systems, plug loads and energy conservation.

Enhance - the feedback gained through this interaction helps the design team, school, and district facilities staff better understand the users needs and experience of the building to actually fine tune, de-bug, and correct systems and record lessons learned. This is an opportunity to create a virtuous circle to encourage the development of a body of knowledge and a process that helps the users into the future maintain high performance environment and institutional knowledge in spite of the usual obstacles of change of personnel, change of programs and the like.

<table>
<thead>
<tr>
<th>OM 2.1 – Post-Occupancy Transition</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>2 point</td>
</tr>
</tbody>
</table>

Requirement
<table>
<thead>
<tr>
<th>1 point</th>
<th>OM 2.1.1</th>
<th>Post-Occupancy Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conduct a brief Post Occupancy survey for the project after the prerequisite (Facility Staff and Occupant Training) process is complete. Prepare the results for distribution at the Post Occupancy Transition meeting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OM 2.1.2</th>
<th>Post Occupancy Transition Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conduct an integrated design and operations meeting within six months after occupancy. At least one seasonal change must have occurred before the meeting takes place. Ensure the required representatives attend. Distribute the results of the POE for discussion; determine action items for adjustment and education.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OM 2.1.3</th>
<th>Meeting Action Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perform the action items to fine tune, de-bug and correct systems.</td>
</tr>
</tbody>
</table>

Implementation

OM 2.1.1 - The post occupancy evaluation survey may be accomplished by conducting the CHPS Operations Report Card or developed to conform to the needs of the project and sharing the results with CHPS.

The integrated design and operations meeting attendees include design team, maintenance and operations staff representatives, user representatives – teachers and school staff representatives, school administration representatives, school custodian, and preferably student representatives.

A sample agenda will be available on the CHPS website. Reference the Useable Buildings Trust website for talking points regarding effective approaches to post occupancy surveys, user behavior, and transition from design and construction to operations.

Documentation Requirements

Design Review Requirements

None.

Construction Review Requirements

Include a signed letter from the principal or superintendent indicating intent to comply with each requirement in the credit. Include a timeline with specific dates for completion of each element of the credit, and be specific about who will be responsible for completion.

If the post occupant survey has been completed at the time of submission of this application, include a summary report of the results.
Performance Review Requirements
Submit agenda and meeting minutes, including a list of attendees, for the post occupancy transition meeting. Include an action plan for addressing any identified action items.

Resources
- CHPS Operations Report Card: www.chps.net/orc
Performance Benchmarking

Benchmarking school energy use can be one of the most straightforward and simple methods available to help keep a school operating efficiently. Energy benchmarking typically shows how a school is operating compared to its peers or to itself — with multiple years of utility data — and shows how well a school operates from year to year. Good benchmarking systems account for yearly changes in weather and track energy use per square foot per year.

<table>
<thead>
<tr>
<th>OM 3.0 – Performance Benchmarking</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement

The school must adopt a policy of benchmarking to track its energy use performance over time in order to perform the following:

Conduct a post-occupancy analysis of the school's indoor environmental quality and energy performance after 2 years or perform recommissioning after 2-5 years.

Implementation

There are 3 options for benchmarking:

OPTION 1: Conduct the CHPS Operations Report Card and receive a score of at least 75 for the Energy Efficiency category.

OR

OPTION 2: Use US EPA's Portfolio Manager. Portfolio Manager generates a score from 0-100 using data on energy usage, space attributes, and operating hours. A school must achieve at least a 75 to reach the ENERGY STAR level. Schools using Portfolio Manager will need to go to the website, create an account, and follow the instructions for inputting data and generating reports.
Schools using Portfolio Manager should submit a copy of the initial facility report, showing the score.

OR

OPTION 3: Use the school’s own energy model created at design of the building. If a model was done according to the guidelines contained in Energy Prerequisite EE 1.0 and contains information on plug load and operating hours, it will provide the most suitable benchmark for the school. Utility data, including kWh, therms, and costs, must be tracked annually by the school, normalized using heating degree days, and organized in a way that allows them to be analyzed against the model, i.e. total costs over time must be calculated.

Committing to perform a post-occupancy analysis or to recommission the school two years after it is designed and built to the CHPS Criteria helps to ensure the high performance features of the school continue to provide benefits over the life of the school.

Recommissioning involves having a commissioning agent re-check the systems after a couple years of operation. Recommissioning can be done by the original commissioning agent or by a different one, but should be performed by someone meeting the same qualifications described in EE.3.0. The scope of recommissioning should follow the original commissioning scope for testing and balancing and any other aspects that might be appropriate.

A post-occupancy analysis of resource use essentially combines recommissioning and benchmarking to evaluate the building’s performance. Systems are typically checked to see how they are working and utility bills are recorded and evaluated against a baseline. The post-occupancy analysis must include, at a minimum, an evaluation of energy and water use and may include occupant or end-user surveys regarding thermal comfort, air quality, and acoustical comfort. The post-occupancy study should cover at least one full heating and one full cooling season.

Documentation Requirements

Design Review Requirements

Provide a PDF of the policy or resolution committing to one of the energy benchmarking options listed in the credit implementation section, along with a summary of how the policy will be implemented. Also include a PDF of the policy or resolution committing to either the post-occupancy analysis or recommissioning, along with a summary of how the policy will be implemented.

Schools benchmarking to their own energy model must submit a letter of commitment to do so, signed by the chair of the school committee or the superintendent, that contains a description of the tool that will be used to organize data (e.g. Excel) and identifying the person who will be responsible.
Schools using Portfolio Manager shall submit a copy of the initial facility report, showing the score.

Construction Review Requirements
None

Performance Review Requirements
Complete the Benchmarking Option chosen to comply with the prerequisite. If using the ORC, submit a copy of your Report Card. If using Portfolio Manager, submit a copy of the ENERGY STAR score. If using an in-house benchmarking solution, submit copies of all records kept to date and any reports generated.

Resources
- CHPS Operations Report Card™ www.chps.net/orc
- The US Environmental Protection Agency (US EPA’s) portfolio manager is available at www.energystar.gov/index.cfm?c=evaluate_performance.bus_portfoliomanager
One of the prime methods to maintain, enhance or promote high performance operation is by using the CHPS Operations Report Card™ (ORC). The ORC is an online interactive tool that benchmarks the current performance of existing schools, provides a report card of results, and makes suggestions for improvement. The assessment is comprised of seven modules: energy efficiency, thermal comfort, visual comfort, indoor air quality, and acoustics. Waste reduction and water conservation are currently available on an optional basis. The ORC provides schools with a simple, understandable score to communicate where their school currently stands on the spectrum of high-performance.

Other highly effective techniques to sustain high performance is by designation of key positions in a school system: A district wide manager to oversee energy and water usage, performance targets and coordinate efficiency policies and foster behavioral change and, at the school site level, the designation of an advocate to promote these policies.

<table>
<thead>
<tr>
<th>OM 4.1 – High Performance Operations</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
| 2 points | OM 4.1.1 | CHPS Operations Report Card.
Receive a point for every two modules of the CHPS Operations Report Card conducted under OM 3.0 for which the school receives a high performance score of at least 70 points (except energy efficiency which is already required under OM 3.0). |
| 1 point | OM 4.1.2 | Designate Resource Manager
The school district (or private or charter school) must designate a permanent energy and water manager(s) to set performance targets, monitor usage, and coordinate and support school level advocates. |
| 1 point | OM 4.1.3 | Designate Advocate
Designate a school based advocate to provide education and awareness on energy and water reduction programs and targets to promote behavioral change. |

Implementation

Complete the required steps of the ORC program, including data gathering through facilities measurements and occupant surveys. After entering all of the requested information, the school is provided with a Report Card. This summary document provides the school with the numeric score it has achieved in each category, along with brief comments about why that is the case. In addition to the Report Card, the school receives a customized list of suggested improvements based on their site information. While a particular score is not required to earn 1 point under OM 3.0, 2 points are offered for a passing score under OM 4.1.1.

OM 4.1.2-4.1.3

Provide confirmation from the school district (or private or charter school) that a designated, permanent energy and water manager(s) has been hired and a school based advocate has been hired or volunteered. Provide their contact information.

Documentation Requirements

Design Review Requirements

Submit a letter from the superintendent or principal designating the resource manager from OM 4.1.2 and/or the Advocate from OM 4.1.3.

Construction Review Requirements

Provide confirmation from the school district (or private or charter school) that a designated, permanent energy and water manager(s) has been hired and a school based advocate has been hired or volunteered. Provide their contact information.

Performance Review Requirements
Complete the ORC program by receiving a passing score for the school. Notify CHPS that you have received your ORC benchmark and are ready for recognition.

Resources

- CHPS Operations Report Card™ www.chps.net/orc
The Systems Maintenance Plan is one of the most important features of a high performance school since it establishes the practices that will continue to ensure the school is operated according to its high-performance intent. The Systems Maintenance Plan is a key part of Commissioning and has a strong connection to other energy efficiency performance items such as Energy Benchmarking.

OM 5.0 – Systems Maintenance Plan

<table>
<thead>
<tr>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement
The school district must create a school Systems Maintenance Plan that includes an inventory of all equipment in the new or renovated school. The plan must address the preventive and routine maintenance needed. The plan should clearly define who is responsible for performing the task, as well as the overall management of maintenance activities. The inventory and plan should cover the following systems:

Electrical Systems:
- Lighting fixtures and controls (daylight, occupancy, timing switches, etc.)
- On-site renewable solar electric or wind systems
- Telecommunication systems
- Electrical distribution systems
- Life and safety systems

HVAC Systems:
- HVAC systems (such as hot water systems, chilled water systems, central air systems, ventilation systems)
- Domestic hot water systems
- Energy Management system
- Renewable energy heating systems (if applicable)

Plumbing Systems:
- Flow control devices
- Pumping systems
- Special hazardous waste treatment systems (e.g. for lab wastes)
- Domestic hot water systems
- Graywater systems (if applicable)

Building Envelope and Roofing Systems (particularly acid management)

Significant Plug Loads

Other High Performance systems as applicable.

Implementation

Like conventional schools, all high performance schools and their systems require preventive and routine maintenance. The Systems Maintenance Plan encourages districts to plan for preventive and routine maintenance tasks and invest adequate funds in the maintenance of their school facilities.

Documentation Requirements

Design Review Requirements
Construction Review Requirements
Provide a copy of an inventory of building system components (HVAC, lighting renewable). Provide a copy of a maintenance plan that includes information on preventative and routine maintenance needs:

Schedule of tasks, by week
Frequency to perform task, i.e. weekly, monthly, bi-annually
Priority ranking for each task
Date task to be completed
Personnel needed to carry out task
Problems encountered and follow up tasks, if any
Special training required to complete task, if any

Provide a copy of the Systems Maintenance Plan that include all regularly scheduled preventative and routine maintenance tasks and their frequency over the lifetime of the building system or equipment. These tasks include cleanings, calibrations, component replacements, and general inspections. Operations and maintenance manuals and commissioning reports developed during the commissioning process should be used as references for developing the maintenance plan. The plan must clearly define who is responsible for performing the task, its frequency, as well as the overall management of maintenance activities.

Resources

- Massachusetts School Building Authority: http://www.massschoolbuildings.org
- Massachusetts Facilities Administrators Association: http://www.massfacilities.org
Indoor Environmental Management Plan

According to the US Environmental Protection Agency (US EPA), the indoor environment may contain levels of air pollutants that are 2-5 times higher, and occasionally 100 times higher, than outdoor levels. Poor indoor air quality (IAQ) can cause headaches, fatigue, asthma attacks, and ultimately absenteeism. Asthma can be a leading cause of school absenteeism due to chronic illness (US EPA).

Intent

Promote ongoing efforts to prevent, monitor, and correct indoor air quality problems.

OM 6.0 – Indoor Environmental Management Plan

<table>
<thead>
<tr>
<th>OM 6.0 – Indoor Environmental Management Plan</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

Applicability	Verification Required
All projects. | Design Review

Construction Review | Performance Review

Requirement

2 points | OM 6.0
Promote a healthy indoor environment in a new school or renovation utilizing the US EPA’s Tools for Schools Program or an equivalent indoor health & safety program at the school district level.

Implementation

Develop an indoor environmental management plan using the US EPA’s Tools for School Program or equivalent indoor health & safety program at the school district level. Documentation must show that there is staff allocated for the program and significant action will be taken within a two-year period, such as staff training, policy implementation, development of personnel infrastructure for problem solving and reporting issues, or IAQ assessment activities such as school walk-throughs, data collection, mapping, and/or action plans.
Documentation Requirements

Design Review Requirements

None

Construction Review Requirements

Provide the resolution signed by the school district (or school board or governing body for private and charter schools) requiring participation in U.S. EPA's Tools for Schools (or an equivalent program) for its schools.

Also supply additional documentation indicating that there is staff allocated for the program and significant action will be taken within a two-year period, such as staff training, policy implementation, development of personnel infrastructure for problem solving and reporting issues, or IAQ assessment activities such as school walkthroughs, data collection, mapping, and/or action plans.

Resources

- Region 1 U.S. Environmental Protection Agency New England office in Boston, Massachusetts—ph: (888) 372-7341 and at: www.epa.gov/iaq/schools/tools4s2.html
- Massachusetts Facility Administrators Association www.massfacilities.org
- Massachusetts Coalition for Occupational Safety and Health www.masscosh.org
- Massachusetts Public Health Association provides information for school administrators, teachers, and others: http://www.mphaweb.org/HealthySchools.htm
- The Asthma Regional Council of New England provides information on a variety of indoor air quality topics: www.asthmaregionalcouncil.org/indoor-and-ambient-air-quality
Green Cleaning

Intent

Protect student and staff health and the environment from exposure to hazardous cleaning products.

OM 7.1 – Green Cleaning

<table>
<thead>
<tr>
<th>OM 7.1 – Green Cleaning</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 point</td>
<td></td>
</tr>
</tbody>
</table>

Applicability
All projects.

Verification Required
Design Review | Construction Review | Performance Review

Requirement

1 point

OM 7.1.1 At the school district level, or the school governing body for private and charter schools, establish a resolution or policy including the following green cleaning and maintenance requirements:
- Only environmentally preferable and safer cleaning products that are certified by U.S. EPA Design for the Environment (DfE), Green Seal or EcoLogo programs shall be purchased.
- Prohibition of aerosol and plug-in air fresheners.
- Periodic audits of the project for cleanliness according to Association of Physical Plant Administrators (APPA) Guidelines.

AND

OM 7.1.2 Create a space inventory and conduct an audit between 12-18 months from occupancy (coordinated with the timing of OM 4.1 High Performance Operations) to measure cleaning program effectiveness according to APPA Leadership in Educational Facilities Custodial Staffing Guidelines and achieve Cleaning Level 2. Remediate as required to achieve Cleaning Level 2.

Implementation
Adopt and submit the green cleaning policy or resolution covering the required areas and submit the space inventory and completed audit.

Environmentally preferable and safer cleaners are those that are currently certified to any of the following standards:

Green Seal, GS-37 Cleaning Products for Industrial and Institutional Use, 2013, or other related Green Seal product standard. Product must be certified to display the Green Seal mark.

EcoLogo, UL Global Network, Janitorial & Janitorial Products standards (relevant product category standard). Product must be certified to display the EcoLogo mark.

Documentation Requirements

Design Review Requirements
None.

Construction Review Requirements
Submit the green cleaning policy or resolution covering the required areas.

Performance Review Requirements
Submit the space inventory and completed audit.

Resources

- Green Seal: www.greenseal.org
- The Healthy Schools Initiative of the Massachusetts Coalition for Occupational Safety & Health (MassCOSH): www.masscosh.org
- The policy from Boston Public Schools: www.masscosh.org/files/BPS_Cleaner_Policy.pdf
Integrated Pest Management

Intent

Reduce pesticide risk and exposure to students and staff.

Integrated pest management focuses on pest prevention using effective, least-toxic methods is proving practical to apply and cost-effective to operate.

<table>
<thead>
<tr>
<th>OM 8.0 – Integrated Pest Management</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement

1 point

OM 8.0.1 Develop and support an Integrated Pest Management (IPM) Plan that emphasizes a least-toxic approach to IPM.

OM 8.0.2 Design the projects exterior walls, foundation, attics, roofs, interior partitions and ceilings in food storage areas, food preparation and disposal areas, utility chases and penetrations, for integrated pest management by making it difficult for pests to enter the building including:

- Blocking openings in the enclosure larger than 1/4” by 3/8”.
- Use mesh or screens on openings required for airflow.
- Caulk all cracks larger than 1/16”.
- Any landscape planting must be located at least two feet from buildings.
- Facades should be designed to discourage birds from roosting.
- Select dumpsters that seal tightly and are easy for people to open and close, and enclosure designed to discourage pest infestation in buildings.
- Make all kitchen surfaces easy to degrease.

Implementation
Submit the Integrated Pest Management Plan. Construction drawings must include notes identifying features included to improve pest management.

An appropriate IPM plan, specified to be a least-toxic approach, reduces the need to apply chemical sprays or deploy bait traps in order to control pest populations. A successful plan eliminates food, water, and shelter for pests, thereby decreasing the likelihood that pests will enter school facilities. The control of food and its restriction to appropriate locations in the facility decreases pest problems, and increases Indoor air quality through the elimination of pest contaminants and chemical control agents.

Consider also designing school fencing and turf/landscape bed margins to prevent weed encroachment and the need for herbicides, including:

- Installing weed barrier mow strips under fencing that is ½ inch beneath final mow height of adjacent turf, that extends at least four inches from the widest part of the fence on both sides, and that will support the deck of a mechanical mower.

- Installing curbing between turf and other porous landscape features (landscape beds, gardens, mulch or sand play boxes, mulched paths, etc.) that extends vertically a minimum of six inches below grade and extends four inches horizontally at the turf margin.

Documentation Requirements

Design Review Requirements

Complete the CHPS Verified Plan Sheet Construction to indicate which drawings include notes identifying features included to improve pest management.

Construction Review Requirements

Submit the Integrated Pest Management (IPM) plan.

Resources

- US EPA IPM in Schools: www.epa.gov/pesticides/ipm/
- Beyond Pesticides: www.beyondpesticides.org
Anti-Idling Measure

Intent

Reduce the health and environmental effects of vehicle exhaust and decrease use of fuel by preventing unnecessary vehicle idling.

OM 9.0 – Anti-Idling Measures

According to the US Environmental Protection Agency (US EPA), exposure to diesel exhaust, even at low levels, is a serious health hazard and can cause respiratory problems such as asthma and bronchitis. Diesel emissions are well-documented asthma triggers and may increase the severity of asthma attacks.

OM 9.0 – Anti-Idling Measures

<table>
<thead>
<tr>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

Verification Required

Design Review

Construction Review

Performance Review

All projects.

Requirement

1 point OM 9.0

Adopt a no idling policy that applies to all school buses operating in the school district and all vehicles operating in the school grounds. The policy must include the following provisions:

- School bus drivers will shut off bus engines upon reaching destination, and buses will not idle for more than five minutes while waiting for passengers. This rule applies to all bus use including daily route travel, field trips, and transportation to and from athletic events. School buses should not be restarted until they are ready to depart and there is a clear path to exit the pick-up area.

- Post signage expressly prohibiting the idling of all vehicles for more than five minutes in the school zone.

- Transportation operations staff will evaluate and shorten bus routes whenever possible, particularly for older buses with the least effective emissions control.

- All school district bus drivers will complete a "no idling" training session at least once. All bus drivers will receive a copy of the school district’s No Idling Policy at the beginning of every school year.
Implementation

The term “school grounds” shall mean in, on or within 100 feet of the school, including any athletic field or facility and any playground used for school purposes or functions which are owned by a municipality or school district, regardless of proximity to a school building, as well as any parking lot appurtenant to such school, athletic field, facility or playground.

Establish the length of time an operator on school grounds may idle an engine before such idling becomes prolonged, and the limited circumstances under which the prolonged idling of an engine shall be permitted, including periods necessary to operate defrosting, heating or cooling equipment to ensure the health or safety of a driver or passengers or to operate auxiliary equipment and to undergo inspection or during maintenance.

Prohibit an operator of a school bus from idling a school bus engine while waiting for children to board or exit a bus on school grounds and from starting a school bus engine for any unnecessary period of time in advance of leaving the school grounds, unless the registrar determines that a school bus engine must be fully engaged in order to operate safety devices or that such idling prohibition would otherwise compromise the safety of children boarding or exiting a bus. Such regulations shall further prescribe templates for “no idling” signage to be posted by schools.

Documentation Requirements

Design Review Requirements

Reference specifications for anti-idling signage.

Construction Review Requirements

Provide a copy of the adopted anti-idling policy. Provide picture(s) of the installed anti-idling signage.

Resources

- US Environmental Protection Agency: Diesel Exhaust and Your Health www.epa.gov/ne/eco/diesel/health_effects.html
- The Asthma Regional Council offers a number of tools for the school district to use for its anti-idling program, including a model policy: www.asthmaregionalcouncil.org/indoor-and-ambient-air-quality
- The Massachusetts Department of Environmental Protection offers training to help school bus drivers and municipal employees eliminate unnecessary idling. See the following link for more information: http://www.mass.gov/dep/air/community/schbusir.htm DEP also has a variety of tools for school districts, including fact sheets, sample language for signage, sample newsletters, policy statements, and information on bus routing software
Green Power

School districts and municipalities have the opportunity to purchase green power in the form of Renewable Energy Certificates (RECs) or through Power Purchase Agreements (PPAs). These two mechanisms allow schools to use green power without constructing an on-site renewable power system.

<table>
<thead>
<tr>
<th>OM 10.1 – Green Power</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review, Construction Review, Performance Review</td>
</tr>
</tbody>
</table>

Requirement

1 point

OM 10.1.1 Commit to purchasing Renewable Energy Certificates (RECs) or renewable power purchased through a PPA equivalent to at least 15% of the school’s projected annual electricity needs as modeled under EE.P1 and EE.C1 for at least two years of occupancy. If green power is purchased at the district level it must allocated to the project.

1 points

OM 10.1.2 Comply with OM10.1.1, and purchase all RECs from a local generator within 200 miles of the project.

Implementation

RECs

For each megawatt-hour of power generated and supplied to the electric grid through renewable electricity generation (solar, wind, ocean thermal, wave, tidal, landfill gas and “low emission” bio-energy sources), a REC is issued for trade on the open market. Both new and old RECs can be purchased by retail electricity suppliers or renewable electricity suppliers for resale to customers. Consumers can purchase RECs through programs or companies across the country. When a consumer purchases RECs, the RECs are effectively retired and taken out of circulation, which contributes to the increased demand for generation and sale of additional renewable electricity.
An interesting characteristic of renewable energy certificates is that they can be purchased from any location in the country, however, purchasing RECs from local generation sources means that the environmental benefits are experienced locally.

PPAs

Power Purchase Agreements are a contractual means for a site-owner and a renewable energy installer to work together to provide green power on-site when the site-owner does not wish to outright own the system. In a PPA, the system is owned and maintained by the installer (ownership may also be by a 3rd party investor), and the site-owner purchases the power generated by the system for the contracted price. Typically, PPAs are structured so that the site-owner eventually has the right to own the system. The benefits of a PPA to a site-owner are that the upfront capital costs of installation and the ongoing maintenance costs are borne by the installer. Theoretically, a PPA allows the installer to build a larger system at the site than might otherwise be possible (site conditions are still the primary determinants of system size), therefore offsetting a larger portion of the site’s fossil fuel use.

To achieve this point, purchase a block of megawatt-hours (MWh) of renewable electricity from a REC supplier or wholesaler or through a PPA. The block of megawatt-hours purchased should equal 15% of the anticipated total electricity load of the school for two years of occupancy.

Purchasing clean energy can be documented as indicated below.

If the project developed an energy model for Energy EE.1, then cite the electricity load (in kWh) from the energy modeling report. Otherwise, an energy model must be developed to determine the school’s total electricity loads.

Supply a receipt or copy of a renewable energy certificate to document proof of purchase.

Documentation Requirements

Design Review Requirements

Provide a receipt or copy of a renewable energy certificate to document proof of purchase or provide the Power Purchase Agreement.

If pursuing OM 10.1.2, also submit a map indicating the distance between the project site and the generation site.

Construction Review Requirements

None

Resources
Community Energy: www.newwindenergy.com
Sterling Planet: www.sterlingplanet.com
Massachusetts Energy Consumers Alliance: www.massenergy.com/
For more information on PPAs, contact the Renewable Energy Trust at the Massachusetts Clean Energy Center: www.masscec.com
ENERGY STAR Equipment and Appliances

Intent
Install equipment and appliances that meet ENERGY STAR requirements for energy efficiency.

Building systems, such as HVAC and lighting, are not the only consumers of electricity in a school. Supplementary equipment associated with school operations, or plug loads, are a growing portion of operating budgets because of the growing prevalence of computer systems and other electrical equipment. Choosing efficient equipment that is designed to meet ENERGY STAR requirements minimizes energy consumption and lowers operating costs.

OM 11.0 – ENERGY STAR Equipment and Appliances

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

**Requirement(58,516),(869,806)

| Prerequisite | OM 11.0 | Establish a written policy that all newly purchased equipment and appliances to be used in the school shall be ENERGY STAR compliant in all product categories covered by ENERGY STAR. The policy must also prohibit the purchase of low-efficiency products, including incandescent lights, halogen torchieres, and portable electrical resistance heaters. |

Implementation

Building systems, such as HVAC and lighting, are not the only consumers of electricity in a school. Supplementary equipment associated with school operations, or plug loads, are a growing portion of operating budgets because of the growing prevalence of computer systems and other electrical equipment. Choosing efficient equipment that is designed to meet ENERGY STAR requirements minimizes energy consumption and lowers operating costs.

The ENERGY STAR program was established to provide accuracy and consistency in energy usage ratings and to encourage the purchase of efficient equipment. The program maintains a database of compliant manufacturers and products including computers, monitors, copy
machines, water coolers, printers, scanners, refrigerators, ceiling fans, and washing machines. In many cases, equipment that exceeds ENERGY STAR’s efficiency requirements is available and should be considered. When ENERGY STAR compliant equipment is not available, the project owner should submit a notice of exception to the relevant high performance school administrators.

Documentation Requirements

Design Review
Submit a signed copy of the resolution passed by the school board.

Construction Review
None

Resources
ENERGY STAR: www.energystar.gov/
Computerized Maintenance Management System (CMMS)

Intent

Use a computerized maintenance management system to track work orders and maintenance.

Computerized maintenance management systems offer the opportunity to enhance maintenance practices through the automatic scheduling and tracking of maintenance procedures. Web-based services and stand-alone products are available.

OM 12.1 – Computerized Maintenance Management System

<table>
<thead>
<tr>
<th>OM 12.1 – Computerized Maintenance Management System</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

OM 12.1 – Computerized Maintenance Management System

<table>
<thead>
<tr>
<th>OM 12.1 – Computerized Maintenance Management System</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

Prerequisite

OM 12.1 The school district shall purchase and use a computerized maintenance management system (CMMS) in the new or renovated school. If the district already uses a CMMS, the system must be expanded to incorporate automated maintenance scheduling for the new or renovated school.

Implementation

A Best Management Practice for preventive maintenance is a maintenance management system (MMS). Options exist for developing an MMS or implementing a computerized MMS with stand-alone software or web-based services. MMS systems may be integrated with other software programs used to maintain the school, such as the Energy Management System.

Documentation Requirements

Design Review

If planning to use an existing CMMS, complete the CHPS Verified Plan Sheet.

Construction Review
Submit a copy of a signed contract or the receipt for purchase of a CMMS system. If using an existing CMMS, provide verification that it has been modified as required by the CHPS Verified Plan Sheet.

Resources
INDOOR ENVIRONMENTAL QUALITY

HVAC Design – ASHRAE 62.1

Establishing a minimum level of indoor air quality positively impacts student and teacher performance, can reduce absenteeism, and avoid the potential for long and short-term health problems. All of the criteria in this category can be used to achieve excellent indoor air quality which starts during construction with proper drainage of the site, careful siting of air intakes, protecting building materials from moisture, and protecting HVAC systems from dust and debris. Implementing all the criteria in this section will provide a foundation for providing clean, breathable air in your school.

<table>
<thead>
<tr>
<th>EQ 1.0 – HVAC Design – ASHRAE 62.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 1.1 – Enhanced Filtration</td>
</tr>
<tr>
<td>EQ 1.2 – Dedicated Outdoor Air Systems</td>
</tr>
</tbody>
</table>

Prerequisite

8 points

Applicability

All projects.

Verification Required

Design Review | Construction Review | Performance Review

Requirement
Minimum outdoor air ventilation requirement

Design and construct the HVAC system to provide continuous outdoor air (OA) ventilation to each space during occupied hours including all full- and part-load conditions. The Project Engineer shall provide a signed letter that the Project complies with all of the following:

1. The school ventilation system shall be designed to operate in continuous mode during occupied hours and not readily defeated.

2. Ventilation rates during occupied hours including all full-and part-load conditions in all school areas shall be no less than required by the outdoor ventilation rate calculated according to the outdoor air ventilation rate procedure in ASHRAE 62.1 § 6.2 or § 6.4 if natural ventilation is used.

3. The ASHRAE 62.1 Mechanical Ventilation Calculation Worksheet shall be completed in full and include it in the project drawings and design documentation. And the table shall list for each room: the HVAC system ID number and HVAC type, and the minimum outdoor air flow rate, the rooms air classification and all exhaust fans.

4. HVAC systems and equipment shall meet the requirements of ASHRAE Standard 62.1-2010, §5

5. The design of condensate pans (§5.11) shall meet all requirements in ASHRAE Standard 62.1-2010, §5

6. The outdoor air intakes shall meet all requirements in ASHRAE Standard 62.1-2010, (§5.5)

 In addition, all intakes must be 6 feet above landscaped grade including soil, lawn, shrubs, or any plant life within 1.5 ft. horizontally of intake.

 Exception: For projects where, locating an air intake within 25 feet of a contaminant source is unavoidable, such as a renovation project, the intake opening shall be a minimum of 2 feet below the contaminant source and 10 feet horizontally from the nearest edge of the air intake to the nearest edge of the contaminant source.

7. The particulate matter filters or air cleaners shall meet all requirements in ASHRAE Standard 62.1-2010, (§5.8, §6.2.1.1 and §6.2.1.2). In addition, filtration media shall have a Minimum Efficiency Reporting Value (MERV) of 11 or higher, for all new HVAC systems excluding unit ventilators, which can have MERV 7. Replace all HVAC filtration media immediately prior to occupancy.

8. The mold resistance of air stream surfaces shall meet all requirements in ASHRAE Standard 62.1-2010, (§5.4).

9. All in-room plug in Air Cleaning Devices used in the school classrooms shall be models that are Certified and Labeled in accordance with California Air Cleaning Device regulation Section 94804 (see resources).
10. The school shall be in compliance with ASHRAE 62.1-2010 section 6.2.1.3. The design shall ensure that the ventilation system operates in continuous mode during occupied hours and is not readily defeated. Ventilation rates shall be no less than required by the outdoor ventilation rate calculated according to the outdoor air ventilation rate procedure in ASHRAE 62.1-2010 § 6.2 using the ASHRAE 62.1-2010 Spreadsheet for calculations; the OA rate that is greatest shall be applied to each space, or follow a local code or ordinance, whichever is more stringent.

For multiple spaces served by variable air volume (VAV) systems, this means that the minimum supply setting of each VAV box should be no less than the design outdoor ventilation rate calculated for each space. The box must be controlled so that the minimum required airflow is maintained at all times when the space is occupied, even when the fan has modulated to its minimum capacity. Additionally, if the following rooms have significant pollutant sources, art classrooms, darkrooms, kitchens and kitchenettes, locker rooms, copy printing rooms, science lab classrooms, woodwork shops and/or other classrooms, the pollutants shall be exhausted directly to the outside and not re-circulated. Local contaminate exhaust in rooms such as fume hoods may meet this requirement. The exhaust airflow rates shall be no less than required in ASHRAE 62.1 § 6.5.

HVAC systems and equipment shall meet the requirements of ASHRAE Standard 62.1-2010 §5, which addresses among other things the design of drain pans (§5.10), outdoor air intakes (§5.5), and air stream surfaces (§5.4).

To avoid particulate accumulation and/or mold in the ductwork, duct liners must meet the American Society for Testing and Materials (ASTM) standards C 1071 or UL 181 for surface erosion resistance and ASTM standards C 1104 or C 209 (at <0.5% absorption by volume) for water vapor sorption.

<table>
<thead>
<tr>
<th>EQ 1.1 – Enhanced Filtration</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 point</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects, except those with unit ventilators.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>
Implementation

The construction documents (drawings and specifications included in Construction Specifications Institute (CSI) Section 01350 or CSI Format (2004) 01 35 43.16 Environmental Procedures for Toxic Materials, shall include design details and control sequences presented in a manner allowing that compliance with the prerequisite may be verified. In addition to information on the contract documents, calculations used to determine the most stringent outdoor air ventilation rate shall be signed by the project engineer. ASHRAE 62.1-2010 Mechanical Ventilation Calculation Worksheet shall be completed by the project engineer documenting that each space meets the minimum outdoor air quantities according to ASHRAE 62.1-2010 calculations. The spreadsheet shall show that the outdoor air quantity in each room served by an HVAC system meets the minimum outdoor air quantity for the space. For multiple spaces the spreadsheet shall show that the minimum outdoor air quantities are met in each space including during times when all VAV boxes are turned down to their minimum flow positions. A completed table shall be compiled by the project engineer and included in the project drawings and design documentation. The table shall list for each room: the HVAC system ID number and HVAC type, and the minimum outdoor air flow rate, the room’s air classification and all exhaust fans. These drawings and documents including the table and electronic spreadsheet shall be submitted for verification. Minimum outdoor air quantities for all spaces shall be verified during HVAC system Testing and Balancing and included in minimum Commissioning requirements when all when all VAV boxes are turned down to their minimum flow positions.

Throughout this criterion, ventilation air means the designed outdoor air flow rate for maximum occupancy.

Controls shall be specified that operate the HVAC fans to provide outdoor air ventilation continuously during occupied hours, whether or not there is a need for heating or cooling. Thermostats with an “automatic” setting do not meet this requirement, since in this mode, the fans cycle on and off according to demands for heating or cooling.

The HVAC shall be operated continuously during working hours except during scheduled maintenance and emergency repairs or during periods for which the district can demonstrate that the quantity of outdoor air supplied by non-mechanical means meets the outdoor air supply rate required by ASHRAE Standard 62.1-2010, §6.2 (climate is suitable and an acceptable means for natural ventilation is provided).

Natural ventilation systems must be engineered to demonstrate sufficient outdoor air ventilation and thermal comfort and shall adhere to natural ventilation guidelines including:

- Maximize wind-induced ventilation by siting the ridge of a building perpendicular to the summer winds.
- Generally, naturally ventilated buildings should be narrow.
- Generally, each room should have two separate supply and exhaust openings. Locate exhaust high above inlet to maximize stack effect. Orient windows across the room and offset from each other to maximize mixing within the room while minimizing the obstructions to airflow within the room.
- Provide ridge vents.
- Consider the use of clerestories or vented skylights.
- Provide attic ventilation.
- Consider the use of fan-assisted cooling strategies.
- Consider open staircases that provide stack effect ventilation, but observe all fire and smoke precautions for enclosed stairways.
- Doors are not acceptable natural ventilation openings.

ASHRAE Standard 62.1-2010 §5 has a number of requirements to improve the effectiveness of outdoor air ventilation systems. Some of these requirements apply to the design of equipment and manufacturers. The design engineer shall check with manufacturers to verify that the equipment that is specified, complies with the requirements of §5. Some manufacturers identify product lines or equipment as complying with Standard 62.1.

Specify that the HVAC system provides a slope in condensate pans so that water does not stand, provides access for cleaning coils and other components, and makes sure that air stream surfaces are not porous including the requirement that insulation is not placed on internal air stream surfaces except for sound attenuation insulation that may be placed selectively on the inside of HVAC ducts if it is certified to meet ASTM C 1071 and ASTM C 1104 for surface erosion resistance and water vapor sorption.

Some jurisdictions may also be required to submit to the county.

Locating air intakes away from sources of potential air pollution will ensure that indoor air quality is not compromised by diesel fumes or exhaust air from ventilation, cooling towers, kitchen, or HVAC systems. Be particularly careful to locate air intakes away from areas where school buses and other vehicles may be idling.

Provide drawings showing all air intake openings. Clearly identify hazardous and noxious contaminant sources on the drawings and bubble each air intake with a 50 ft. diameter circle (25 ft. radius) on the drawings.

Where intake openings front on a street or public way, measure the horizontal distance from the centerline of the street or public way to the air intake. If an air intake is within 25 ft. of vents, chimneys, plumbing vents, exhaust fans, cooling towers, streets, alleys,
parking lots and loading docks, then show that it is at least 2 feet below the contaminant source and 10 feet away horizontally from the nearest edge of the air intake to the nearest edge of the contaminant source. Indicate the horizontal and vertical distances from the contaminant source in the drawings.

Air filtration improves indoor air quality especially for schools located near outdoor particulate sources such as highways. Filtration also protects the HVAC equipment. Filters remove airborne particulate material based on their size, shape and density. Filters are rated by different standards (e.g. arrestance and dust spot, MERV) that measure different aspects of performance. As a filter becomes loaded with captured particles, static pressure will increase across the filter bank, which requires more fan power. It is important to select a filter that is specifically designed for the specific application and to make sure that the HVAC filter enclosures are designed to perform with the filter in place without leakage around filter.

A minimum level of filtration is necessary to reduce the health risks associated air contaminants. A minimum level of filtration is necessary to reduce the health risks associated air contaminants from outdoors. Filters rated at MERV 11 will ensure very good quality ventilation air by blocking minute particles and allergens. MERV 11 filters remove 65-80% of particles 1.0-3.0 microns or larger in size, which includes various fumes, Legionella, some vehicle emissions, mold spores, pollen, and humidifier dust than lower MERV filters. This rating is conducted by ASHRAE standard 52.2. MERV scale range from 1 to 16.

For new construction or renovations that replace HVAC equipment, specify systems that accept the required filter efficiency without a loss of operating efficiency.

Note that MERV 11 filters do not fit into unit ventilators. Therefore, schools with unit ventilator systems are required to utilize MERV 7 filters. The pressure drop may be greater with MERV 11 filters versus filters with lower MERV ratings, and therefore, more energy may be required to draw air through these filters. There is often a tradeoff between incremental indoor air quality improvements and energy efficiency that design teams should bear in mind. This criterion may be especially desirable in environments where outdoor air quality is a serious concern, for example near schools in close proximity to heavy traffic.

Reference specification sections for MERV 11 filters in all HVAC air handling systems. Designate the CSI number, section, and page number that highlight compliance with this requirement.

Reference specification sections for replacement of filters with MERV 11 higher in all new HVAC equipment. Labels on filter entry doors of all HVAC Systems shall list the date that the filter was last changed on and the date for scheduled replacement. The schools maintenance plan (OM 5.1 and/or OM 6.0) should include a filter schedule that includes all air handling units, roof top units, unit ventilators, etc. and the rating of filters used for each piece of equipment.

EQ 1.1
For many years we have known that outdoor air pollution, especially particulate matter (PM), can be harmful to health. Recent studies have shown that children living or going to school very near busy roadways or in areas with high PM experience much higher rates of asthma and other respiratory disease. Recent action by the International Agency for Research on Cancer (IARC) has identified additional health impacts that may result from elevated exposures to outdoor pollution and PM. In October 2013, the IARC classified both outdoor air pollution and particulate matter as carcinogenic to humans (Group 1 carcinogens) alongside other known serious carcinogens including asbestos, plutonium, silica dust, ultraviolet radiation and tobacco smoke. The IARC in its evaluation found sufficient evidence that exposure to outdoor air pollution and particles causes lung cancer (Group 1) and also noted a positive association with an increased risk of bladder cancer. The IARC Director, Dr. Christopher Wild, stated, “There are effective ways to reduce air pollution and, given the scale of the exposure affecting people worldwide, this report should send a strong signal to the international community to take action without further delay.”

Filters rated at MERV 13 and higher will help ensure very good quality ventilation air by blocking some fine particles and most allergens. A MERV 13 filter has the ability to filter 90% of particles 1.0 to 3.0 microns in size, which includes lead dust, humidifier dust, mold spores, sand dust, fabric fibers, pollen, and dust mites, and filters some particles (less than 75%) that are 0.3 to 1.0 microns in size, etc. which includes viruses, carbon dust, and fine combustion smoke. Filters with a MERV 14 to 16 rating remove increasing amounts (about 80% up to more than 95%) of particles in the 0.3 to 1.0 micron size range, and thus help reduce exposure to truck and bus emissions from nearby roadways. HEPA filters (roughly equivalent to a MERV 17-20 rating) remove 99.97% to 100% of the smallest sized particles.

At a minimum these high efficiency filters (rated MERV 13 or higher) should be used in areas with elevated outdoor PM during one or more seasons of the year, and for schools near busy roadways.

Reference specification sections for MERV 13 filters in all HVAC air handling systems. Designate the CSI number, section, and page number that highlight compliance with this criterion.

<table>
<thead>
<tr>
<th>EQ 1.2 – Dedicated Outdoor Air System</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All Projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>
Ventilation systems have very significant implications on both overall facility energy and air quality. Advanced ventilation systems include fundamentally efficient strategies that are designed to minimize energy waste on ventilation, heating or cooling through elimination of inefficiencies in the way system elements work together. This is one of the major capabilities that separate “classical” and “transitional” HVAC systems from true “high performance” HVAC systems.

Dedicated outdoor air system are typically constructed around variable flow, energy recovery and evaporative processes. These reduce parasitic losses for fan and pumping energy. They also minimize the reliance on mechanical refrigeration for cooling but do not eliminate the need for it to efficiently process ventilation. DOAS systems can take multiple forms but must be able to independently deliver heating, cooling, and ventilation where, and only when it is needed. There are several potential configurations for fundamentally efficient designs. They can be affordably constructed from readily available components.

The practice of recirculation in traditional HVAC systems does not save energy, it compromises ventilation. A dedicated outdoor air system consistently delivers the required amount of outside ventilation air to each space.

Shut-off variable-air-volume delivery systems can be used with DOAS systems to control, measure and monitor ventilation in real time, permitting these systems to actively manage ventilation by delivering the precise amount of fresh outdoor air directly to each space without recirculating contaminants or pathogens generated in other spaces. Furthermore, VAV air terminal unit controls can be integrated with occupancy sensing devices to not only assure that appropriate levels of ventilation are provided when spaces are occupied, but also turn off ventilation to those spaces when they are not occupied.

For dedicated outdoor air systems to comply with the energy efficiency requirements or ASHRAE 90.1 they must utilize energy recovery to reduce the energy used to condition outdoor air a minimum of 50%, measured as enthalpy, at designconditions. Dedicated outdoor air systems that effectively employ two-stage air-to-air heat exchangers maximize the performance characteristics of energy recovery and energy avoidance equipment like heat wheels and indirect evaporative coolers. These configurations have demonstrated the ability to reduce annual ventilation cooling energy as much as 85% and heating energy requirements as much as 97%.

For more information on DOAS systems, visit http://www.doas-radiant.psu.edu/

Requirement

| 3 points | EQ 1.2 | Provide a dedicated outdoor air ventilation system with the ability to efficiently process and manage ventilation down to the individual room level. |

Implementation
Individual classrooms will vary in thermal loads depending on their orientation and other building conditions, as well as occupant preferences. If individual or integrated controls systems are to permit teachers to regulate the temperature of their classrooms, local air temperature control range of +/- 5 °F is required for this criterion. The minimum occupied rate of outdoor air ventilation to be provided should equal the minimum rate of ventilation required to satisfy ANSI/ASHRAE Standard 62.1-2010 for the applicable category of space computed using the Ventilation Rate Procedure. IAQ procedure demand control methods employing contaminant sensing may not be employed. The maximum amount of outdoor air to be provided

Project engineers shall provide engineering documentation on the drawings in tabular format demonstrating compliance with ANSI/ASHRAE Standard 62.1-2010 using the Ventilation Rate Method. Show and describe how the dedicated outdoor air HVAC system designs seeking credit: 1) Delivers 100% fresh outdoor air directly into each space without first mixing it with any recirculated building air (i.e. variable volume, displacement ventilation dual duct, etc.) and 2) Integrates an adequate energy recovery strategy to meet ANSI/ASHRAE/IESNA Standard 90.1-2010 air-to-air energy recovery requirements.

Cross-Category and Other Considerations
This criterion is related to Energy Performance, EE 1.0 Energy Performance.

Documentation Requirements

Design Review Requirements

EQ 1.0: Complete the CHPS Verified Plan Sheet. Construction drawings must include diagrams and calculations showing that the design meets the natural ventilation requirements. Include tables showing floor and window ratios of each room or if an engineered system, include outputs of CFD (Computational Fluid Dynamics) analysis. They should also specify compliant air filters. Construction drawings must include a table with seasonal temperatures and humidity design criteria, and metabolic rates for each space. Provide supporting documentation with PMV/PPD calculations, and/or ASHRAE Comfort Tool results that standards have been met.

EQ 1.1: Construction drawings must specify compliant air filters.

EQ 1.2: Construction drawings must include the required components of the DOAS system.

Include ASHRAE 61 MZ Calc spreadsheet or equivalent.

Construction Review Requirements

Submit approved submittal for compliant air filters.

Resources

- ANSI/ASHRAE Standard 62.1 Mechanical Ventilation Calculation Worksheet
Good indoor air quality includes proper ventilation, filtration, moisture and humidity management, and contaminate source control. This section includes an array of best practices to prevent or eliminate pollutants and chemicals releases.
<table>
<thead>
<tr>
<th>EQ 2.0</th>
<th>For achieving the strategies below, claim two points.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 2.0.1</td>
<td>Off-Gassing</td>
</tr>
<tr>
<td>Where chemical use occurs, including housekeeping areas, chemical mixing areas, copying/print rooms, photolabs, and vocational spaces, use deck-to-deck partitions with dedicated mechanical exhaust to the outdoors (no air recirculation, and negative pressure) at a rate of at least 0.50 cubic feet per minute per square foot, and adequate make up air. These spaces must have negative air pressure when the doors are closed. Negative air pressure is defined as mechanical exhaust to the outdoors at a rate of at least 0.50 cubic feet per minute per square foot. The spaces must maintain a negative pressure of at least 5 Pa (0.02 inches of water gauge) to a minimum of 1 Pa (0.004 inches of water) compared to their immediate environment and when their doors are closed. In photolabs, specify table vents to draw chemical vapors away from the breathing zone of dark room users. Doors to areas where hazardous materials are stored and used must be secured with self-locking and closing mechanisms.</td>
<td></td>
</tr>
<tr>
<td>EQ 2.0.2</td>
<td>Walk Off Mats</td>
</tr>
<tr>
<td>Provide a walk off mat system at every major outside common entryway to school buildings. Mat systems must be appropriate to the region. The mat system must consist of one of the following: Non-permanent mats: The district must have at least a two (2) year signed contract for non-permanent mats to be cleaned as seasonally appropriate. It is expected that maintenance staff will provide periodic maintenance in between. System must be at least 16 feet in overall length. OR Permanent Mats Shall consist of an exterior grate or grill 3-5 feet long that scrapes and provides water drainage, and an interior mat 6-9 feet long that traps and hides dirt and water (including possibly a finisher mat to clean and dry any residual dirt and moisture). Mats must be permanently installed. Any recessed grates, grills or slotted materials must be designed to be able to lift for cleaning. Specify periodic maintenance of walk off mat systems.</td>
<td></td>
</tr>
<tr>
<td>EQ 2.0.3</td>
<td>Control surface dust by providing hard-surfaced paving not less than eight feet by eight feet at all outside entrances or doorways to any school room (concrete or equivalent), together with covered walkways or entry canopies to keep rain from the walkway surface.</td>
</tr>
<tr>
<td>EQ 2.0.4</td>
<td>Electric Ignitions for Gas-Fired Equipment Specify electric ignitions for the following gas-fired equipment: water heaters, boilers, air-handling units, and cooking stoves.</td>
</tr>
</tbody>
</table>
EQ 2.0.5 No Mobile Fossil-Fuel Powered Equipment Indoors.

Prohibit all fossil-fuel-powered machinery that is mobile and whose specific function is for use inside the building. This is to prevent accumulation of exhaust inside the building from equipment such as polishers and burnishers. This criterion does not include stationary equipment such as gas stoves, chemistry equipment, and vocational equipment.

EQ 2.0.6

Install a carbon monoxide monitor in occupied spaces served by gas fired appliances, and/or adjacent to parking areas where cars may idle to prevent unhealthful exposures to carbon monoxide and other combustion gasses. These sensors are intended for life safety purposes. Sensors capable of detecting very low concentrations of CO are not required.

EQ 2.0.7

All school electronic devices including computers, imaging devices, and TV/AV systems shall meet the requirements of the EPEAT rating system, Silver or Gold level. All exposed cables and cords shall not contain any of the three phthalate esters of concern given in CPSIA, Section 108 (a) above 0.1% by weight. The phthalate esters of concern are di-(2-ethylhexyl)phthalate (DEPH), CAS 117-81-7; di-n-butyl phthalate (DBP), CAS 84-74-2; and butyl benzyl phthalate (BBP), CAS 85-68-7. Testing and analysis shall be conducted following CPSC-CH-C1001-09.3, 2010 and US EPA Method 8270D

Implementation

EQ 2.0.1

Design to physically isolate activities associated with chemical contaminants from other locations in the building, and provide dedicated exhaust systems to contain and remove chemical pollutants from source emitters at source locations. Eliminate or isolate high hazard areas and design all housekeeping chemical storage and mixing areas (central storage facilities and janitors closets) to allow for secure product storage. Design copier or print rooms with structural deck-to-deck partitions and dedicated outside exhaust systems.

Provide a letter signed by a professional engineer explaining how the spaces stated in the prerequisite are ventilated to maintain a minimum 1–5 Pa negative pressure, compared to their immediate environment, and are exhausted at a rate of 0.50 cfm/ft².

EQ 2.0.2

Particles tracked into the school on shoes are one of the chief sources of contamination of floors and carpets. Research shows that pesticides, heavy metals, and soil are tracked in on students’ shoes. The best way to keep the school free of dust, dirt, and contaminants is to prevent these unwanted items from entering the building in the first place. It is especially important to protect young school children since they are more likely to sit and play on classroom floors and be more directly exposed to contaminants.
EQ 2.0.3
Control surface dust by providing hard-surfaced paving not less than eight feet by eight feet at all outside entrances or doorways to any school room (concrete or equivalent), together with covered walkways or entry canopies to keep rain from the walkway surface.

EQ 2.0.4
The purpose of this criterion is to prohibit standing pilot lights in gas-fired equipment. Under certain conditions, the accumulation of carbon monoxide from standing pilot lights can cause dangerous air quality conditions for staff and students. Therefore, electric ignitions are required for the equipment listed in this prerequisite.

Reference specification sections for gas-fired equipment that uses electric ignitions to light gas burners.

EQ 2.0.5
Provide a resolution from the district indicating compliance.

EQ 2.0.6
Provide plans with locations of CO sensors highlighted. Include specifications for CO sensors.

EQ 2.0.7
Provide a resolution from the district indicating compliance.

Documentation Requirements

Design Review Requirements

EQ 2.0.1: Certify in the CHPS Verified Plan Sheet that the spaces stated in the prerequisite are ventilated to maintain a 1-3 Pa negative pressure, compared to their immediate environment, and are exhausted at a rate of 0.50 cfm/ft2.

EQ 2.0.2: Use the CHPS Verified Plan Sheet to reference sheet numbers identifying walk-off mats or equivalent track-off mitigation measures where required.

EQ 2.0.3: Use the CHPS Verified Plan Sheet to reference sheet numbers identifying paved areas outside entrances or doorways.

EQ 2.0.4: Use the CHPS Verified Plan Sheet to reference specifications for gas-fired equipment that uses electric ignitions to light gas burners.

EQ 2.0.5: Provide a letter signed by the school superintendent stating that no indoor mobile fossil fuel burning equipment will be used in the new or renovated facility.

EQ 2.0.6: Use the CHPS Verified Plan Sheet to reference CD sheet numbers identifying required carbon monoxide monitors.
EQ 2.0.7: Provide a copy of District purchasing policy or letter from District regarding purchasing of equipment that complies with the referenced requirements.

Construction Review Requirement

For credits EQ2.0.1-4 and EQ 2.0.6: Provide photographs of installed measures.

Resources

- National Floor Safety Institute: www.nfsi.org/splash.php
Outdoor Moisture Management

Intent
Achieve good indoor air quality to protect student and staff health and improve performance and attendance.

Due to health risks associated mold and microbial growth and the damage caused to buildings by water infiltration, all surface grades, drainage systems, and HVAC condensate must be designed to move water away from buildings and their foundations.

EQ 3.0 – Outdoor Moisture Management

<table>
<thead>
<tr>
<th>EQ 3.0 – Outdoor Moisture Management</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement

1 point

EQ 3.0

Drainage - Design surface grades to slope away from the building and the building foundation to drain away rainwater, snowmelt, and HVAC condensate and to prevent ponding, pooling or otherwise saturating the building envelope or foundation. Rain leaders, or downspouts, must be directed to infiltration structures, on site storage, rain gardens, or daylight - provided that surface drainage moves water well away from the building and does not result in unintended ponding or pooling. HVAC systems that use evaporation drip pans for condensate removal are prohibited.

Lawn irrigation systems shall be designed to prevent spray on building walls.

Implementation

EQ 3.0

Condensate removal systems that rely on gravity drainage are strongly preferred to systems that use pumps due to the reduced maintenance associated with gravity systems.

The following should be submitted to adequately show compliance:
- Site plan showing grading plan
- Diagram of condensate system. A signed statement indicating that it is an integral part of the HVAC system if such a diagram is not available.
- Typical detail of condensate drains showing drain trap and gravity drainage system
- Project team sign off that the drain trap and gravity drainage systems have been tested to show that water flows out and is neither blocked nor flows into the building.

Permanent irrigation systems that spray on buildings can cause structural damage and mold growth. Do not install irrigation systems in locations where they may spray directly onto buildings. Note: This requirement only applies to schools with permanent irrigation systems. Submit a plan of irrigation system showing that sprinkler ranges do not intersect with buildings.

Documentation Requirements

Design Review Requirements

Use CHPS Verified Plan Sheet to reference site plan showing required drainage, diagrams and details of condensate systems showing drain trap and gravity drainage system and irrigation plans showing that sprinkler ranges do not intersect with buildings.

Construction Review Requirements

Letter signed by a member of the project team stating that the drain trap and gravity drainage systems have been tested to show that water flows out and is neither blocked nor flows into the building. Submit pictures(s) of installed measures, minimum of one picture for each measure.

Resources
Ducted Returns

Intent

Prevent dust and microbial growth issues associated with plenum returns.

Plenum returns are easily contaminated with dust, dirt and microbial and fungi growth. Ducted returns, though more expensive upfront, will help prevent such after installation problems and reduce maintenance and repairs.

EQ 4.1 – Ducted Returns

<table>
<thead>
<tr>
<th>EQ 4.1 – Ducted Returns</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification Required

Design Review

Construction Review

Performance Review

Requirement

Regularly occupied spaces in the school must be served by a ducted HVAC return to minimize dust and microbial growth.

Implementation

Ceiling plenum returns are easily contaminated with dust and microbial growth. Ducted returns help prevent such problems and reduce maintenance and repairs.

Examples of non-regularly occupied spaces include storage, mechanical or laundry rooms with low occupancy.

As a best practice, projects pursuing this credit are encouraged to provide appropriate access doors to adequately clean and maintain ducts.

Documentation Requirements

Design Review Requirements

Use CHPS Verified Plan Sheet to reference plan sheets that show ducted returns.

Construction Review Requirements

None.
Resources
None
Construction Indoor Air Quality Management

Intent

Achieve good indoor air quality to protect student and staff health and improve performance and attendance.

A high level of indoor air quality starts during design, is implemented during construction, and maintained during operation.

<table>
<thead>
<tr>
<th>EQ 5.1 – Construction Indoor Air Quality Management</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 5.2 – Moisture Management</td>
<td>5 points</td>
</tr>
</tbody>
</table>

Applicability

Verification Required

All projects. EQ 5.1.1 and 5.1.3 apply to both renovation projects and new schools. EQ 5.1.2 applies only to projects with new HVAC systems.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement
<table>
<thead>
<tr>
<th>EQ 5.1.1</th>
<th>During construction, meet the recommended Design Approaches of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guideline for Occupied Buildings Under Construction, 2007, Chapter 3. Include the erosion and sedimentation control measures to minimize site dust during occupied renovations.</th>
</tr>
</thead>
</table>
| EQ 5.1.2 | If installing a new duct system, follow the SMACNA guidelines for “Duct Cleanliness for New Construction Guidelines” according to advanced levels of cleanliness. Of specific importance are the following:
- Specify that ductwork be sealed when transported to the construction site.
- Store ductwork in clean, dry conditions and keep sealed while it is stored.
- Wipe down internal surfaces of ductwork immediately prior to installation to remove dust.
- Seal open ends on completed ductwork and overnight work-in-progress.
- During installation, protect ductwork waiting to be installed with surface wrapping, etc.
- During construction, seal HVAC supply and return openings to protect them from construction dust infiltration (e.g., from drywall installation or wood floor sanding). |
2 points EQ 5.1.3 *Building Flush Out.*

The project team shall develop a plan, and include it in the specifications to flush out the building with outdoor air (no return air) based on the requirements and recommendations in the specifications to remove indoor pollutants prior to occupancy. The information should also be detailed in the project's TAB and control sequence of the specifications or project manual. The specifications at minimum must state that the maximum amount of outdoor air (the design outdoor air flow rate for maximum occupancy) must be provided during and after installation of VOC emitting materials for the maximum amount of time feasible, but not less than continuously (i.e. 24 hrs.) for seven days. It should be noted that the maximum amount of ventilation provided by an HVAC system may be limited not only by the system's capacity but also by the temperature and humidity of the outdoor air. The specifications should be developed utilizing the CHPS Best Practices Manual Volume II on Design guidelines for building flush out.

After construction ends, prior to occupancy, and with all interior finishes installed, flush out the building. Do this by supplying the ventilation rates over the specified time period per the plan developed in detail by the design engineer and provided in the specifications.

After flush out, replace air filters with new filters and provide two sets of additional replacement filters prior to occupancy.

For the case where a project has fallen behind schedule, the school may alternatively conduct the flush-out while the building is occupied provided all of the following measures to protect building occupants are taken prior to their use of the space. The square root of the total number of all classrooms must be tested for compliance with the following criteria. Any non-compliant rooms must be remedied and re-tested until they are compliant. Two additional classrooms per non-compliant classroom must also be tested in all items below in the event of non-compliance. Conduct IAQ testing using protocols consistent with the methods listed in Table 1. Use current versions of ASTM standard methods, EPA compendium methods, or ISO methods, as indicated. Laboratories that conduct the tests for chemical analysis of formaldehyde and volatile organic compounds must be accredited under ISO/IEC 17025 for the test methods they use. Demonstrate that contaminants do not exceed the concentration levels listed in Table 1.

Table 1. Maximum concentration levels, by contaminant and testing method

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Maximum concentration</th>
<th>ASTM and U.S. EPA methods</th>
<th>ISO method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>27 ppb</td>
<td>ASTM D5197; EPA TO-11 or EPA Compendium Method IP-6</td>
<td>ISO 16000-3</td>
</tr>
</tbody>
</table>
| Particulates (PM10 & PM2.5) | PM10: 20 micrograms per cubic meter
PM2.5: 12 | EPA Compendium Method IP-10 | ISO 7708 |
Total volatile organic compounds (TVOCs)

500 micrograms per cubic meter

EPA TO-1, TO-15, TO-17, or EPA Compendium Method IP-1

ISO 16000-6

Target chemicals listed in CDPH Standard Method v1.1, Table 4-1, except formaldehyde

CDPH Standard Method v1.1-2010, Allowable Concentrations, Table 4-1

ASTM D5197; EPA TO-1, TO-15, TO-17, or EPA Compendium Method IP-???

ISO 16000-3
ISO 16000-6

Carbon monoxide (CO)

9 ppm; no more than 2 ppm above outdoor levels

EPA Compendium Method IP-3

ISO 4224

ppb = parts per billion; ppm = parts per million; μg/cm = micrograms per cubic meter

Conduct the flush out for 24 hours a day continuous ventilation the total number of days necessary with all supply fans at their maximum rate and position. Thermal comfort is maintained during occupied hours, per the criteria in ASHRAE Standard 55. Internal temperatures are maintained at the most energy efficient level above 60°F; relative humidity is maintained no higher than 60% during non-occupancy hours. Under conditions where the heating can’t be met (60°F) at that fan speed, then adjust the fan to achieve 60°F.

All air handling unit dampers are at their maximum outdoor air position during the 14-day flush out. If the 60% relative humidity level cannot be achieved with maximum outdoor air position, reduce fan speed and/or outdoor air position as needed, but extend flush-out period beyond 14 days to accomplish roughly the same amount of total air throughput that would have occurred at maximum outdoor air position.

Classrooms shall not be “baked out”. The temperature in the building space shall not be increased to attempt to bake out and of the built environment. (If continuous ventilation is not possible, flush out must total the equivalent of 14 days of maximum outdoor air.)

Post-occupancy ventilation

When the contractor is required to perform touch-up (including furniture after occupancy) work involving products with chemical emissions, provide temporary construction ventilation during application and extend the building flush out by a minimum of 4 days after touch-up application, with 100% tempered outdoor air for 24 hours each day.
Implementation

EQ 5.1.1

For new schools constructed next to occupied schools, the construction process (and demolition process if the existing school is later torn down) will create dust, fumes, and exhaust from activities such as site grading, pouring of the foundation, framing, enclosing the walls and roof, landscaping, installation of stormwater and utility systems, and paving. The construction team must have a communications plan in place to alert school occupants to potential exposures. Additionally, there must be an occupant complaint system in place when construction activities are creating nuisance dust, fumes, and exhaust. Furthermore, if warranted, the construction team should consider protecting the occupied school’s outdoor air intakes to prevent entrainment of pollutants.

Reference specifications for a communication plan between the construction team and building occupants regarding complaints, concerns, and predicted changes to IAQ. The plan must consider communications from occupants as well as to occupants. And the plan must consider whether protection of outdoor air intakes is necessary for the project.

Designate the CSI number, section, and page number that highlight compliance with this requirement.

For occupied renovations, provide photographs (at least six), taken at various times during construction, with a narrative for each photo describing compliance with SMACNA guidelines as follows:

- Construction areas that were isolated from adjacent non-construction areas using temporary walls, plastic sheeting, or other vapor retarding barriers.
- Construction areas that were maintained at a negative air pressure compared to surrounding non-construction areas.
- Recirculating air ducts that were temporarily capped and sealed (appropriate filters may be used if nuisance particulates are the only contaminant of concern).
- Supply air systems that were operated with filters in place.

For occupied renovations, applicants must implement containment procedures for dusts, gases, fumes, and other pollutants created as part of any planned construction, addition to, or renovation of a school building. Containment procedures must follow the SMACNA IAQ Guidelines for Occupied Buildings Under Construction. All bids received for school construction or renovations must include the cost of planning and execution of containment of construction pollutants consistent with the SMACNA guidelines. The plan must include a plan for communicating information about procedures, protective measures, and construction schedules from the construction team to the building occupants. Additionally, there must be an occupant complaint systems in place when construction activities are creating nuisance dust, fumes, and exhaust.

Reference specifications for an Indoor Air Quality Management Plan that addresses SMACNA control measures for maintaining good indoor air quality on the job site.
specifications should indicate who is responsible for implementing the IAQ management plan, and the plan should address depressurizing work areas, ongoing housekeeping, scheduling of construction activity to lower impacts of IAQ problems on workers and building occupants, and the method of communication between construction team and building occupants regarding complaints, concerns, and predicted changes to IAQ. Designate the CSI number, section, and page number that highlight compliance with this requirement.

EQ 5.1.2

This construction practice will improve indoor air quality by minimizing the amount of indoor pollutants that are distributed and retained by the surface materials and ventilation systems during construction.

Reference specification sections the SMACNA guidelines for duct protection including specific references to SMACNA Duct Cleanliness Guidelines Advanced Levels. Designate the CSI number, section, and page number showing compliance with this requirement. Provide photographs taken at various times during construction, with a narrative for each photo describing compliance with SMACNA Duct Cleanliness advanced levels.

Duct insulation should be located on the outside of ductwork, unless it is being installed for the purpose of attenuating sound, and there is no other means of attenuation sound. Duct liners have been known to deteriorate over time and absorb moisture, leading to the release of particles in the ducts that can be blown into classrooms and offices. Ensure that the duct liners used for sound attenuation meet the ASTM standards for surface erosion resistance and water vapor sorption.

Designate the CSI number, section, and page number that highlight the requirements for ASTM standards C 1071 or UL 181 for surface erosion resistance and ASTM standards C 1104 or C 209 (at <0.5% absorption by volume for ASTM C 209) for water vapor sorption.

Resources

Requirement

1 point

EQ 5.2

Mold Prevention - Building materials, especially gypsum wallboard, wood, porous insulation, paper, and fabric, should be kept dry to prevent the growth of mold and bacteria. Cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials. Water damaged materials shall be dried within 24 hours. Due to the possibility of mold and bacterial growth, materials susceptible to moisture that are damp or wet for more than 24 hours must be discarded. Immediately remove materials showing signs of mold and mildew, including any with moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.

Implementation

Construction activities can affect indoor air quality long after the building is occupied. Being careful to protect building materials from moisture and removing water-damaged materials are important practices in the prevention of mold growth in new buildings.

Reference specification sections for protection of building materials from water damage, and designate the CSI number, section, and page number that highlight compliance with this requirement.

Provide photographs taken at various times during construction, with a narrative for each photo describing techniques for protecting building materials from mold and moisture damage.

Documentation Requirements

Design Review Requirements

EQ 5.1.1 & 5.1.2 – Use CHPS Verified Plan Sheet to reference plan sheets which include Indoor Air Quality management features.
EQ 5.1.3 – Use the CHPS Verified Plan Sheet to reference specifications for the building flush out.

EQ 5.2: Reference specification sections for protection of building materials from water damage, and designate the CSI number, section, and page number that highlight compliance with this requirement.

Construction Review Requirements

EQ 5.1.1 & 5.1.2 – Submit pictures, taken at various times during construction, with a narrative for each photo describing compliance with the various requirements.

EQ 5.1.3 – Submit a narrative describing implementation of the flush out option chosen, pictures and sign-off from the Contractor that it took place.

EQ 5.2 – Submit pictures taken at various times during construction, with a narrative for each photo describing techniques for protecting building materials from mold and moisture damage.

Resources

- ANSI/ASHRAE Standard 62.1-2010, Ventilation for Acceptable Indoor Air Quality:
- ANSI/ASHRAE Standard 62.1-2010 Mechanical Ventilation Calculation Worksheet
- California Certified Air Cleaning Devices: www.arb.ca.gov/research/indoor/aircleaners/certified.htm
Post Construction Indoor Air Quality

Intent

Improve indoor air quality by minimizing the amount of indoor pollutants that are distributed and retained by the surface materials and ventilation systems during construction.

EQ 6.1 – Post Construction Indoor Air Quality

<table>
<thead>
<tr>
<th>Credit</th>
<th>1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

Vacuum carpeted and soft surfaces with a certified vacuum or high-efficiency particulate air (HEPA) filter vacuum that meets or exceeds the CRI Seal of Approval/Green Label Vacuum Cleaner Program after construction is complete and prior to occupancy. For phased, occupied renovations, HEPA vacuum the carpet daily in occupied areas, and in areas adjacent to those affected by construction activities.

Implementation

Reference specifications for vacuuming of carpeted floors prior to full building occupancy using a certified vacuum or high efficiency particulate air (HEPA) filter vacuum that meets or exceeds the CRI Seal of Approval/Green Label Vacuum Cleaner Program. For phased, occupied renovations, or adjacent areas that may be affected by construction activities, submit a signed letter from the Superintendent stating that:

- Carpeting in occupied areas of the school shall be vacuumed on a daily basis...
- Only certified Carpet & Rug Institutes Seal of Approval (CRI SOA) Program vacuums with manufacture model identification numbers listed on the Carpet & Rug Institutes Seal of Approval (CRI SOA) Program website List will be permitted to be used for daily vacuuming of carpet in the school.

- All maintenance and cleaning staff shall keep a written log reviewed by the schools Facility Manager annually verifying that each vacuum used in the school operated at all times with the proper filter defined for the specific vacuum in the Carpet & Rug Institutes Seal of Approval (CRI SOA) Program.

- Tracking labels shall be included and used documenting date of all past and next filter replacements.

Documentation Requirements

Plan Sheet Approach

Design Review Requirements

Use CHPS Verified Plan Sheet to reference specifications for vacuuming of carpeted floors prior to full building occupancy using a certified vacuum or high efficiency particulate air (HEPA) filter vacuum that meets or exceeds the CRI Seal of Approval/Green Label Vacuum Cleaner Program. For phased, occupied renovations, or adjacent areas that may be affected by construction activities.

Construction Review Requirements

Submit a signed letter from the Superintendent, or designee, stating that:

- Carpeting in occupied areas of the school shall be vacuumed on a daily basis

- Only certified Carpet & Rug Institutes Seal of Approval (CRI SOA) Program vacuums with manufacture model identification numbers listed on the Carpet & Rug Institutes Seal of Approval (CRI SOA) Program website List will be permitted to be used for daily vacuuming of carpet in the school.

- All maintenance and cleaning staff shall keep a written log reviewed by the schools Facility Manager annually verifying that each vacuum used in the school operated at all times with the proper filter defined for the specific vacuum in the Carpet & Rug Institutes Seal of Approval (CRI SOA) Program.

- Tracking labels shall be included and used documenting date of all past and next filter replacements.

Resources

Low Emitting Materials

Many common building products and building materials used indoors in the construction of educational facilities and other buildings are sources of volatile organic chemicals (VOCs). When emitted to indoor air, these pollutants are inhaled by occupants. Such inhalation exposures can result in adverse health effects. These effects include sensory and upper respiratory irritation, pulmonary irritation, asthma, damage to organ systems and neurological and reproductive systems, and increased risk of cancer. Exposure to airborne VOCs is an especially important issue for schools as children may be more susceptible than adults. In order to reduce the potential for adverse effects due to inhalation exposures to VOCs, it is important to specify and utilize products and materials in the construction of the interiors of classrooms and other educational buildings that have low emissions of VOCs that are known to be harmful.

<table>
<thead>
<tr>
<th>EQ 7.0 – Low Emitting Materials</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects. This criterion applies to new schools, a new building on an existing campus, additions and major renovation projects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
</tbody>
</table>
Prerequisite: EQ 7.0

Paints & Coatings

This prerequisite addresses all paints and coatings that are applied onsite in the project’s interior. The affected products include but are not limited to sealers, stains, clear wood finishes, floor sealers and coatings, waterproofing sealers, primers, flat paints and coatings, non-flat paints and coatings, and rust preventative coatings. 90%, or more, of the total volumes of such products shall meet the applicable VOC content requirements of the California Air Resources Board (CARB) 2007, Suggested Control Measure (SCM) for Architectural Coatings, or the South Coast Air Quality Management District (SCAQMD) Rule 1113, effective June 3, 2011. Compliance shall be documented by product data sheets, or equivalent. Use definitions and table values in the selected VOC content standard and clearly identify the standard selected for each product.

Flooring Systems

This prerequisite addresses all resilient flooring and carpet systems installed in the project’s interior. 75%, or more, of the installed area of such products shall be tested for emissions of VOCs of concern with respect to chronic inhalation exposures following the specifications of the CDPH Standard Method V1.1, 2010 and shall be compliant with the Standard Method when modeled to the school classroom scenario described therein.

Composite Wood

This prerequisite addresses all composite wood panels and building products with composite wood cores that are installed onsite in the project’s interior. Composite wood is defined in the California Air Resources Board (CARB) Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products (California Code of Regulations, Title 17, Sections 93120-93120.12). The affected materials are composite core and veneer core hardwood plywood (HWPW, particleboard (PB), medium density fiberboard (MDF), and thin MDF. 90 percent, or more, of the total area of composite wood panels and the composite wood cores of finished building products (e.g., engineered wood floors, doors, trim/molding, cabinetry, and counter tops) shall meet the applicable ATCM Phase 2 formaldehyde emission standards. Compliance shall be documented by product labels and data sheets, chain-of-custody documentation, or equivalent.

<table>
<thead>
<tr>
<th>EQ 7.1 – Additional Low Emitting Materials</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 points</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification Required

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement
<table>
<thead>
<tr>
<th>5 points</th>
<th>EQ 7.1</th>
<th>Projects may select from among the six available options below, with a maximum of 5 points available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 7.1.1</td>
<td>Adhesives & Sealants</td>
<td>Products in this category include but are not limited to carpet, resilient and wood flooring adhesives; base cove adhesives; ceramic tile adhesives; drywall and panel adhesives; aerosol adhesives; adhesive primers; acoustical sealants; fire stop sealants; HVAC duct sealants, sealant primers; and caulks. Note that structural adhesives are excluded, and sealers including concrete floor sealers and other waterproofing sealers are treated under Option 2 for Paints & Coatings. All adhesives and sealants used on the project in quantities of 2.5 gal (10 liters) or more and totaling 90% or more of the total volumes of such products applied onsite in the project's interior shall meet the VOC content requirements in the applicable category of South Coast Air Quality Management District (SCAQMD) Rule 1168, Adhesive and Sealant Applications, amended January 2005. Compliance shall be documented by product data sheets, or equivalent. Further, 90%, or more, by volume of the flooring, wall covering and wall base adhesives and sealants covered under this criterion shall be tested for emissions of VOCs of concern with respect to chronic inhalation exposures following the specifications of the CDPH/EHLB Standard Method V1.1, 2010. The test results shall be compliant with the Standard Method when modeled to the school classroom scenario as follows. Flooring adhesives and sealants shall be modeled using the manufacturer's specified coverage and the classroom flooring area. Wall applied adhesives and sealants shall be modeled using the manufacturer's specified coverage and the classroom wall paint and wall coverings area. Wall base adhesives shall be modeled similarly using the wall base area.</td>
</tr>
<tr>
<td>EQ 7.1.2</td>
<td>Flooring Systems</td>
<td>Flooring systems include but are not limited to: carpet with or without an integral cushion, carpet with an integral adhesive system, and separate cushion; resilient flooring; wood flooring; ceramic tile flooring; other mineral-based flooring (either natural or manmade) without any organic component, and concrete flooring. For the purposes of this option, it is assumed that ceramic tile, organic-free mineral-based flooring, and concrete flooring are negligible sources of VOCs and are available for credit without any testing requirements. Site applied flooring adhesives are treated under Option 1 for Adhesives & Sealants, and site applied flooring stains, sealers and coatings are treated under Option 2 for Paints & Coatings. All flooring systems installed in the project's interior totaling 90% or more of the total floor area shall be tested for emissions of VOCs of concern with respect to chronic inhalation exposures following the specifications of the CDPH Standard Method V1.1, 2010 (CDPH Standard Method). The test results shall be compliant with the Standard Method when modeled to the school classroom scenario using the classroom flooring area. For systems consisting of more than one distinct layer (e.g., carpet with separate cushion), all layers shall individually meet the requirements of the CDPH Standard Method.</td>
</tr>
</tbody>
</table>
Composite Wood and Agrifiber Products

Composite wood is defined in the California Air Resources Board (CARB) Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products (California Code of Regulations, Title 17, Sections 93120-93120.12). The affected materials are composite core and veneer core hardwood plywood (HWPW, particleboard (PB), medium density fiberboard (MDF), and thin MDF. Agrifiber products are composite boards produced from agricultural/biobased materials and a chemical binder system. At least 90%, by area, of the composite wood and the composite wood cores of finished building products (e.g., engineered wood floors, doors, trim/molding, cabinetry, and counter tops) installed onsite in the project’s interior shall either 1) be manufactured with no-added formaldehyde (NAF) based resins, or 2) be manufactured with ultra-low emitting formaldehyde (ULEF) resins and shall meet the appropriate emission requirements established by the ATCM for NAF and ULEF products.

Additionally, at least 90%, by area, of all agrifiber products installed onsite in the project’s interior shall be manufactured with NAF based resins.

Compliance of NAF and ULEF materials shall be demonstrated by product labels and data sheets, chain-of-custody documentation, or equivalent.

Structural plywood, structural panels, oriented strand board, structural lumber, glue laminated timber, prefabricated wood joists, and finger jointed lumber, are excluded from this option and these requirements.
EQ 7.1.4 Furniture & Furnishings

This option is only available if 75% or more of the total number of individual stations (defined as a chair and associated work surface, i.e., either a desk or a desk/chair combination) are new and/or newly remanufactured/refurbished. All such furniture totaling 90% or more of new individual stations (e.g., combined classroom and administrative stations) shall meet this requirement.

The furniture, both classroom and administrative, shall be tested for VOC emissions following the procedures in ANSI/BIFMA M7.1-2011. Workstations and seating, both classroom and administrative, shall be tested individually except a pupil desk/chair combination is treated as a single unit. Administrative area and teacher workstations and seating shall be evaluated for VOC emissions using the parameters for an open plan workstation and seating as defined in M7.1. Pupil classroom workstations and seating shall be evaluated for emissions using parameters defined for the classroom in CDPH Standard Method V1.1, 2010. The furniture modeling parameters are listed in Table 1, below. The furniture shall meet the VOC emissions guidelines defined in ANSI/BIFMA X7.1-2011 and ANSI/BIFMA e3-2012, the furniture sustainability standard, as specified in Table 1.

Table 1: Modeling parameters and VOC emission guideline requirements for administrative area and teacher workstations and seating and classroom pupil workstations and seating.

<table>
<thead>
<tr>
<th>Modeling Parameters</th>
<th>Admin Area & Teacher Workstation</th>
<th>Seating</th>
<th>Classroom Pupil Workstation</th>
<th>Seating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of units</td>
<td>1</td>
<td>1</td>
<td>27<sup>a</sup></td>
<td>27<sup>a</sup></td>
</tr>
<tr>
<td>Air Flow rate, m<sup>3</sup>/h</td>
<td>15.01<sup>b</sup></td>
<td>24.84<sup>b</sup></td>
<td>191<sup>c</sup></td>
<td>191<sup>c</sup></td>
</tr>
<tr>
<td>Total workstation area, m<sup>2</sup></td>
<td>21.75<sup>d</sup></td>
<td>n/a<sup>e</sup></td>
<td>n/a<sup>e</sup></td>
<td>n/a<sup>e</sup></td>
</tr>
<tr>
<td>VOC Emission Guidelines</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Meet ANSI/BIFMA X7.1-2011</td>
<td>Same as X7.1</td>
<td>Same as X7.1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Meet ANSI/BIFMA e3-2012, Section 7.6.1<sup>f</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Meet ANSI/BIFMA e3-2012, Section 7.6.2<sup>g</sup></td>
<td>Not required</td>
<td>Not required</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a. CDPH Standard Method specifies 27 occupants per classroom.
b. Air flow rates specified in M7.1 for open plan workstations and seating.
c. Classroom air flow rate from CDPH Standard Method.
d. Total open plan workstation area (work surface + storage + panel) as defined in M7.1.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>Not applicable. Modeling of seating is performed on a per unit basis, not area.</td>
</tr>
<tr>
<td>f.</td>
<td>Administrative workstations shall meet the requirements using either the concentration or the emission factor approach defined in M7.1. For the latter, use the open-plan workstation emission factor requirements. Classroom furniture (either workstations, seating, or combined desk seating units) shall meet the concentration limits for a workstation system as specified in the e3 standard.</td>
</tr>
<tr>
<td>g.</td>
<td>Workstation individual VOC concentration limits and open-plan workstation emission factor limits are defined in the e3 standard, Annex C.</td>
</tr>
<tr>
<td>h.</td>
<td>The formaldehyde concentration limit is 9 µg/m³.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ 7.1.5</th>
<th>Paints & Coatings</th>
</tr>
</thead>
<tbody>
<tr>
<td>See EQ 7.0 for the description of the paints and coatings covered under this criterion. 90%, or more, by volume of all interior paints and coatings normally applied to walls, ceilings, floors or trim shall be tested for emissions of VOCs of concern with respect to chronic inhalation exposures following the specifications of the CDPH Standard Method V1.1, 2010. The test results shall be compliant with the Standard Method when modeled to the school classroom scenario as follows. Flooring sealers and paints shall be modeled using the manufacturer’s specified coverage and the classroom flooring area. Wall applied paints and coatings shall be modeled using the manufacturer's specified coverage and the classroom wall paint and wall coverings area. Ceiling applied paints and coatings shall be modeled similarly using the ceiling area. Wood stains and finishes and trim applied paint shall be modeled similarly using the area of the classroom door plus the area of the wall base (i.e., 11.6 m²).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ 7.1.6</th>
<th>Ceiling & Wall Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling and wall systems include but are not limited to ceiling insulation installed within the structural envelope, wall insulation, acoustical ceiling panels, gypsum board wall panels, tackable wall panels, and wall coverings. Ceramic tile and other organic-free, metal-, or mineral-based wall coverings are available for credit without any testing requirements. Site applied adhesives and sealants are treated under Option 1, Adhesives & Sealants, and site applied paints and coatings associated with ceiling and wall systems are treated under Option 2, Paints & Coatings. All ceiling and wall systems installed in the project’s interior totaling 90% or more of the total areas of such products shall be tested for emissions of VOCs of concern with respect to chronic inhalation exposures following the specifications of the CDPH Standard Method V1.1, 2010 (CDPH Standard Method). The test results shall be compliant with the Standard Method when modeled to the school classroom scenario using the classroom ceiling area and/or wall area as appropriate. For systems consisting of more than one distinct layer (e.g., walls comprised of insulation, wall panel and wall covering), all layers shall individually meet the requirements of the CDPH Standard Method.</td>
<td></td>
</tr>
</tbody>
</table>
Implementation

For the purposes of these requirements, indoor products and materials are defined as materials installed or applied on site inside of a building. The building interior is defined as everything within the waterproofing membrane. The building exterior is defined as everything outside and inclusive of the primary and secondary weatherproofing system, such as waterproofing membranes and air- and water-resistive barrier materials. Low emitting materials within a selected option shall be used throughout the project including all classroom areas, teaching laboratories, administrative and staff areas, indoor circulation areas, restrooms, and multipurpose areas such as gymnasiums. Shops or other areas requiring specialty finishes may be excluded. Ninety percent (90%) or more of the combined surface area or quantity measure of an entire system (e.g., floor, ceiling, furniture) or the individual components of a system (e.g., wall assembly consisting of three components – insulation, wall panel, and wall covering) shall be comprised of low emitting materials in order to receive credit for an option. Unless otherwise specified below, low emitting materials shall meet the testing and VOC emission requirements of the California Department of Public Health’s (CDPH) Standard Method for the Testing and Evaluation of Volatile Organic Emissions from Indoor Sources Using Environmental Chambers, Version 1.1 (2010). The school classroom shall be used as the exposure modeling scenario for evaluating the acceptability of VOC emissions as described in the Standard Method, Tables 4-2 and 4-3. For wet applied products, additional content criteria are specified.

Construction documents shall specify the low emitting products to be used on the project and that these meet the requirements defined herein. Products requiring testing for VOC emissions may be selected from the CHPS High Performance Product Database www.chps.net/products or acceptable labeling or certification programs acknowledged on the CHPS web site. Additionally, products not currently listed may be tested by an independent laboratory as prescribed by CHPS. Provided the results of the tests are accepted by CHPS, credit may be obtained assuming all other requirements have been met.

Documentation Requirements

Design Review Requirements

Use CHPS Verified Plan Sheet to reference specification sections for low-emitting products with the maximum allowed VOC concentration levels per product and certifications as required.

Construction Review Requirements

Submit the Schedule of Values for the project, formatted to group together all products within any category claimed for Low Emitting credit or prerequisite. Include subtotals of the value for compliant products and all products by category.

Complete the CHPS Verified Plan Sheet to confirm compliance with requirements.
Resources

- CHPS High Performance Products Database: www.chps.net/products
- California Air Resources Board: Suggested Control Measures: www.arb.ca.gov/coatings/arch/docs.htm
This radon criterion is intended to ensure that schools are assessed for their radon levels and that the levels are low. Elevated radon concentrations exceeding the US EPA action level may be associated with radon-induced lung cancer and reducing radon levels through US EPA’s suggested mitigation methods may reduce radon-induced lung cancer. According to the Federal Radon Action Plan (Action Plan) an estimated one-half million of US homes, schools and daycare facilities potentially have an elevated radon level. And according to the US EPA the only way to know if elevated radon levels are present is to test. Mitigation measures should be pursued during both the design and construction phases.

<table>
<thead>
<tr>
<th>EQ 8.1 – Low Radon</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement

1 point

Implementation

Documentation Requirements

Design Review Requirements
Supply specifications indicating responsibility for radon testing.

Construction Review Requirements
The Project Team shall provide a letter stating (1) that the school and site have been assessed and measured in accordance with US EPA Guidance for Radon Testing in Schools, Radon Measurement in Schools – Revised Edition (EPA 402-R-92-014) and (2) that radon mitigations have been made in accordance to US EPA Guidance for Radon Mitigation if radon air concentrations equal or exceed 4 pCi/L.

Resources

- Managing Radon in Schools, The Indoor Air Quality Tools for Schools Approach:
- Key Drivers and Strategies for Success: www.epa.gov/iaq/schools/pdfs/kit/managing_radon.pdf
- Guidance on planning, implementing, and evaluating a radon testing program for a school: www.epa.gov/radon/pdfs/radon_measurement_in_schools.pdf
- EPA’s Radon home page, Provides facts, discussion points, and frequently asked questions and answers: www.epa.gov/radon
- EPA’s Radon Guidance for schools: www.epa.gov/radon/pubs
- IAQ Reference Guide Appendix G - Radon
- State radon office for state-specific recommendations: www.epa.gov/radon/whereyoulive.html
Thermal comfort is controlled by six factors: air temperature, relative humidity, radiant temperature, air movement, occupant activity and clothing. Design the building envelope and mechanical systems to provide optimal comfort and energy efficiency.

EQ 9.1 – Thermal Comfort – ASHRAE 55

<table>
<thead>
<tr>
<th>Credit</th>
<th>4 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verifi cation Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

| 4 points | EQ 9.1 | Comply with the current ASHRAE Standard 55 for thermal comfort standards. |

Implementation

Indoor design temperature and humidity for general comfort applications shall be determined in accordance with the American National Standards Institute (ANSI)/ASHRAE 55. The standard specifies conditions in which a specified fraction of the occupants will find the environment thermally acceptable. Comfort conditions for naturally ventilated buildings are included in the standard. Provide a summary that identifies each thermally controlled zone and the temperature and humidity control ranges and method of control used for each zone.

The design should also consider other important factors such as minimizing temperature differences between exterior surfaces and interior walls, decreasing the temperature variation between floors and ceilings, and decreasing the velocity of air flow such as drafts.

Supply a letter signed by the project engineer certifying that ASHRAE Standard 55 guidelines will be achieved and how they will be achieved.
Documentation Requirements

Design Review Requirements

Use CHPS Verified Plan Sheet to reference sheet or specification section that includes a table with seasonal temperatures and humidity design criteria, and metabolic rates for each type of space. The project Engineer shall certify that the project is designed to meet the ASHRAE Standard 55 guidelines.

Drawings must identify thermal zones, temperature and humidity control ranges, and their method of control.

Construction Review Requirements

None.

Resources

- ANSI/ASHRAE Standard 55
Temperature and Ventilation Controls: A high performance school is a comfortable place to learn. Temperature and humidity are important factors in maintaining occupant comfort. A comfortable and healthy indoor environment increases productivity and learning and reduces absenteeism.

Operable windows are important for personal comfort and have been shown to improve student performance.

Intent
Enable teachers to have reasonable control of the thermal environment within their classrooms.

EQ 10.1 – Individual Controllability

EQ 10.2 – Controllability of Systems

<table>
<thead>
<tr>
<th>EQ 10.1 – Individual Controllability</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

- All projects in which New HVAC system is being installed.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement

- EQ 10.1 Provide an individual temperature control for each classroom with an independent temperature sensor.

<table>
<thead>
<tr>
<th>EQ 10.2 – Controllability of Systems</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

- All projects.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement
1 point

EQ 10.2 Ninety percent (90%) for new schools and new school buildings, and seventy five percent (75%) for major renovations, of all classrooms shall have a minimum of one operable window per classroom that is reasonably accessible to the occupants. This precludes the use of ladders to adjust the window opening.

Provide a temperature control device that can be locally adjusted to the conditions in the individual classroom.

Implementation

EQ 10.1

Temperature Controls

Individual classrooms will vary in temperature depending on their orientation, glazing apertures, occupancy, and the effectiveness of the heating or cooling systems. Provide individual systems to allow teachers to regulate the lighting and temperature of their classrooms.

EQ 10.2

Operable Windows

Provide at least one operable window in each classroom. Train teachers on how to properly use the HVAC controls in their rooms and on how opening doors and windows affects the HVAC system and the acoustical environment in a classroom. Operable windows are important for both personal comfort and operation if for example, power loss occurs and mechanical ventilation cannot be provided.

Reference specifications for operable windows. Designate the CSI number, section, and page number that highlight compliance with this requirement. For the purposes of this part of this criterion, classrooms are:

- General classrooms
- Art rooms
- Music rooms
- Science rooms
- Computer rooms
- Special needs, remedial, and collaborative space
- Industrial technology spaces
- Work and family studies spaces

Cross-Category and Other Considerations
This criterion is related to EE 1, Energy Performance; EE 3 Commissioning; and II 9.1, Innovation. Temperature control systems should not give teachers free range to adjust the temperature to whatever they desire. It is possible to install systems that allow teachers to adjust the temperature in a room to within 1-2 degrees of the standard setting for the season (e.g. 70° in winter) that will improve their comfort while not having a significant adverse impact on the building’s energy efficiency. Establishing a standard temperature setting for the entire building is an important corollary action.

Documentation Requirements

Design Review Requirements

EQ 10.1: Use CHPS Verified Plan Sheet to reference sheet or specification section which shows adjustable temperature control devices in each of the classroom types required.

EQ 10.2: Use CHPS Verified Plan Sheet to reference the specification section for operable windows. Also reference plan sheets and window schedules which show locations of operable windows in each classroom.

Construction Review Requirements

Submit photographs of installed temperature control devices and/or operable windows.

Resources

Daylighting is fundamentally important to high performance design, and should be the primary source of light in classrooms. Daylighting has a number of advantages, including improved occupant productivity, improved connection to the outdoors, improved health, energy savings, and quality of light.

EQ 11.0 – Daylighting: Glare Protection

EQ 11.1 – Daylight Availability

Intent

Provide high quality daylighting in classrooms to enhance student performance, to improve student productivity through quality daylighting designs that minimize glare and direct sunlight penetration, and ensure energy savings.

<table>
<thead>
<tr>
<th>EQ.11.0 – Daylighting: Glare Protection</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 points</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification Required

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement
Design spaces to optimize daylight while preventing glare by controlling direct sunlight ingress with blinds, shades, overhangs, lightshelves, translucent material, or other effective means. Use any of the following three metrics to document achievement of this criterion, and refer to the implementation section for documentation requirements:

- No direct sunlight can strike the teaching surfaces or a work plane located 4 ft. or more inside the exterior walls at 9:00AM, 12:00PM and 3:00PM on the winter and summer solstice and the equinox.

 OR

- The maximum illuminance to average illuminance ratio measured in the workplane cannot exceed 15 at 9:00AM, 12:00PM and 3:00PM on the winter and summer solstice and the equinox.

 OR

- The maximum Daylight Autonomy (DA\textsubscript{max}) for the daylit spaces must be below 5% for all daylit spaces. AND

- Skylights and roof monitors shall meet the requirements of no direct sun penetration as described above, unless they have diffusing devices such as a haze factor 99%+ or direct transmittance <1%.

EQ 11.1 – Daylight Availability

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>This criterion applies to all projects. To earn these points for major renovations, it may be necessary to add skylights or modify the size and location of windows.</td>
<td>5 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification Required</th>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement
For all **classroom** spaces, choose one of the following two options:

EQ 11.1.1
Multiple Point in Time Approach
Daylight Responsive Lighting Controls

To achieve any of the available points for daylighting classrooms a daylight responsive electric lighting system or plan must be implemented for the daylit spaces.

- For photosensor based systems; documentation showing location of sensors, lighting zones, and setpoint and commissioning information for the system.

For strategic switching and occupant education approaches; drawings showing the switching and zones a brief manual to be provided to the building occupants describing the daylighting intent of the space and the recommended function of all daylighting, lighting and shading devices.

AND ONE OF THE FOLLOWING

<table>
<thead>
<tr>
<th>Points</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Point</td>
<td>Achieve >20fc annual average illuminance for >75% of classroom area</td>
</tr>
<tr>
<td>2 Points</td>
<td>Achieve >35fc annual average illuminance for >75% of classroom area</td>
</tr>
<tr>
<td>3 Points</td>
<td>Achieve >50fc annual average illuminance for >75% of classroom area</td>
</tr>
</tbody>
</table>

OR

Spatial Daylight Saturation (sDS) Approach

<table>
<thead>
<tr>
<th>Points</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Point</td>
<td>Achieve >50% sDS\textsubscript{300/50%}</td>
</tr>
<tr>
<td>2 Points</td>
<td>Achieve >75% sDS\textsubscript{300/75%}</td>
</tr>
<tr>
<td>3 Points</td>
<td>Achieve >90% sDA\textsubscript{300/90%}</td>
</tr>
</tbody>
</table>
For **support spaces**, choose one of the following two options:

Multiple Point in Time Approach

<table>
<thead>
<tr>
<th>1 point</th>
<th>Achieve >30fc average Illuminance for >50% of administration office area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
<td>Achieve >40fc average Illuminance for >50% of library, cafeteria, auditorium and multi-purpose/commons area</td>
</tr>
</tbody>
</table>

OR

Spatial Daylight Saturation Approach

<table>
<thead>
<tr>
<th>1 Point</th>
<th>Achieve >60% sDS(_{300/50%}) for administration office area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Points</td>
<td>Achieve >60% sDS(_{400/50%}) for library, cafeteria, auditorium and multi-purpose/commons area</td>
</tr>
</tbody>
</table>

AND

Daylight Responsive Lighting Controls

To achieve any of the available points for daylighting support spaces a daylight responsive electric lighting system or plan must be implemented for the daylit spaces.

- For photosensor based systems; documentation showing location of sensors and lighting zones, and set-point and commissioning information for the system.
- For strategic switching and occupant education approaches; drawings showing the switching and zones a brief manual to be provided to the building occupants describing the daylighting intent of the space and the recommended function of all daylighting, lighting and shading devices.

Any spaces where daylight would have an adverse impact on the use of the space are excluded. Provide documentation illustrating impact

Implementation

Direct Sunlight Penetration

Requirement EQ 11.0 (direct sunlight penetration) shall be verified by one of the following methods:
• A physical model should be placed on a heliodon or otherwise positioned so that the sun angles represent the dates and times specified in EQ 11.0. Verify by photograph that the 9 conditions do not have any direct sunlight on the workplane or teaching wall. Indicate if automatic or manual blinds or shades are used meet the requirement.

• A model may be set up in a computer based tool that can calculate sunlight on interior surfaces. Verify be rendering images or task plane illuminance calculations that the 9 conditions do not have any direct sunlight on the workplane or teaching wall. Indicate if automatic or manual blinds or shades are used meet the requirement.

• Manually calculate the sun profile angles and show that the criteria are satisfied for the dates and times specified in EQ 11.0 Illustrate the shading strategies provide complete direct sunlight control for the 9 conditions specified.

• Perform an incremental maximum Daylight Autonomy calculation using 300fc or other recommended target illuminance x 10. The DA_{max} should be 5% or less for no more than 5% of the workplane points. Use the Blinds/Shades Operation protocol described in section 2.2.6 of IES LM-83-12, or describe the blinds/shades operation used to achieve the requirement.

• For any manually controlled shading devices included in the above calculations (i.e. Blinds, roller-shades), provide a brief manual that can be given to users, informing of optimal use of shading devices, namely ensuring they are not left down when there is plentiful daylight.

Computer rooms and other spaces where daylight would have an adverse impact on the use of the space are excluded. For renovation projects that do not modify lighting systems, the project need not provide daylighting controls for the electric lighting system.

Multiple Point in Time Approach

Option calculations for the requirements may be made with a qualified computer simulation tool.

• Computer Simulation Tool: Any daylighting simulation tool that can perform accurate daylight illuminance calculations for a grid of points under standard CIE skies for the times specified. Commercially available simulation tools include AGI32, Radiance, SPOT, 3DS Max Design, DAYSIM, DIALux

• A minimum analysis grid of 3 ft. by 3 ft. shall be used. The grid shall be positioned so that no analysis points are located closer than 2 ft. and further than 3ft from a wall.

• The annual average illumination should be determined by first calculating the workplane average illuminance for 10 design sky conditions: 9AM, 12PM, and 3PM for winter and summer solstice and equinox under a CIE clear sky and 12PM on the equinox under a cloudy sky condition. Use information from the

$$E_{\text{avg}} = \frac{[(W9 + W12 \times 2 + W3 + (E9 + E12 \times 2 + E3) \times 2 + (S9 + S12 \times 2 + S3) \times 0.5) / 14]}{Sunny\% + EC12 \times Cloudy\%}$$
National Oceanic and Atmospheric Association’s (NOAA) National Climatic Data Center, or from a TMY weather file to determine the percentage of cloudy and sunny days. The annual average illuminance is calculated with this formula:

Where:

\[E_{\text{avg}} = \text{estimated annual average illuminance} \]

\[WX = \text{Sunny winter solstice condition at 9AM, 12PM, and 3PM} \]

\[EX = \text{Sunny equinox condition at 9AM, 12PM and 3PM} \]

\[SX = \text{Sunny summer condition at 9AM, 12PM, and 3PM} \]

\[EX12 = \text{Cloudy equinox condition at 12PM} \]

Sunny % - percent of year with opaque cloud cover <50%

Cloudy % - percent of year with opaque cloud cover >50%

Spatial Daylight Saturation Approach

Option calculations for the requirements must be made with a computer simulation tool. The Spatial Daylight Autonomy calculations must meet the following criteria:

- Computer Simulation Tool: Any daylighting simulation tool that can perform accurate daylight illuminance calculations for a grid of points under standard CIE skies for the times specified. Commercially available simulation tools include AGI32, Radiance, SPOT, 3DS Max Design, DAYSIM, DIALux.

- A minimum analysis grid of 3 ft. by 3 ft. shall be used. The grid shall be positioned so that no analysis points are located closer than 2ft and further than 3 ft. to a wall.

- A design illuminance of 30fc should be used unless a different illuminance target is recommended – for example 15fc for a computer room or 50fc for a gymnasium. A design illuminance of 40fc (400 lux) is required for library, cafeteria, auditorium and multi-purpose/commons areas.

- Daylight Saturation (DS) aka “Continuous” Daylight Autonomy calculation method to be used. This method gives credit for hours that receive partial daylight contribution. For example, when 20fc of daylight is provided and the design illuminance is 30fc this counts for 20/30 or 0.66 for that time as opposed to 0 given a Daylight Autonomy approach.
• Daylight Autonomy, or an “Incremental” calculation method, to be used for DA_{max} calculations. This method only counts hours that completely meet or exceed this max illuminance with daylight.

• The school occupancy schedule and a representative weather file should be used for the annual DA and DA_{max} calculations. 7AM to 3PM should be used as a standard school schedule. Schools with schedules that vary from this standard should provide documentation of their operation hours.

General Note: Computer rooms and other spaces where daylight would have an adverse impact on the use of the space are excluded.

Documentation Requirements

Design Review Requirements

EQ 11.0 – Use CHPS Verified Plan Sheet to reference plan sheets or specification sections which show required photocontrols, sensors, lighting zones and set points. Provide PDF results of a daylight simulation model, a computer based simulation model, a physical model, or manually calculated sunlight penetration in the classrooms to avoid direct sunlight on teaching surfaces and work planes.

EQ 11.1 – Use the CHPS Verified Plan Sheet to identify spaces that qualify as daylit, and the percentage of daylit classrooms. Fulfill this requirement by completing the CHPS Verified Plan Sheet provided at the point of registration with the CHPS Verified program. Plans and sections will be used for verification. For each classroom group identified on the CHPS Verified Plan Sheet, provide the required computer based simulation results including point-by-point lighting predictions as appropriate.

Construction Review Requirements

Submit photographs of installed light controls.

Resources

- IES TM-83-13 “IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE)”
- “Daylighting Pattern Guide” at http://patternguide.advancedbuildings.net
• Ecotect: http://usa.autodesk.com/ecotect-analysis/
• Equest: www.doe2.com/equest
• SPOT: www.daylightinginnovations.com
• The Daylighting Collaborative is a clearinghouse of best practices and resources about daylighting: www.daylighting.org.
• 3DS Max Design: usa.autodesk.com
• Radiance: radsite.lbl.gov/radiance/
• SkyCalc: www.energydesignresources.com/resource/129
• DIVA-for-Rhino: www.diva4rhino.com
• Open Studio: http://openstudio.nrel.gov
Views

Intent

Provide a connection between indoor spaces and the outdoor environment through the introduction of sunlight and views into the occupied areas of the building.

View windows are essential to areas where students and staff will be working for extended periods of time. Ample and interesting views have consistently been found to increase student performance. Distant views enable the occupants of the room to relax their eyes, which is especially beneficial to computer users and younger children who are still developing their visual capabilities.

EQ 12.0 – Views

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

EQ 12.1 – Additional Views

<table>
<thead>
<tr>
<th>Credit</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

This criterion applies to all new classrooms, libraries and administration areas.

Requirement
| 1 point | EQ 12.0 | Provide direct line of sight to view glazing from 70% of the combined floor area of classrooms, library reading rooms, and administration areas. To qualify, a space shall have view glazing area equal to or greater than 7% of the floor area. View glazing shall be transparent, but not translucent, and only include window area above 2.5 ft. and below 7.5 ft. from the floor. The total width of view windows shall be greater than 1% of the floor area. Exception: School buildings that share at least two sides with other buildings, the shared walls are exempted from this requirement. Every effort shall be made to meet the view glazing requirement on walls not shared with other buildings. |
| 2 points | EQ 12.1 | Provide direct line of sight to view glazing from at least 80% of the combined floor area of core classrooms and administration areas. Access to Views, 80% = 1 point Access to Views, 90% = 2 points To qualify, a space shall have view glazing equal to or greater than 7% of the floor area. View glazing shall be clear and only include window area above 2.5 ft. and below 7.5 ft. from the floor. The total width of view glazing shall be greater than 1% of the floor area. |

This criterion applies to all classrooms and administration areas. Renovation projects that involve window replacement can earn this criterion by modifying existing window configurations that do not conform to the requirements to configurations that do meet the requirements for this criterion.

Implementation

Determine the total floor area of spaces for which this requirement applies by creating a table listing the classrooms, library reading rooms and administrative areas. Like spaces may be listed just once. A like space is one with the same physical configuration, including windows.

For each space in the list determine how much of the floor area qualifies for the view criterion. Two considerations come into play: the view window area and the total width of the view windows. Each of these limit how much of the area qualifies, as explained below:

- To determine the maximum qualifying area based on the view window area, divide the view window area by 7%.
- To determine the maximum qualifying area based on the width of the view windows, divide the total width of view windows by 1%.
For each space the qualifying floor area is the lesser of the total floor area, the maximum floor area based on view window area, or the maximum floor area based on view window width. Sum the qualifying area and compare to the total area. If it is greater than 70%, then the school project qualifies, otherwise it does not.

Example Calculation

Question: A new school has 30 like classrooms each with a floor area of 960 ft². Each classroom has view windows with a total area of 60 ft² and a total width of 9 ft. The school also has six larger 1,040 ft² classrooms with 70 ft² view windows with a total width of 10.5 ft. The 2,600 ft² library reading area has 200 ft² of view windows with a total width of 25 ft. The 2,000 ft² administration area has 150 ft² of view windows with a total width of 18 ft. Does this school qualify for the view windows criterion and how much of the floor area qualifies as having view windows?

Answer: The total floor area of classrooms, administration areas and library reading rooms is 39,640 ft² (see column D in Figure 1). To meet the criterion, at least 70% of the floor area of these spaces shall have view windows, or a total of 35,676 ft². The qualifying floor area must be determined for each space based on the total view window area and the total width of the view windows. For the smaller classrooms, the maximum qualifying floor area based on view window area is 857 ft² or 60 ft² divided by 7%. The maximum qualifying floor area based on window width is 900 ft² or 9 ft divided by 1%/ft. The qualifying area is the smaller of these numbers or 857 ft². For the larger classrooms, the qualifying area is 1,000 ft²; 2,500 ft² for the library reading area; and 1,800 ft² for the administration areas. The total qualifying area is 36,010 ft² or 91%. See Figure 1 for details of the calculation.

Figure 1: Example Calculation of View Window Criterion
For each space

<table>
<thead>
<tr>
<th>Space</th>
<th>Size (ft²)</th>
<th>Number of spaces</th>
<th>Total area (ft²)</th>
<th>View window area (ft²)</th>
<th>Maximum Floor Area based on view window area (ft²)</th>
<th>Total width of view windows (ft.)</th>
<th>Maximum floor area based on view window width</th>
<th>Qualifying floor area per space (ft²)</th>
<th>Total qualifying floor area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom type 1</td>
<td>960</td>
<td>30</td>
<td>28,800</td>
<td>60</td>
<td>857</td>
<td>9</td>
<td>900</td>
<td>857</td>
<td>25,710</td>
</tr>
<tr>
<td>Classroom type 2</td>
<td>1040</td>
<td>6</td>
<td>6,240</td>
<td>70</td>
<td>1,000</td>
<td>10.5</td>
<td>1,050</td>
<td>1,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Library reading room</td>
<td>2600</td>
<td>1</td>
<td>2,600</td>
<td>200</td>
<td>2,857</td>
<td>25</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td>Administration</td>
<td>2000</td>
<td>1</td>
<td>2,000</td>
<td>150</td>
<td>2,142</td>
<td>18</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>39,640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36,010</td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91%</td>
</tr>
</tbody>
</table>

EQ 12.0.2

The documentation requirements are the same as EQ 12.0.1, with the exception that the threshold for this criterion is 80% access to views for 1 point and 90% access to views for 2 points. See above for information on preparing the calculations for this criterion.

Documentation Requirements

Design Review Requirements

Construction drawings must include required calculations for view windows. Fulfill this requirement by completing the CHPS Verified Plan Sheet. Plans and sections will be used for verification.

Construction Review Requirements

None
Resources

- The Daylighting Collaborative is a clearinghouse of best practices and resources about daylighting: www.daylighting.org.
Electric Lighting Performance

Intent

Integrate high performance electric lighting with daylighting to promote the health and well-being of the occupants while maximizing energy efficiency. Provide high quality and flexible classroom lighting with teacher controls tailored to new teaching methods.

The classroom is one of the focal points for preparing students for today’s high tech, postindustrial world. New teaching tools such as affordable A/V systems, smart boards, tablets and web-based learning tools have turned the classroom into a dynamic place of learning. As the rate of adoption of these new technologies increases, it is important to give the teacher easy-to-use control of lighting. This will enhance learning by letting the teacher tailor high quality lighting to the type of teaching taking place.

While the use of LED-based lighting systems is not required, the selection criteria included here will help progressive schools select LED-based luminaires that will provide high quality, long-lasting and energy efficient lighting for the classroom.

EQ 13.1 – Electric Lighting Performance

<table>
<thead>
<tr>
<th>EQ 13.1 – Electric Lighting Performance</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 points</td>
<td></td>
</tr>
</tbody>
</table>

Applicability

This criterion applies to all new classrooms and can also be earned in renovation projects when classroom lighting is included in the scope of work.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement
2 points EQ 13.1.1 Color Rendering Index (CRI) Requirements All luminaires shall have light sources with a CRI of 80 or greater.

AND

EQ 13.1.2 RoHS Requirements All luminaires shall be RoHS compliant following the most current European RoHS regulations, including all applicable exemptions.

1 point EQ 13.1.3 LED Performance If an LED-based system used, all LED-based luminaires shall:
- maintain at least 70% of their initial light output (L70) at 50,000 hours of operation.
- achieve an initial efficacy of at least 50 lumens /watt.
The project must also achieve EQ 13.1.1 and EQ 13.1.2 to qualify for this point.

EQ 13.2 – Superior Electric Lighting Performance

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Credit

5 points

Requirement
<table>
<thead>
<tr>
<th>Points</th>
<th>EQ 13.2.1</th>
<th>Achieve all of the following: Provide multi-scene indirect/direct lighting systems for all classrooms, with the exception for specialty classrooms where multi-scene lighting is not required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 13.2.2</td>
<td>The lighting system shall work in at least two modes: General and Audio Visual (AV). If daylight-responsive controls are installed, they shall take precedence to set upper light level limits.</td>
<td></td>
</tr>
<tr>
<td>EQ 13.2.3</td>
<td>In general illumination mode, achieve the average illumination at the desk level based on the classroom type in the IES Lighting Handbook, Tenth Edition or its most recent update.</td>
<td></td>
</tr>
<tr>
<td>EQ 13.2.4</td>
<td>In A/V mode the average illumination levels shall be 10 to 30-foot candles, not including contribution from the teaching wall light, for any point in the room greater than 3-feet from the side walls, or 10-feet from the front wall. Limit vertical illumination on the AV screen to no more than 7-footcandles at any point on the screen.</td>
<td></td>
</tr>
<tr>
<td>EQ 13.2.5</td>
<td>Whiteboard Illumination Provide a separately switched lighting system that provides white board vertical illumination of at least 30-footcandles average with a maximum-to-minimum illuminance ratio of 8:1 or better for all points on the whiteboard.</td>
<td></td>
</tr>
</tbody>
</table>
| Points | EQ 13.2.6 | Achieve all of the following: *Enhanced Teacher Controls* Provide teacher control at the front of the classroom for:
- general / AV mode.
- white board control
- for a manual override of the time delay for the occupancy sensor system. The teacher should be able to adjust for a specific need of up to 3-hours. At the end of the special period, the delay is automatically reset to its initial, specified setting. |
| EQ 13.2.7 | *Advanced Classroom Controls* Link the on / off occupancy signal into a school-wide management system |
2 points EQ 13.2.8

High Performance Lighting Systems

All luminaires shall have light sources with CRI of 85 or greater

If LED-based systems are used, they must also meet the following criteria for Flicker and Performance to achieve these points:

Flicker

In all school classrooms and educational learning spaces, the measured percent flicker from LED integrated systems (include driver, LED array, diming controls, daylight sensor) shall be 10% or less across the entire dimming range.

Performance

LED-based luminaires shall maintain at least 70% of their initial light output (L70) at 100,000 hours of operation.

Implementation

Many renovation projects include the installation of new lighting systems, providing an excellent opportunity to install high quality, energy efficient electric lighting that is integrated with the available daylight.

Color Rendering Index (CRI) refers to the ability of a light source to render the colors of the spectrum.

Lumen maintenance is the amount of light produced from a light source or from a luminaire when it is brand new to the amount of light output at a specific time in the future.

To document compliance with these requirements, specify that submittals and cut sheets must contain the required specifications from the manufacturer.

During Audio Visual presentations, an average as low as 10-foot candles is acceptable to allow the teacher to "see" the students' faces and allow them to take notes. An average as high as 30-foot candles is acceptable to keep the contrast level of light at the desk and the screen at desired levels.

Note that percent flicker is a relative measure of the cyclic variation in output of a light source. It is an important consideration for LED-based luminaires to ensure a high quality lighting environment.

Documentation Requirements

Design Review Requirements

EQ 13.1 – Use CHPS Verified Plan Sheet to reference plan sheets or specification sections which specify the required lighting performance qualities and that submittals and cut sheets contain the required specifications from the manufacturer.
EQ 13.2 Construction drawings, particularly the electrical plans must include point-by-point lighting calculations for each classroom type. Construction drawings, ideally the electrical schedule must include the required lighting and system features.

Construction Review Requirements

EQ 13.2 – Submit receipts, proof of purchase or installation for the required lighting system. Submit pictures of installed lighting system in typical classroom.

Resources

Acoustical Performance

Intent
Provide classrooms with adequate acoustical environments.

EQ 14.0 – Acoustical Performance

EQ 14.1 – Enhanced Acoustical Performance

Student learning suffers in acoustically poor environments. Excessive noise and long sound reverberation negatively affect speech communication.

Definitions

Noise can be defined as unwanted sound. Sound can be described by its “level”, expressed in units of “decibels”. The application of the “A-weighted filter” de-emphasizes low-frequency and very high-frequency sound in a manner similar to human hearing. The abbreviation dBA is typically used when the A-weighted sound level is reported.

Sound reverberation is typically described by the “reverberation time”, which can be defined as the time (in seconds) it takes for the sound level to decrease by 60 decibels after the source of the sound has been abruptly interrupted.

For the purpose of this criterion, general terms and definitions are the same as those found in Section 3 of ANSI/ASA Standard S12.60-2010/Part1, with the introduction of the following additional categories:

- **Inter-Classroom Workspaces (ICWS)** include: small spaces in between two or more classrooms where student groups from any of the classrooms can gather for separate activities. For the purposes of the present criteria, Inter-Classroom Workspaces shall not be treated as regular classrooms, except where the district designates the ICWS as a core learning space.

- **Performance Arts Spaces (PAS)** include: music and choir classrooms, dance classrooms, drama classrooms, and theaters.

- **Audio Production Spaces (APS)** include: audio recording studios and control rooms, audio editing suites.

- **Large Assembly Spaces (LAS)** include: multipurpose rooms.

- **Confidential Speech Privacy Rooms** are rooms for which confidential speech privacy, as defined by Appendix X1 of ASTM standard E1130, is required for conversations held at normal voice levels.

<table>
<thead>
<tr>
<th>EQ 14.0 – Acoustical Performance</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 points</td>
</tr>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

This prerequisite applies to all newly constructed classrooms and shall be incorporated into classroom renovation projects.

New Construction

This prerequisite applies to all newly constructed classrooms. For new construction, the design of the classroom and the materials specified must ensure compliance.

Renovation

Renovation projects must also meet the acoustics prerequisites as delineated in Table II. Acoustical performance is essential to any high performance school, regardless of project type.

Requirement
<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>EQ 14.0 Reverberation Time Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Core Learning Spaces the maximum reverberation times shall be:</td>
<td></td>
</tr>
<tr>
<td>• Core learning spaces with volume less than 10,000 ft(^3): 0.6 s</td>
<td></td>
</tr>
<tr>
<td>• Core learning spaces with volume between 10,000 ft(^3) and 20,000 ft(^3): 0.7 s</td>
<td></td>
</tr>
<tr>
<td>• Core learning spaces with volume greater than 20,000 ft(^3) and Ancillary Learning Spaces: 1.0 s</td>
<td></td>
</tr>
</tbody>
</table>

Performance criteria for background noise

In Core Learning Spaces, the Total Background Noise shall be 35 dBA or less with all operable windows closed.

NOTE: For Background Noise Requirements (a) and (b), Section 5.2.3 of ANSI/ASA Standard S12.60-2010/Part1 does not apply. Sections 5.2.2.2 and 5.2.4 of ANSI/ASA Standard S12.60-2010/Part1 apply.
Noise isolation design requirements

a) Outdoor-to-indoor attenuation of airborne sound

Design according to Sections 5.4.1.1 and 5.4.1.3 of ANSI/ASA Standard S12.60-2010/Part1.

Section 5.4.1.2 (including Table 3) of ANSI/ASA Standard S12.60-2010/Part1 does not apply. CHPS adopts no prescriptive requirements for the minimum STC or OITC rating of exterior walls and windows (except for the requirements in section 5.4.1.3 of ANSI/ASA Standard S12.60-2010/Part1). However, the project shall provide full documentation that the exterior noise environment has been appropriately quantified and that the design will achieve the performance criteria outlined in the "Exterior-source background noise" section above.

b) Indoor-to-indoor attenuation of airborne sound

- Wall and floor-ceiling assemblies shall be designed to achieve the minimum STC ratings specified in Table 1. The STC rating requirements also shall apply to the design of temporary partitions that subdivide a learning space. The ratings in Table 1 apply to wall construction only. Design according to Section 5.4.2.2 of ANSI/ASA Standard S12.60-2010/Part1.

Table 1: Minimum STC Ratings for Wall and Floor-Ceiling Assemblies

<table>
<thead>
<tr>
<th>Adjacency</th>
<th>Minimum STC Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom – Classroom</td>
<td>STC 435</td>
</tr>
<tr>
<td>Classroom – Public Restrooms a,b)</td>
<td>STC 53</td>
</tr>
<tr>
<td>Classroom – Corridor</td>
<td>STC 38</td>
</tr>
<tr>
<td>Classroom – Staircase</td>
<td>STC 40</td>
</tr>
<tr>
<td>Classroom – Admin Office</td>
<td>STC 40</td>
</tr>
<tr>
<td>Mechanical Equipment Room</td>
<td>STC 60</td>
</tr>
<tr>
<td>Classroom – Conference Room</td>
<td>STC 50</td>
</tr>
<tr>
<td>Operable partitions</td>
<td>See footnote</td>
</tr>
</tbody>
</table>

a) Table 1 requirements do not apply to toilets opening only into the core learning space and used only by occupants of the core learning space.

b) In any wall between a classroom and a public restroom, no plumbing shall be rigidly attached to the classroom wall framing. The wall assembly shall not contain large penetrations such as for restroom supply dispensers or disposals and shall not support rigidly attached electric hand dryer devices. Sound rating of hand dryer devices shall be clearly documented.

c) The isolation between core learning spaces and mechanical equipment rooms shall have a STC rating of 60 or greater.
unless it is shown that the sound level in the mechanical equipment room combined with a lower STC rating can achieve the required background noise level from building services in the core learning space. In no case shall the design STC between such spaces be less than 45.

d) Operable partitions shall have same STC minimum STC rating of the wall they replace.

- Doors shall be selected to achieve the minimum requirements specified in Table 3. Interior glazing up to 10 ft² immediately adjacent to a door shall have the same minimum STC requirement as the door. In all other cases, interior glazing shall have the same minimum STC requirement as the wall.

Table 3: Minimum STC Rating for Doors

<table>
<thead>
<tr>
<th>Adjacency</th>
<th>Minimum STC Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom – Classroom</td>
<td>STC 40</td>
</tr>
<tr>
<td>Classroom – Corridor</td>
<td>See footnote 1)</td>
</tr>
<tr>
<td>Conference Room – Corridor</td>
<td>STC 40</td>
</tr>
<tr>
<td>Doors of Confidential Speech Privacy Rooms</td>
<td>STC 40</td>
</tr>
<tr>
<td>Classroom – Conference Room</td>
<td>STC 40</td>
</tr>
<tr>
<td>Classroom – PAC, APS</td>
<td>STC 50</td>
</tr>
<tr>
<td>PAC, APS – Corridor</td>
<td>STC 40</td>
</tr>
<tr>
<td>Classroom – ICWS</td>
<td>STC 35</td>
</tr>
</tbody>
</table>

1. A minimum sound rating is not required for doors between classrooms and corridors. The absence of such requirement assumes that noise generated by corridor traffic can be controlled administratively by school staff.

c) Structure-borne impact sound isolation

Design according to Section 5.4.3 of ANSI/ASA Standard S12.60-2010/Part1.

d) Classroom audio distribution systems

Design according to Section 5.5 of ANSI/ASA Standard S12.60-2010/Part1.
EQ 14.1 – Enhanced Acoustical Performance

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Credit

6 points

Reverberation Time Requirements

- In Ancillary Learning Spaces and spaces designated PAS, LAS, or APS, the ideal reverberation times depend on the specific program for each space. The design team shall submit a narrative stating the Basis of Design for reverberation times for each of these spaces and calculations showing achievement of such Basis of Design.

Performance criteria for background noise

a) Exterior-source background noise

- In Core Learning Spaces and spaces designated as PAS or APS, exterior-source background A-weighted noise levels shall be **35 dBA or less**.

- In Ancillary Learning Spaces and LAS, exterior-source background A-weighted noise levels shall be **40 dBA or less**.

b) Background noise from building services and utilities

- In Core Learning Spaces and spaces designated as PAS or APS, background A-weighted noise levels from building services and utilities shall be **35 dBA or less**.

- In Ancillary Learning Spaces and LAS, background A-weighted noise levels from building services and utilities shall be **40 dBA or less**.

Noise isolation design requirements

Indoor-to-indoor attenuation of airborne sound.

- Wall and floor-ceiling assemblies shall be designed to achieve the minimum STC ratings specified in Table 4. The ratings in Table 4 apply to wall construction only. Design according to Section 5.4.2.2 of ANSI/ASA Standard S12.60-2010/Part1.

Table 4: Minimum STC Ratings for Wall and Floor-Ceiling Assemblies

<table>
<thead>
<tr>
<th>Adjacency</th>
<th>Minimum STC Rating</th>
</tr>
</thead>
</table>

134
Because noise expressed is in a logarithmic scale, when one sound is combined with another, i.e., the addition of sounds, the following formula is used to add sounds on the decibel scale:

\[
SPL_{\text{total}} = 10 \log_{10} \sum_{i=1}^{n} 10^{[\text{SPL}_i/10]}
\]

TOTAL Background Noise is equal to the sum of the background noise from exterior sources plus the background noise from the building services and utilities including HVAC. So for example, if the background noise from exterior sources is 42 dBA, then the background noise from the building services may not exceed 42 dBA.

The ANSI/ASA Standard S12.60-2010/Part1 is available for free download.

Design guidelines for controlling background noise and vibration are available in the 2007 (or most recent version) HVAC Applications ASHRAE Handbook, Chapter 47 on Sound and Vibration Control.

Documentation and Verification

1. Qualifications for Acoustical Verification Testing

Qualified Acoustical Testing Agent/Agency shall be an independent acoustical engineering consultant or firm with documented experience (the individual or the firm) in the field of acoustical testing of building components, over at least five years.

2. Conformance to reverberation time requirements

 a. Design Review
 i. Provide calculations showing compliance with the reverberation time requirements for each classroom group (per the submittal template).

 b. Construction Review
 i. Verification of conformance to reverberation time requirements shall be conducted according to Section A.4.2 (“Measurement option”) of ANSI/ASA Standard S12.60-2010/Part1.
 ii. The Acoustical Testing Agent shall randomly select the classrooms to be tested. One classroom per classroom group (per the submittal template) shall be tested.

3. Conformance to background noise requirements

 a. Design Review
 i. Provide a statement that the design will achieve the minimum requirements for background noise from building services and utilities. Provide calculations and specification sections supporting the statement.

 b. Construction Review

 Projects can elect to employ the simplified testing procedure for total background noise outlined below. If in all tested classrooms, the total background noise levels are found to be compliant with each individual requirement, it can be logically inferred that both exterior-source background noise and background noise from building services and utilities would comply with their individual requirements. Consequently, separate testing of exterior-source background noise and background noise from building services and utilities is not required. If, otherwise, in
any of tested classrooms, the **total** background noise levels are found **not to be compliant with each individual requirement**, separate testing of exterior-source background noise and background noise from building services and utilities is required.

i. Simplified testing procedure: Total background noise

1. A minimum of one classroom per façade per building wing per floor shall be tested. E.g. an L-shaped, 2-story building will have 8 classrooms tested. The Acoustical Testing Agent shall select the classrooms to be tested. All classrooms shall be tested during regular school hours.

2. For each façade and floor, the classroom expected to be affected by the maximum exterior hourly L_{eq} shall be tested at the expected time of occurrence of the maximum exterior hourly L_{eq}.

3. In addition, in schools with centralized air handling systems, the classrooms closest to each air handling unit shall be tested.

4. Turn building services and utilities on and select the loudest allowable setting.

5. Scan room for "key" (i.e. loudest) location (per section A.1.2 of ANSI/ASA Standard S12.60-2010/Part1). Perform the measurement at a height of 1.0 to 1.2 m (40 to 48 in) above the floor.

6. The measurement duration shall be 30 minutes. A time-history with a 5 seconds period shall be recorded.

ii. Exterior-source background noise

1. For each façade and floor, the classroom expected to be affected by the maximum exterior hourly L_{eq} shall be tested at the expected time of occurrence of the maximum exterior hourly L_{eq}.

2. Building systems whose noise is subjectively judged as "audible" at the time of the test shall be turned off.

3. Classrooms and corridors adjacent to, and above the tested classroom shall be empty.

4. The measurement location shall be the center of the classroom, at a height of 1.0 to 1.2 m (40 to 48 in) above the floor.
5. The measurement duration shall be 30 minutes. A time-history with a 5 seconds period shall be recorded. Intrusive noise events from sources other than exterior sources shall be noted and the L_{eq} during such 5-second intervals can be excluded from the calculation of the L_{eq} over the 15-minute measurement interval.

6. The measurement instrument shall conform to the requirements of Section A.1.2 of ANSI/ASA Standard S12.60-2010/Part1.

7. The Acoustical Testing Agent shall randomly select the additional classrooms to be tested. One classroom per façade per building wing per floor shall be tested. E.g. an L-shaped, 2-story building will have 8 classrooms tested. All classrooms shall be tested during regular school hours.

iii. Background noise from building services and utilities

1. Verification of conformance to requirements for background noise from building services and utilities shall be conducted according to Section A.1 of ANSI/ASA Standard S12.60-2010/Part1.

2. In schools with centralized air handling systems, the classrooms closest to each air handling unit shall be tested. The Acoustical Testing Agent shall randomly select additional classrooms to be tested. The total number of classrooms tested shall be $1/2$ of the square root of the total number of classrooms, rounded up to the nearest whole number.

3. In schools with distributed air handling systems, the Acoustical Testing Agent shall randomly select all classrooms to be tested. The total number of classrooms tested shall be $1/2$ of the square root of the total number of classrooms, rounded up to the nearest whole number.

4. Conformance to noise isolation design requirements

 a. Outdoor-to-indoor attenuation of airborne sound

 i. Design Review:

 1. Provide documentation of conformance to the STC requirements of Section 5.4.1.3 of ANSI/ASA Standard S12.60-2010/Part1.
2. Exterior noise environment. The measured maximum hourly \(L_{eq} \) and the classroom(s) expected to be most affected on each façade and floor shall be explicitly stated.

3. Provide evidence of calculation of the minimum required reduction of the exterior noise by the building shell, based on the measured exterior noise environment.

4. Provide independent laboratory test reports showing the specified exterior wall construction’s STC rating and noise reduction (in one-third octave sound frequency bands). If sound ratings are unavailable for the exact specified exterior wall construction, provide sound ratings from which the plausible sound ratings of the specified exterior wall construction can be inferred. Document the minimum specified STC rating and noise reduction (in one-third octave sound frequency bands) of window/window frame assemblies and exterior door/door frame assemblies. For facades where the measured maximum hourly \(L_{eq} \) is less than 65 dBA, documentation of a specification for a maximum air infiltration rating of 0.08 sfm/ft\(^2\) at 1.57 psf (per ASTM E238) for the windows is sufficient in lieu of laboratory sound rating.

ii. Construction Review:

1. Provide a statement that the exterior wall construction has not changed since Design Review. Provide independent laboratory test reports clearly showing the STC rating and noise reduction (in one-third octave sound frequency bands) of the installed window/window frame assemblies (for facades where the maximum hourly \(L_{eq} \) exceeds 65 dBA) and of the installed exterior door/door frame assemblies.

b. Indoor-to-indoor attenuation of airborne sound

i. Design Review

1. Provide documentation of compliance with the requirements of Table 1, including Table 1’s footnotes. Provide independent laboratory test reports showing the specified interior wall construction’s STC rating and noise reduction (in one-third octave sound frequency bands). If sound ratings are unavailable for the exact specified wall construction, provide sound ratings from which the plausible sound ratings of the specified wall construction can be inferred.

2. Provide documentation of compliance with the requirements of Table 3. Document the minimum specified STC rating
and noise reduction (in one-third octave sound frequency bands) of interior doors. Such minimum specified sound ratings shall be for door/door hardware/door frame systems and not for door panels alone

ii. Construction Review

1. Wall and floor-ceiling assemblies
 One of each of the following partition types shall be tested for airborne sound attenuation:
 a. Classroom/classroom wall
 b. Classroom/public restroom wall
 c. Classroom/classroom floor-ceiling assembly

 The CHPS-appointed third-party construction reviewer shall select the specific partitions to be tested. The verification shall be performed in accordance with ASTM standard E336-09. The NIC shall be within 3 points of the laboratory STC rating.

2. Operable Partitions
 Verification of airborne sound attenuation field performance (NIC) is required for all operable partitions. The verification shall be performed in accordance with ASTM standard E336-09. The NIC shall be within 5 points of the laboratory STC rating.

3. Doors
 Verification of airborne sound attenuation field performance (NIC) is required for all classroom partitions that include doors for which there is a requirement for minimum STC rating. The verification shall be performed in accordance with ASTM standard E336-09. The NIC shall be within 3 points of the required minimum laboratory STC rating of the door.

c. Structure-borne impact sound isolation

 i. Design Review: Provide documentation of conformance to the IIC requirements of Section 5.4.3 of ANSI/ASA Standard S12.60-2010/Part1.

 ii. Construction Review: Verification of conformance to the structure-borne impact sound isolation requirements shall be conducted according to Section A.3.2 of ANSI/ASA Standard S12.60-2010/Part1. The verification shall be conducted in the same
classroom for which the airborne floor-ceiling sound attenuation is verified.

Cross Category & Other Considerations

Site Selection: When selecting the site for a school, consider the current and future exterior noise pollution surrounding the potential site that will affect indoor acoustics such as busy traffic corridors and, trains, and/or airport activities.

Enhanced Acoustic Systems (teacher microphones and speakers): A classroom that meets the reverberation time and dBA requirements set for in this criterion should not require enhanced classroom audio systems. However, there may be circumstances, such as the health of the teacher that may require sound amplification. If installing sound amplification systems consider the new levels of noise that may be transmitted between classroom walls, ceilings and floors and necessary improvements or upgrades to ensure the noise does not affect neighboring classes. Also consider the maintenance and user training of such systems. Improperly maintained systems can lead to poorer speech communication between teacher and student than without the system.

Documentation Requirements

Design Review
Provide PDF of the report from a qualified acoustical consultant confirming compliance as detailed in Criteria.

Construction Review
Provide testing reports and documentation as outlined above.

Performance Review
Provide additional reports as outlined above.

Resources

- National Clearinghouse for Educational Facilities: www.edfacilities.org/
- Acoustical Society of America: asa.aip.org/ and asa.aip.org/classroom/booklet.html
- American National Standards Institute: www.ansi.org/
- American Speech-Language-Hearing Association: www.asha.org
Low-EMF Best Practices

The US National Electrical Code (NEC) has been published since 1897 to promote safe electrical installations and to prevent fire hazards and electric shock. Wiring errors not only violate electrical code rules but may also cause unnecessary ELF magnetic field exposures. Wiring errors may occur in new construction or renovation projects, and inspections conducted by local code enforcement authorities may not detect the great majority of these problems.

In 2000, the expert panel of the California EMF Project (scientists of the California Department of Health Services on behalf of the California Public Utilities Commission) concluded based on the then available scientific evidence that “EMFs can cause some degree of increased risk of childhood leukemia, adult brain cancer, Lou Gehrig’s Disease, and miscarriage.”

In 2002, the International Agency for Research on Cancer classified extremely low frequency magnetic fields (ELF MF) as possibly carcinogenic (monograph volume 80).

In 2006, the IEQ Indoor Environmental Quality Project committee of the US National Institute of Building Sciences recommended to keep magnetic field exposure levels in occupied areas below 2.5 mG (250 nT), and preferably below 1 mG (100 nT).

In 2009, the Austrian Sustainability Building Council with support by the Federal Ministry of Transportation, Innovation and Technology released its latest version of the Total Quality Building Assessment tool. This green building rating system includes a criterion for low ELF magnetic field exposure levels: less than 1 mG (100 nT) “excellent”, 1-2 mG (100-200 nT) “very good” (summary of threshold levels in English).

In addition, many education technology tools such as desktop computers, laptops, tablets, and other electronic devices are sources of electromagnetic fields. When used within close range of the human body, a student’s exposure to electromagnetic fields (EMF) such as ELF magnetic and electric as well as radio-frequency electromagnetic fields may increase considerably. ELF magnetic fields were classified as possibly carcinogenic by the World Health Organization (WHO) International Agency for Research on Cancer (IARC) in 2002, and radio-frequency (RF) electromagnetic fields (including mobile phones) were classified as possibly carcinogenic by the WHO/IARC in 2011. In order to reduce the potential for adverse effects due to these exposures, it is important in school environments with children to apply the precautionary principle “as low as reasonably achievable (ALARA)” by providing low-EMF classrooms, specifying low-EMF IT equipment and wired Internet access network technology, and establishing low-EMF user practices.

<table>
<thead>
<tr>
<th>Intent</th>
<th>Minimize exposure to extremely low frequency (ELF) magnetic fields.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 15.1 – Low-EMF Wiring</td>
<td></td>
</tr>
<tr>
<td>EQ 15.2 – Low-EMF Best Practices</td>
<td></td>
</tr>
</tbody>
</table>
EQ 15.1 – Low-EMF Wiring

<table>
<thead>
<tr>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement

1 point EQ 15.1 No net current magnetic fields – Correct school wiring

The wiring in all school rooms shall be compliant with the currently adopted US National Electrical Code (NEC) in the local jurisdiction, and applicable state electrical code

1. All school rooms shall be free of the following common wiring errors:
 a. Improperly wired subpanels (neutral-to-ground bond);
 b. Incorrect three-way switch wiring;
 c. Incorrect wiring of switched outlet circuits;
 d. Neutrals from separate branch circuits that are connected anywhere beyond the panel of origin for the circuits;
 e. Neutral-ground shorts (intentional or inadvertent) anywhere in the system.

The correctness of the wiring shall be checked in each room and the ELF magnetic field exposure measured levels (tRMS) comply with 1 mG (100 nT) in new construction and 2 mG (200 nT) in existing school renovations, see the Austrian Sustainability Building Council (2009) – Total Quality Building Assessment Rating System as shown in Table 6 below.

EQ 15.2 – Low-EMF Best Practices

<table>
<thead>
<tr>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement
1 point EQ 15.2.1 *Low EMF Best Practices for Computers*

The District or equivalent governing body for a private school shall pass a resolution indicating that:

- Require desktop computers, laptops, notebooks, and tablets to only be operated on a desk. Prohibit operation of these devices on an occupant’s lap or body. Additionally, install computer workstation equipment greater than 2 feet from occupants.

- Desktop computers, laptops, notebooks, and tablets shall be TCO-certified or laboratory tested to meet TCO Criteria “Mandate A.4.2” for EMF emissions.

Install only laptops or notebooks that have an Ethernet port and a physical switch to conveniently disable all wireless radios at once and an adaptor with a 3-pin plug. Additionally, install only tablets that support a USB Ethernet adaptor for a wired network connection. Operate tablets only in battery mode and not when plugged in.

OR

1 point EQ 15.2.2 *Wired local area network (LAN) to reduce RF EMF*

- Install a wired local area network (LAN) for Internet access throughout the school. Provide wired network connections for desktop computers, laptops, notebooks, and tablets. All wireless transmitters shall be disabled on all Wi-Fi-enabled devices. Provide wired input devices for computer workstations.

OR

1 point EQ 15.2.3 *Wired Phones to reduce RF EMF in classroom*

- Install easily accessible hard-wired phones for teacher and student use and prohibit installation and use of standard DECT cordless phones and cordless phones operating at 2.4 GHz and 5.8 GHz unless they have been laboratory tested to demonstrate that the cordless phone base station and handsets (whether placed in the charging station or not) do not emit RF EMF emissions in standby mode.

- Prohibit the use of cell phones and other personal electronic devices in instructional areas / classrooms. Additionally, they shall be required to be powered off or be in airplane mode (sleep mode is not sufficient) except during fire-life-safety drills and incidents.

Implementation

EQ 15.1
ELF measurements shall be measured using a professional 3-axis gaussmeter. The international standard unit for ELF magnetic fields is microtesla (µT) or nanotesla (nT). A nanotesla is 1/1000th of a microtesla. 1 mG is equivalent to 100 nT.

Special Consideration

The World Health Organization International Agency for Research on Cancer has classified ELF magnetic fields and radio-frequency (RF) electromagnetic fields as possibly carcinogenic based on scientific evidence surrounding incidence of childhood leukemia and brain cancer. Schools districts and design teams should:

1. Not allow cell phone towers and base stations on school buildings or school property. (See siting)
2. Not have above ground transformers within 50ft from outdoor play, exercise and recreation areas. (See siting)
3. Run conduits for the future possibility of fiber optic connections.
4. Position electrical supply rooms and building power supply adjacent to low occupancy areas among other strategies.

If using a wireless local area network (WLAN) for Internet access, choose the minimum number of access points and adjust the power output of the access points to the lowest maximum level required to meet the needs. Access points shall be placed a minimum distance of 16-32 feet (5-10 m) from where students and staff spend the majority of their time. The access points and Wi-Fi transmitters in the computer devices shall be turned off when not in use. Clearly label access points with warning signs.

Provide a Wireless-free Zone where cell phones, cordless phones, and Wi-Fi-enabled electronic devices shall not be used. Post clear signage at the door to instruct users on how to disable the wireless transmitters on their personal electronic devices (power off or airplane mode) before entering this space.

EMF Measurement Information

ELF EMF measurements are made with a professional 3-axis gaussmeter (broadband, minimum sensitivity: 0.2 mG (20 nT)). The ELF magnetic field exposure level at a given student seating area or workstation shall be as low as possible or less than 1 mG (100 nT) (tRMS – true root mean square). See Table 6. Measurements shall be taken on the floor in the foot area and across a vertical plane at half way between floor and edge of desk, at the edge of desk, and at 6 feet (180 cm). Retest ELF magnetic field exposure levels if the placement of workstations is changed or changes are made to the electrical installation.

RF EMF measurements are made with a professional RF meter or spectrum analyzer (minimum sensitivity: 0.02 V/m or -50 dBm; minimum frequency range 10 MHz – 3 GHz (preferably higher)). The radio-frequency electromagnetic field exposure level at a given student seating area or workstation shall be as low as possible or less than 0.2 V/m or
100 µW/m² (peak). Measurements shall be taken on the floor in the foot area and across a vertical plane at half way between floor and edge of desk, at the edge of desk, and at 6 feet (180 cm). Retest RF electromagnetic field exposure levels if IT equipment, electronic devices, or networks with wireless connectivity are installed or added.

Table 6: ELF EMF Exposure Guidelines and Reference Levels

<table>
<thead>
<tr>
<th>EMF Emission Standard or Guideline</th>
<th>Performance Measure</th>
<th>Reference Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA EMF EMF Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of 89 schools- 5,403 school rooms</td>
<td>20% of measured areas had average magnetic fields</td>
<td>>1 mG (100 nT)</td>
</tr>
<tr>
<td>EMF Working Group of the Austrian Medical Association – Exposure greater than 4 hours per day</td>
<td>Within normal limits</td>
<td>≤0.2 mG (20nT)</td>
</tr>
<tr>
<td></td>
<td>Slightly above normal limits</td>
<td>0.2-1 mG (20-100 nT)</td>
</tr>
<tr>
<td></td>
<td>Above normal limits</td>
<td>1-4 mG</td>
</tr>
<tr>
<td></td>
<td>Far above normal limits</td>
<td>≥4 mG</td>
</tr>
<tr>
<td>Austrian Sustainability Building Council (2009) – Total Quality Building Assessment Rating System</td>
<td>Excellent</td>
<td>≤1 mG (100 nT)</td>
</tr>
<tr>
<td></td>
<td>Very good</td>
<td>1-2 mG</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>2-4 mG</td>
</tr>
<tr>
<td></td>
<td>Satisfactory</td>
<td>≥4 mG</td>
</tr>
<tr>
<td>IEQ Project Committee Recommendation of the U.S. National Institute of Building Sciences (2006)</td>
<td>Preferably</td>
<td><1 mG (100 nT)</td>
</tr>
<tr>
<td></td>
<td>All occupied areas</td>
<td><2.5 mG (250 nT)</td>
</tr>
<tr>
<td>TCO Criteria “Mandate A.4.2”: – International sustainability standard for IT equipment (since 1992)</td>
<td>At 12-20” distance from equipment</td>
<td>≤2 mG (200 nT)</td>
</tr>
<tr>
<td>Federal Safety Guideline of Russia for Computer Workstations, including schools (2003)</td>
<td>At 20” distance from equipment</td>
<td>≤2.5 mG (250 nT)</td>
</tr>
<tr>
<td>International Agency for the Research on Cancer/WHO (2002)</td>
<td>Possibly carcinogenic Group 2B</td>
<td>>3-4 mG (300-400 nT)</td>
</tr>
</tbody>
</table>

Increased childhood leukemia risk

Documentation Requirements
Design Review

15.1: Provide specifications requiring compliance with the necessary codes and best practices. Include specifications to test rooms for compliance.
15.2.1: Submit the resolution compliant with the requirements. Submit specifications for computer equipment that includes the requirements.
15.2.2: Submit wiring diagrams indicating LAN wiring to all rooms that contain computers.
15.2.3: Submit wiring diagrams indicating phone wiring to all rooms with telephones. Also include the district policy prohibiting cell phones and other personal electronic devices as required.

Construction Review
Submit receipts for purchase of all compliant products.

Resources

- National Electrical Code NFPA 70: www.nfpa.org/aboutthecodes/AboutTheCodes.asp?DocNum=70

- Tracing Magnetic Fields in Building Wiring. (DVD) www.magneticsciences.com/TracingEMFsVideo.html
- Ministry of Health of the Russian Federation. 2003 Jun 30. [Sanitary and epidemiological norms on hygienic requirements for personal computers and work organization]. Norm No.: SanPiN 2.2.2./2.4.1340-03. (in Russian)
- TCO standards for IT equipment: www.tcodevelopment.com
- Product search data base: http://79.136.114.89/pls/nvp/tco_search
- Displays: tcodevelopment.com/manufacturer-resources/product-categories-2/displays/
- Notebooks: tcodevelopment.com/manufacturer-resources/product-categories-2/notebooks/
- All-in-on PCs: tcodevelopment.com/manufacturer-resources/product-categories-2/all-in-one-pcs/
- Projectors: tcodevelopment.com/manufacturer-resources/product-categories-2/projectors/
- Headsets: tcodevelopment.com/manufacturer-resources/product-categories-2/headsets/
- All-in-on PCs: tcodevelopment.com/manufacturer-resources/product-categories-2/all-in-one-pcs/
- Projectors: tcodevelopment.com/manufacturer-resources/product-categories-2/projectors/
- Headsets: tcodevelopment.com/manufacturer-resources/product-categories-2/headsets/
- Austrian Sustainability Building Council with support by the Federal Ministry of Transportation, Innovation and Technology: Total Quality Building Assessment tool www.oegnb.net/de/zertifikat.htm?typ=wb
- Threshold levels for ELF-modulated RF radiation: <10 µW/m² excellent / 10-100 µW/m² very good / 100-1000 µW/m² good / 1000-3000 µW/m² satisfactory
- Benchmarks apply to regular exposure of more than four hours per day: <1 µW/m² within normal limits / 1-10 µW/m² slightly above normal limits / 10-1000 µW/m² far above normal limits / >1000 µW/m² very far above normal limits
High Intensity Fluorescent Fixtures

Intent

Install high intensity fluorescent lighting fixtures instead of HID fixtures in the gymnasium and other high ceiling areas.

For many years, the standard choice for school gymnasiums, field houses, and other multi-use areas with ceilings over 16 feet high has been High Intensity Discharge (HID) lighting; typically metal halide or pulse-start metal halide. Although the technology is relatively efficient, long warm-up times mean that the lighting is typically turned on for the day. High intensity fluorescent lighting can be turned on and off as needed, or it can be controlled by occupancy sensors. Additionally, the fluorescent fixtures offer higher quality light with better color stability and less ballast noise.

<table>
<thead>
<tr>
<th>EQ 16.1 – High Intensity Fluorescent Fixtures</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

This criterion applies to all new classrooms, libraries and administration areas.

Requirement

| 1 point | EQ 16.1 | Install high intensity fluorescent lighting fixtures instead of HID fixtures in the gymnasium and other high ceiling areas. |

This criterion applies to all gymnasiums, field houses, and other multi-use areas with ceilings over 16 feet high. In renovations, all such spaces in the school must use high intensity fluorescent fixtures.

Implementation
Install only high-intensity fluorescent fixtures in all high-ceiling areas of the school. Specify that HID fixtures shall not be used.

Documentation Requirements

Design Review

Submit plans showing the lighting layouts for the applicable areas. Also submit specifications (cut sheets) for the fixtures being installed.

Construction Review

Submit receipts for purchase of specified equipment.
Energy Performance

Intent

Reduce environmental impacts and operational costs associated with consuming energy.

Energy-efficient schools save money while conserving non-renewable energy resources and reducing atmospheric emissions of pollutants and greenhouse gases.

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>6 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 1.0 – Energy Performance</td>
<td></td>
</tr>
<tr>
<td>EE 1.1 – Superior Energy Performance</td>
<td></td>
</tr>
</tbody>
</table>

EE 1.0 – Energy Performance

Applicability

All projects.

Verification Required

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement

Prerequisite

EE 1.0

School design for new construction and new buildings on existing campuses shall exceed by 10% the baseline established in ASHRAE Standard 90.1-2010 or the IECC 2012. This correlates to a maximum zEPI score of 51. The design shall also receive an ENERGY STAR score through Target Finder. There is no minimum ENERGY STAR score requirement.

OR

Design the school according to the standards established by the basic requirements of **Tier 2 of the Advanced Buildings New Construction Guide** from the New Buildings Institute.
EE 1.1 – Superior Energy Performance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
<th>Reduction Requirement</th>
<th>zEPI Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>10% minimum reduction</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>9 Points*</td>
<td>15% minimum reduction</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>12 points</td>
<td>20% minimum reduction</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>18 points</td>
<td>30% minimum reduction</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>22 points</td>
<td>40% minimum reduction</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>25 points</td>
<td>50% minimum reduction</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>28 points</td>
<td>60% minimum reduction</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>31 points</td>
<td>70% minimum reduction</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>34 points</td>
<td>80% minimum reduction</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>37 points</td>
<td>90% minimum reduction</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>40 points</td>
<td>100% minimum reduction (zero net-energy school)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Interpolation between the values in the above table is permitted.

Projects may not achieve more than 18 points unless they can demonstrate that their designed EUI is less than or equal to 40 kBtu/sq.ft.

*In MA only: For an additional 2% reimbursement from the Massachusetts School Building Authority, the project must achieve a minimum of 9 points (20% minimum reduction) for EE 1.1.
EE 1.0

Compliance with this prerequisite may be achieved by using the performance approach of the referenced ASHRAE or IECC standards. Modeling shall be conducted using a method specified for EE.C1. Once minimum code compliance is established, the ENERGY STAR Target finder score shall be established.

Code Compliance: Local codes may be referenced, if a percent savings is specified to achieve equivalent energy performance to the standards referenced in this prerequisite.

EE 1.1

There are significant opportunities to reduce energy use beyond the prerequisite level. Providing a more energy efficient building saves money for the school district, reduces environmental impacts and has a number of other long term benefits. Up to 30 additional points are offered for schools designed to exceed the prerequisite level.

Renewable energy sources use the sun, air, and earth instead of non-renewable, polluting sources, such as coal, oil or natural gas. They include solar electric systems (photovoltaics), solar thermal systems (domestic water and space heating), biomass, and wind turbines.

Projects may not achieve more than 18 points unless they can demonstrate that their designed EUI is less than or equal to 40 kBtu/sq.ft. The intent of this limitation is to ensure that the school is well-insulated and well-designed with right-sized mechanical systems before energy production from renewable energy systems contributes to additional energy use reductions. Projects where this EUI is prohibitively difficult to achieve must use a Criteria Interpretation Request and submit documentation supporting their claim in order to pursue an exemption. The threshold for exemption will be limited to projects in the more extreme climates of the Northeast Region and renovation projects with limited scope.

Modeling Requirements

Demonstrating compliance with this criterion requires energy code compliance modeling following the procedures of the Standard 90.1-2010 Performance Rating Method (PRM) published in Appendix G of the document. Additional detail is provided by the COMNET Modeling Guidelines and Procedures (MGP).

The contribution from renewable energy systems may be accounted for in achieving energy use reductions per this criterion.

Non-Regulated Energy Use

In earning points under this criterion, school districts may use the procedures documented in the COMNET MGP (90.1-2010 purpose) to take credit for reductions in plug loads and other components of energy use that are not addressed by Standard 90.1-2010. Plug load reductions are tied to a commitment by the school district to purchase ENERGY STAR equipment for a minimum period of time. The magnitude of the credit depends on the length of the commitment, per COMNET procedures.
Energy Metric

Source energy is required as the metric to combine electricity, gas and other energy sources used in a school. See Table 7 below for source energy multipliers derived from the ENERGY STAR program. Note that the same source multiplier shall be used for electricity purchased from the grid and for electricity produced by on-site renewable energy systems. CHPS regional partners are encouraged to use source energy or another metric such as time dependent valued (TDV) energy or energy cost. Note that the procedures in the 90.1-2010 PRM require the use of energy cost as the metric, but for CHPS purposes, source energy is preferred.

Table 7: Source Energy Multipliers

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Source Energy Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (Grid or on-site production)</td>
<td>3.14</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1.05</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>1.01</td>
</tr>
<tr>
<td>Propane & Liquid Propane</td>
<td>1.01</td>
</tr>
<tr>
<td>Steam</td>
<td>1.20</td>
</tr>
<tr>
<td>Hot Water</td>
<td>1.20</td>
</tr>
<tr>
<td>Chilled Water</td>
<td>1.00</td>
</tr>
<tr>
<td>Wood</td>
<td>1.00</td>
</tr>
<tr>
<td>Coal/Coke</td>
<td>1.00</td>
</tr>
<tr>
<td>Other</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The source energy conversion factors in the table above are based on those used by ENERGY STAR Portfolio Manager with one significant change: the net amount of electricity consumed from the grid is used. To determine source energy generally, multiply the energy consumed on site for each energy type by its source energy conversion factor. Then add together all of the source energy conversions.

For example, if 100 kBtu of natural gas is used in a month, the calculation would be:

\[100.0 \text{ kBtu Site} \times 1.05 = 105.0 \text{ kBtu Source}\]

Consider that the example school also consumes 100.0 kBtu of electricity from the grid and generates 80.0 kBtu on-site. Its source energy calculation would use a conversion factor of 3.14:

\[(100.0 \text{ kBtu Purchased} - 80.0 \text{ kBtu Produced}) \times 3.14 = 62.8 \text{ kBtu Source}\]

If natural gas and electricity are the only two energy types used at the school, its total source energy would be:

\[105.0 \text{ kBtu} + 62.8 \text{ kBtu} = 167.8 \text{ kBtu}\]
If the school were to produce more electricity than it consumed from the grid, it would have negative source electric energy consumption; this can further offset other types of energy use on site. Consider a school that purchases 80.0 kBtu of electricity but produces 100.0 kBtu:

\[
(80.0 \text{ kBtu Purchased} - 100.0 \text{ kBtu Produced}) \times 3.14 = -62.8 \text{ kBtu Source}
\]

Naturally Ventilated Spaces

School districts in appropriate climates are encouraged to design classrooms and other school spaces to use natural ventilation to control overheating of the spaces. Credit for natural ventilation is offered through the COMNET modeling rules when the school has less than 300 unmet cooling load hours.

Naturally Ventilated Spaces as referenced in this section are not intended to be for control of contaminants in the spaces.

On-Site Renewable Energy

On-site renewable energy sources can be very effective components of school curricula, educating students on a wide variety of energy and science issues. On-site renewable energy production has the added advantage of increasing fuel diversity.

For purposes of this criterion, electricity-generating renewables are defined as follows:

- Photovoltaics
- On-site wind
- On site hydropower

School districts should check with the local electric utility serving the building for size limitations, protective apparatus requirements, inspections, fees and insurance restrictions and other special requirements for electricity generation interconnected with utility supplied power. Utility restriction may apply for systems connected on the building side of the utility meter and when the system has a generation capacity much smaller than the electricity used within the building. To reduce hazardous situations for utility service technicians, the utility may require the renewable generation system inverter to automatically turn off generation during a power outage of power feeding the building from the grid. In this situation, a renewable generation system would not be capable of functioning as a backup power supply in case of a grid outage without the additional of additional electrical equipment.

The local electric utility serving the building may offer a net metering arrangement. Power generated by the renewable electric generation system that exceeds the power being consumed within the building may be sold back to the electric utility. School districts should check with the utility serving the building for net metering opportunities, rates, and other special requirements. Large scale on-site renewable electricity generation systems may be able to use revenue generated from net-metering to offset a portion of the cost of the system.
Solar thermal systems may also be used on site. While they do not directly generate electricity, they do offset other energy use. As such, the impact of solar thermal systems will generally be reflected in lower use of other energy sources.

Wherever possible, mature shade trees should not be removed to facilitate the installation of any energy generation systems if possible. If shade trees are removed for this purpose, include a letter from the system designer explaining why this was the best course of action.

Solar Thermal Systems

For purposes of this criterion, thermal energy-generating renewables are defined as using renewable energy sources for space heating or cooling, pre-heating of ventilation air or domestic water heating. Schools can use solar thermal collectors to provide space heating or hot water for lavatories, showers, kitchens, and pools.

Solar walls or similar systems used to pre-heat ventilation air in the winter can be a cost effective and simple way to utilize renewable energy in a school.

zEPI Option

Projects may optionally establish their zEPI rating in lieu of performance above ASHRAE 90.1. There is a direct correlation between ASHRAE 90.1-2013 performance and the zEPI scale. zEPI provides a more stable scale that will not vary with future code updates. The correlation is presented in the prerequisite text. zEPI scores must be calculated using source energy values.

More information about zEPI and the conversion process can be found in *Rethinking Percent Savings – The Problem with Percent Savings and zEPI: The New Scale for a Net Zero Energy Future* by Eley et al., referenced in the resources below.

Projects that do not pursue the zEPI option may still find the zEPI conversion chart useful for comparing future projects that use a baseline that differs from ASHRAE 90.1-2013.

Documentation Requirements

Design Review Requirements

EE 1.0 & 1.1 – Construction drawings must include outputs of ASHRAE 90.1 energy modeling. Reports must include the Building Energy Performance Summary (BEPS), Building Energy Performance – Utility (BEPU) and Energy Cost Summary (ES-D). The reports must reflect the design of submitted project’s plans.

If needed to confirm compliance, reviewer may request the entire energy model in its original electronic format, not as a .pdf. Make this file available as needed.

EE 1.0 – Construction drawings must include an EPA *Energy Performance Rating* goal. There is no minimum requirement for the goal.

Construction documents must also include the designed EUI.
If shade trees are removed for any purpose related to energy efficiency or on-site energy production, include a letter from the system designer explaining why this was the best course of action.

Advanced Buildings New Construction Guide from New Buildings Institute

<table>
<thead>
<tr>
<th>Criteria</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2</td>
<td>2.7%</td>
</tr>
<tr>
<td>Criteria 2.18: Enhanced Envelope</td>
<td>1.9%</td>
</tr>
<tr>
<td>Criteria 2.19: Enhanced Glazing</td>
<td>0.7%</td>
</tr>
<tr>
<td>Criteria 2.20: Enhanced LPD</td>
<td>0.8%</td>
</tr>
<tr>
<td>Criteria 2.23: Demand Control Ventilation</td>
<td>1.3%</td>
</tr>
<tr>
<td>Criteria 3.2: Advanced Envelope*</td>
<td>4.4%</td>
</tr>
<tr>
<td>Criteria 3.3: Advanced Daylighting</td>
<td>0.7%</td>
</tr>
<tr>
<td>Criteria 3.6: Variable Capacity Heat Pump (VRF)</td>
<td>9.2%</td>
</tr>
<tr>
<td>Criteria 3.8: Plug Loads</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

*If pursuing this Criteria, do not count savings from Criteria 2.18 or 2.19

Resources

- ENERGY STAR: www.energystar.gov/
- The Consortium for Energy Efficiency (CEE) provides information on high performance equipment: www.cee1.org
- Commercial Energy Services Network (COMNET): comnet.org/mgp/?purpose=0
- Renewable Energy Rebates: www.dsireusa.org/

Zero Net Energy (ZNE) Capable

Intent

Further acknowledge the school to produce as much energy as it consumes on an annual basis.

This criterion provides a bonus on the Superior Energy scale (EE.1) for schools that are designed to achieve zero net-energy or are capable of achieving zero net-energy.

EE 2.1 – Zero Net Energy Capable

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>3 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement
| Points | EE 2.1.1 | Zero Net-Energy Capable. A complete design of a PV system that will provide 100% of the annual electric energy needs and operate an average efficiency of at least 80% of the optimal for your location as determined by the US DOE’s PVWatts program. The roof-top PV arrays must cover at least 65% (unless a smaller area is needed to provide full capacity) of the total roof area (the remainder of the PV can be located on parking covers or free-standing mounting structures). Other solutions may be considered on a case by case basis.

The complete PV system can be installed with:

- No structural modification to the roof to accommodate 5 lbs. per sq. ft. additional weight.
- No additional roof or wall penetrations are need for electrical wiring.
- No physical expansion of electrical or mechanical rooms to accommodate the inverter(s) and other electrical system components.

The project must have a projected annual site EUI of 40 kBtu per square foot to qualify for these credits.

OR

EE 2.1.2 | Zero Net-Energy. Show through the energy modeling required for EE 1.0 that on-site renewable energy systems produce as much energy on an annual basis as is used by sum of all the building systems. Project is eligible for two (2) innovation points from II 10.1.

The project must have a projected annual site EUI of 40 kBtu per square foot to qualify for these credits.

Implementation

Energy Modeling

Energy modeling using the procedures specified in EE.C1 shall be used to demonstrate this criterion.

Zero Net-Energy Capable

When demonstrating compliance with this criterion, the location of renewable systems shall be identified on the site or building and modeled using typical performance characteristics.

Energy Metric

Source energy is the required metric for determining zero net-energy. See discussion under EE 1.

Boundary for Determining Zero Net-Energy
In determining whether a school is zero net-energy or capable of zero net-energy, only renewable energy sources located on the school site shall be considered. The project is not limited to solar photovoltaic systems for EE 2.1.2. Wind and small-scale hydro generators may also help the project qualify for the credits. Biomass and liquid biofuels are not considered renewable energy sources.

Note that some renewable systems, such as solar thermal systems, may help offset the total energy use on site even though they do not directly generate electricity.

Documentation Requirements

Design Review

EE 2.1.1: Submit construction documents indicating the design of the PV system, which does not need to be installed on the project. Also submit construction documents which highlight features that would allow the complete PV system to be installed with:

- No structural modification to the roof to accommodate 5 lbs. per sq. ft. additional weight.
- No additional roof or wall penetrations are need for electrical wiring.
- No physical expansion of electrical or mechanical rooms to accommodate the inverter(s) and other electrical system components.

EE 2.1.2: Compliance shall be confirmed in EE 1.0.

Resources

Commissioning

Intent
Verify that building elements and systems are designed, installed, and calibrated to operate as intended, and provide for the ongoing accountability and optimization of building energy performance over time.

Commissioning is vitally important to the performance of the school and are the keys to achieving and maintaining energy efficiency. Commissioning involves a rigorous quality assurance program that ensures the building and its systems are built and operated as designed and that the school district receives the proper training and documentation needed to operate and maintain the building. No building can perform optimally without adequate maintenance.

Buildings, even simple structures, are complex systems of electrical, mechanical, and structural components. High performance buildings are healthy, efficient, environmentally sensitive structures whose performance can be significantly affected if the building has not been designed following the owner’s project requirements or constructed according to the designers’ specifications. Commissioning is a rigorous quality assurance program administered by a knowledgeable third party that ensures the building performs as expected.

<table>
<thead>
<tr>
<th>EE 3.0 – Commissioning</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 points</td>
</tr>
</tbody>
</table>

Applicability

<table>
<thead>
<tr>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EE 3.1 – Additional Commissioning Qualifications</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

<table>
<thead>
<tr>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
</tbody>
</table>

EE 3.0
This prerequisite requires a commissioning process to be in place early in the design process and carries through to the post-occupancy 10-month warranty review and subsequent completion of a commissioning report.

Requirement
EE 3.0 ALL of the fundamental best practice commissioning procedures must be implemented:

Engage an independent, third-party commissioning agent (CxA). The commissioning agent will be responsible for commissioning the following critical building systems:

Electrical Systems:
- Lighting systems and controls (daylight, occupancy, timing switches, etc.);
- On-site renewable solar electric or wind systems

Mechanical Systems:
- HVAC systems (such as hot water systems, chilled water systems, central air systems, ventilation systems);
- Energy management system
- Renewable energy heating systems
- Central plant systems in existing schools if they will serve new HVAC work and if they have not been commissioned or retrocommissioned within five years of submitting the project for review

Plumbing Systems:
- Flow control devices
- Pumping systems
- Special hazardous waste treatment systems (e.g. for lab wastes)
- Domestic hot water systems
- Graywater systems (if applicable)

The commissioning scope of services shall include:
- Review Owners Project Requirements (OPR) (formerly known as Design Intent documentation) and Basis of Design (BOD) documentation.
- Conduct a focused review of the design prior to the construction documents phase.
- Conduct a focused review of the construction documents when close to completion.
- Include commissioning requirements in the construction documents.
- Develop and utilize a commissioning plan.
- Conduct a selective review of contractor submittals of commissioned equipment.
- Verify installation, functional performance testing (including off-season testing), training, and operations and maintenance documentation. A minimum 20% sampling strategy for testing terminal units and repetitive units is permissible. All major systems must be tested.
- Participate in training of facility staff in accordance with the training plan (OM.1).
- Complete a commissioning report.
- Conduct a 10-month warranty, post-occupancy review.

Commissioning efforts in this prerequisite shall be coordinated with commissioning requirements in WE 6.0 – Irrigation Commissioning.
1 point
EE 3.1
The commissioning authority responsible for commissioning is a licensed architect or engineer with at least two years’ experience in the state when he/she practices.

This criterion is intended to allow project managers to think beyond the typical scope of a commissioning authority, into other useful system testing.

EE 3.2 – Building Envelope Commissioning

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review, Construction Review, Performance Review</td>
</tr>
</tbody>
</table>

This full scope of commissioning applies to a new school. For major renovations and a new building on an existing campus this commissioning scope is required based on the scope of the project. The scope of commissioning services for major renovations will depend on the whether the building envelope is being upgraded.

Requirement

1 point
EE 3.2
Commission the building(s) envelope using the National Institute of Building Sciences (NIBS) Guideline 3 or using an equivalent approach. The commissioning authority shall be a licensed architect or engineer with at least two years of building envelope commissioning experience in the state where s/he practices.

EE 3.3 – Enhanced Commissioning

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review, Construction Review, Performance Review</td>
</tr>
</tbody>
</table>

This full scope of commissioning applies to a new school. For major renovations and a new building on an existing campus this commissioning scope is required based on the scope of the project. The scope of commissioning services for major renovations will depend on the whether the building envelope is being upgraded.

Requirement

Implementation

EE 3.0

Qualifications of Commissioning Authority

The CxA should satisfy the qualifications of, and perform in accordance with, the Building Commissioning Associations’ (BCA) Essential Attributes of Building Commissioning.

The CA must have experience commissioning schools in accordance with this standard.

Consider a commissioning agent recognized by a professional organization such as:

- AABC Commissioning Group (ACG) Certified Commissioning Agent [www.commissioning.org/]
- Building Commissioning Association (BCA) certification [www.bcxa.org/certification/]
- Educational certification from University of Wisconsin [cx.engr.wisc.edu/]
- NEBB Qualified Commissioning Administrator [www.nebb.org/certified/nebbs_certification_program/]
- TABB Certified Commissioning Supervisor [www.tabbcertified.org/site/public/content/index/home]

The CA may be a qualified employee of the school district.

Commissioning Scope

The following list describes each of the commissioning steps listed above in greater detail.

- Engage a commissioning agent. The commissioning agent (CA) directs the commissioning process and should be hired in time for the design development phase. The commissioning services must be performed by an independent third party, i.e. not part of the design or construction management of the project. The CA may be hired by the owner, the owner’s project manager, or the design firm as long as the CA is not an employee of the design firm and reports to both the school district and the design firm. Review design intent and basis of design
documentation. The architect and the design engineer are the most appropriate people to create this document, which should list the owner’s project requirements and design intent for each of the systems or features to be commissioned. The CA will review this document, and a copy of the review shall be provided to the owner.

- **Conduct a focused review of the design prior to the construction documents phase.** This review early in the design process should be focused on an assessment of how well the design meets the owner’s design intent. Assessment should be made as to how the design meets the functionality, utility performance, maintainability, sustainability, cost, and indoor environmental quality requirements outlined in the design intent. Evidence of the review is to be documented in the commissioning report.

- **Conduct a focused review of the construction documents when close to completion.** This review should be conducted prior to issuing the construction documents for bid and captured in the commissioning report. The review should answer these questions:

 o Does the design meet the owner’s design intent?
 o Does the design allow for proper maintenance access?
 o Do the construction documents clearly detail the construction requirements?
 o Do the construction documents clearly define the commissioning requirements?

- **Include commissioning requirements in the construction documents.** All commissioning requirements must be integrated into the construction documents to clearly specify the responsibilities and tasks to be performed. Of particular importance are the delineation of the contractors’ responsibilities regarding documentation, functional performance testing, occupant and operator training, and the creation of the operations and maintenance manuals.

- **Develop commissioning plan.** The commissioning plan includes a list of all equipment and systems to be commissioned, delineation of roles for each of the primary commissioning participants, and details on the scope, timeline, and deliverables throughout the commissioning process.

- **Conduct a selective review of contractor submittals and shop drawings related to the commissioned systems.** Contractor submittals for the systems included in the commissioning scope shall be reviewed by the CA in conjunction with the designer’s review. The review shall focus on the ability of the submitted product to meet the owner’s requirements and review comments shall be provided to the owner and the design team.

- **Review Operations & Maintenance manual.** The Contractor compiles the O&M Manuals prior to commencement of training and the CxA reviews them for
completeness, organization and readability. The CxA shall review the O&M Manuals for the following items:

- As-built sequences of operations for all equipment as provided by the design professionals and contractors, including time-of-day schedules and schedule frequency, and detailed point listings with ranges and initial setpoints.
- Ongoing operating instructions for all energy- and water-saving features and strategies.
- Seasonal operational guidelines.
- Recommendations for recalibration frequency of sensors and actuators by type and use.
- Guidelines for continuous maintenance of the owner’s project requirements (operational requirements) and basis of design (basis of operation).

Verifying Pre-Functional Testing. The CxA shall provide the Contractor with the Pre-Functional Checklists (PFC) that include a list of items to inspect and elementary component tests to conduct to verify proper installation of equipment. PFCs are primarily static inspections and procedures to prepare the equipment or system for initial operation. The CxA shall observe, at minimum, the startup procedures for each piece of primary equipment, unless there are multiple units, (in which case a sampling strategy may be used). Extent of CxA observation of Pre-Functional Testing will be at the discretion of the CxA, though spot checking of items on the lists will be performed prior to Functional Testing. PFC’s are separate and in addition to the manufacturers installation and start-up forms and shall be reviewed by the CxA and included in the Commissioning Report. Contractor shall certify that installation, prestart, and startup activities have been completed prior to commencing Functional Testing. Certification shall include completed PFC’s, manufacturer installation and startup checklists and the final TAB report approved by the A/E.

Functional Testing. The CxA shall develop the functional test procedures in a sequential written form, coordinate, oversee and document the actual testing. Functional Performance Tests (FPT) are performed after Prefunctional testing and startup are complete and test the dynamic function and operation of equipment and systems using manual (direct observation) or monitoring methods. Systems shall be tested under various modes and run through all the control system’s sequences of operation while components are verified to be responding as the sequences state. Checklists will be completed during the testing process, deficiencies will be added to the Commissioning Issues Log and each included in the Commissioning Report.
• **Participate in training of facility staff in accordance with the training plan.** The CA may be charged with reviewing the training plan, developed by the Construction Manager/General Contractor, for adequacy. The CA may additionally be charged with participating in the training itself.

• **Complete a commissioning report.** The report must show that the building’s systems have met the design intent and specifications, have been properly installed, are performing as expected, and that proper O&M documentation and training have been provided. The report should include a compilation of all commissioning documentation described in this criterion, including complete functional testing results and forms and should note any items that have not been resolved at the time the report is issued.

• **Ten month warranty, post-occupancy review.** The commissioning contract shall contain provisions for a 10-month warranty and post-occupancy review. The review is intended to bring the design, construction, commissioning, and facility staff together to solicit the facility staff’s comments, suggestions, and areas of concern regarding the systems in their first year of operation. Warranties on any commissioned systems should be reviewed and deficient equipment should be identified and a plan for resolution developed.

Testing Sampling Criteria

The contractors shall submit to the CxA documentation that they have performed installation and functional performance verification in accordance with the commissioning plan for all equipment components and systems. The functional performance test may be demonstrated to the CxA for a sample of systems that comply with all of the following criteria:

• Equipment or systems have similar components and configurations. For component testing, sampling may apply where there are many identical component types with similar applications.

• The systems or equipment have identical sequences of operation, which are implemented using identical control software programming or firmware settings.

• The components and systems to be included in the demonstrated samples shall be chosen by the commissioning authority at the time of demonstration.

• Building Automation System mapping of component to the operators graphic shall be demonstrated for all components.

• The trend logging portions of all functional performance test shall be completed for 100% of the systems or components

Failure Testing
The Commissioning Plan must also identify retesting protocols for components and systems that fail initial testing.

Cross-Category and Other Considerations

This prerequisite relates to all prerequisites and credits that involve operable building systems, including HVAC, windows, and room controls. Good training is critical for good operations, and good operations are critical for good building performance. The prerequisite also relates to the required Systems Maintenance Plan in OM 5.1. The operations & maintenance manual described here will be part of the plan, along with the inventory and schedule of maintenance.

It is recommended that the owner consider using the commissioning process and provider for additional services including acoustic testing and irrigation commissioning. Qualified commissioning authority’s can provide quality control on a range of high performance school systems and strategies. Other major systems can include items such as pools or audio-visual systems. Contact CHPS to see if your “major system” qualifies.

EE 3.2

When commissioning the envelope, follow the NIBS Guideline 3 or an equivalent method that at minimum includes drawing review, field inspection (construction checklist) and prior to window installation perform an infrared (IR) mock up to test for thermal breaks or IR testing of the first window installation.

EE 3.3

The prerequisite commissioning scope EE 3.0 does require a 10-month warranty review, but this review may not provide much value if the commissioned systems have not been monitored during the first year of occupancy. The school's O&M staff may not have the manpower to dedicate to such monitoring and potential issues may not be apparent until the expiration of the warranty period.

First year optimization scope shall include, at a minimum:

- Monthly collection of building energy use and benchmark against predicted energy use and average comparable school building in the Northeast (require use of ENERGY STAR Portfolio Manager?)

- Quarterly review and analysis of operations trend data for select commissioned systems to verify continued proper systems operation

- Quarterly review and analysis of space temperature and CO2 trend data for a sampling of building spaces to verify satisfactory indoor environments

- Quarterly meetings with school O&M staff to review findings from review and analysis of building energy use, commissioned systems and space trend data. These quarterly meetings will also be used to discuss any specific questions or concerns the O&M staff
may have regarding the commissioned systems to help direct the commissioning authority’s efforts for subsequent review and analysis.

A systems manual organizes equipment information by system and incorporates information above and beyond a regular O&M manual including; BOD, TAB reports, project specific operating considerations, functional performance tests, etc. The commissioning authority is in the best position to develop the systems manual due their project involvement from design through the first year of occupancy.

Documentation Requirements

Design Review Requirements

EE 3.0 & 3.1 – Provide the project’s Commissioning Plan and Owners Project Requirements (OPR).

EE 3.0 – Construction drawings must include general notes that commissioning is required, at what stages and where the Commissioning Plan may be found for more information.

EE 3.2: Compliance will be confirmed by reviewing documentation for EE 3.0 and EE 3.1. Be sure to include additional requirements in construction documents as appropriate.

EE 3.3: Compliance will be confirmed by reviewing the additional scope of work for the Commissioning agent submitted in EE 3.0 and EE 3.1.

Construction Review Requirements

EE 3.0, 3.1, 3.2 – Provide the final Commissioning Report.

EE 3.3: Submit the systems manual.

Performance Review Requirements

EE 3.3: Submit a report summarizing the first year optimization process.

Resources

- The National Clearinghouse for Educational Facilities includes a bibliography on commissioning: www.edfacilities.org/rl/commissioning.cfm
Environmental Preferable Refrigerants

Intent
Reduce the ozone layer impact and global warming contribution of refrigerants.

Because many refrigerants in use today have been found to adversely affect the ozone layer and contribute to the accumulation of atmospheric greenhouse gasses, this criterion requires the use of environmentally preferable refrigerants in Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC&R) systems.

<table>
<thead>
<tr>
<th>EE 4.0 – Environmental Preferable Refrigerants</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td></td>
</tr>
<tr>
<td>All projects.</td>
<td></td>
</tr>
<tr>
<td>Verification Required</td>
<td></td>
</tr>
<tr>
<td>Design Review</td>
<td>Construction Review</td>
</tr>
</tbody>
</table>

Requirement

1 point

EE 4.0

- Use no CFC or HCFC based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems.
- HFC refrigerants are allowed and preference should be given to low GWP refrigerants.
- Existing HVAC equipment in renovation projects are exempt from this requirement if any non-compliant equipment was installed within the last 10 years.

Implementation

Submit specifications demonstrating the use of non-CFC/HCFC-based refrigerants in all HVAC and refrigeration systems to be installed. The following table may be used as a reference in choosing refrigerants. Note that the following table is not exhaustive and is simply a reference list. Any refrigerant complying with the prerequisite may be used regardless of its presence or absence in the table below.
Table 8: Refrigerants and Environmental Performance (After LEED Reference Guide for Green Building Design and Construction)

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>ODP</th>
<th>GWP</th>
<th>Common Building Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorofluorocarbons (CFC) and Hydrochlorofluorocarbons (HCFC)</td>
<td>not permitted in new equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFC-11</td>
<td>1.0</td>
<td>4,750</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>CFC-12</td>
<td>1.0</td>
<td>10,900</td>
<td>Refrigerators, chillers</td>
</tr>
<tr>
<td>R-500</td>
<td>0.738</td>
<td>8,080</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>R-502</td>
<td>0.334</td>
<td>4,660</td>
<td>Centrifugal chillers, humidifiers</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>0.055</td>
<td>1,810</td>
<td>Air conditioning, chillers</td>
</tr>
<tr>
<td>HCFC-123</td>
<td>0.02</td>
<td>77</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>High-GWP Hydrofluorocarbons</td>
<td>permitted in new equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFC-134a</td>
<td>0</td>
<td>1,430</td>
<td>Air conditioning, centrifugal chillers, refrigerators, vending machines</td>
</tr>
<tr>
<td>HFC-245fa</td>
<td>0</td>
<td>1,030</td>
<td></td>
</tr>
<tr>
<td>R-404A</td>
<td>0</td>
<td>3,920</td>
<td></td>
</tr>
<tr>
<td>R-407A</td>
<td>0</td>
<td>2,110</td>
<td>Low-temperature refrigeration</td>
</tr>
<tr>
<td>R-410A</td>
<td>0</td>
<td>2,090</td>
<td></td>
</tr>
<tr>
<td>R-507A</td>
<td>0</td>
<td>3,990</td>
<td></td>
</tr>
<tr>
<td>Other Low-GWP Refrigerants</td>
<td>permitted for use in new equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>0</td>
<td>1.0</td>
<td>Low-temperature refrigeration, water heating, vending machines</td>
</tr>
<tr>
<td>HFC-32</td>
<td>0</td>
<td>675</td>
<td>Air conditioning (under R&D)</td>
</tr>
<tr>
<td>R-1233zd</td>
<td>0</td>
<td>7</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>R-1234ze</td>
<td>0</td>
<td>6</td>
<td>Centrifugal Chillers</td>
</tr>
<tr>
<td>R-1234ze</td>
<td>0</td>
<td>4</td>
<td>Centrifugal Chillers</td>
</tr>
</tbody>
</table>

Note that many refrigerants have been or are being phased out because they deplete the ozone layer. All CFC production has stopped. Regardless of the refrigerant school districts currently use in existing equipment or purchase for new equipment, they should implement exceptional maintenance and operation practices to assure that refrigerant is not lost from the system. This will reduce costs of replacement refrigerant, help maintain energy efficiency, and protect the reliability of the equipment.

Documentation Requirements

Design Review Requirements

Construction drawings, including the mechanical schedule, must include equipment specified with no CFC based refrigerants.
Resources

- U.S. EPA Refrigerant Guidelines and Regulations:
Energy Management System

Energy Management Systems (EMS), lighting control and metering are important systems for controlling, monitoring and understanding patterns of energy use in schools.

The prerequisite requires a base level EMS system to be installed, whereas EE 5.2 gives points for a more advanced system.

EE 5.1 – Energy Management System

<table>
<thead>
<tr>
<th>Credit</th>
<th>2 points</th>
</tr>
</thead>
</table>

Applicability

<table>
<thead>
<tr>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

EE 5.2 – Advance Energy Management System and Submetering

Intent

Provide control, accountability, and optimization of building energy performance.

Requirement
2 points EE 5.1 Install a base level energy management system (EMS) to control the operating schedule of HVAC systems throughout the building including terminal units, packaged units, air handling units, make-up air units, centralized hydronic heating and cooling systems, pumps, and fans including fume hoods. Fractional horsepower fans, fractional horsepower pumps and units providing air conditioning to spaces requiring continuous 24/7 cooling such as computer server rooms, network equipment rooms, or walk-in refrigerators and freezers are excluded. The base level EMS shall provide the following energy saving features:

- Schedule unoccupied setback temperature control so that units can heat during unoccupied modes should the space temperature fall below the setback temperature. Setback temperature settings shall be no higher than 60 degrees F.
- Scheduled control of all ventilation outdoor air fans, exhaust fans and outdoor air dampers so that fans are turned off and dampers are closed during unoccupied periods.
- Zoning of systems so that major building areas (i.e. gymnasium, cafeteria, library, classrooms, and administrative offices) can be independently scheduled during non-school hours.
- An override system to temporarily change a unit or zone from unoccupied to occupied mode locally is permitted provided that it is timed and will automatically revert back to the normal operating schedule after no more than four hours. A local override switch that is not on a timer is not permitted. Ventilation outdoor air shall be set to occupied mode if the local override is used.

A centrally located scheduling interface shall be provided so that the operator can schedule the EMS operating mode for weekdays, weekends, and holidays. The scheduler shall be capable of independently scheduling each major building area or zone. If the facility management staff that sets the operating schedule is located at another site, the EMS shall have a web-based interface so that the schedule can be set remotely.

<table>
<thead>
<tr>
<th>EE 5.2 – Advanced Energy Management System and Submetering</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
2 points **EE 5.2.1** *Automated Demand Management.* Install an advanced energy management system (EMS) capable of supporting Automated Demand Management functions. System shall be capable of:

- Storing pre-programmed demand management control strategies for specific controlled equipment and/or systems that will, in a safe and controlled manner, increase or decrease electrical demand, (e.g., change cooling setpoints, turn equipment on or off, rotate loads to avoid simultaneous/stacked demand) when triggered.
- Store pre-conditions for triggering and releasing discrete demand control strategies, such as approaching user defined demand thresholds, applicable electricity pricing points, etc.
- Respond to external signals as triggers for implementing and releasing demand management control strategies such as a contracted demand response event. The facility shall either demonstrate compliance with Open ADR 2.0 or demonstrate similar functionality via automated triggers using other communications protocols.
- Support automated notification of a demand response event scheduled, threshold met, strategies scheduled for triggering, strategies executed and strategies released to normal control.
- Allow for remote access opt out or cancellation of any demand control strategy scheduled or currently in force.
- Allow for remote access user triggering of any demand control strategy not currently in force as well as scheduling triggering any demand control strategy for future triggering and release.
- Energy models should be used to determine appropriate setback temperatures during unoccupied hours

EE 5.2.2 *Data Acquisition and Storage.* Install a meter data acquisition and storage system for all electrical power used within the building. The system can use the main utility meter as a data source or an owner supplied sub-meter provided that all electrical power used in the building is recorded. Data from the system shall at a minimum record and store every 1 minute and shall be available to the operator with no less than 1 hour of the time the energy was consumed. The system shall include a user interface to trend and analyze stored data. Using the EMS, a separate stand alone system, or a system provided by the local utility company are all acceptable provided that the system meets the requirements described herein. Project is eligible for two (2) innovation points from II 9.1.

Implementation

EE 5.1

While energy management systems (EMS) are typically installed with new HVAC and heating systems, care must be taken to specify and install an appropriate system for the
district and its maintenance staff. The best EMS for a district is the simplest system that still addresses the school’s energy management needs. Increased complexity does not always mean increased value for the district.

Energy management systems can potentially save significant energy, but only if the staff understands how to operate them. With EMS installation, proper training of district staff is absolutely critical. The district must be prepared to budget for staff training and for training new staff when those knowledgeable about the EMS leave employment.

EE 5.2

The following are considered exempt from this criterion:

- Unit heaters, cabinet heaters, radiation and convectors located in vestibules, storage rooms, janitor closets, and other unoccupied areas.
- Natural gas and heating oil demand sensors are not required on buildings less than 50,000 ft².

Monitoring capabilities of the EMS should allow for comparison between various types of building loads throughout all spaces of the school. This information is valuable and can be used to manage and optimize energy use. By trending and monitoring the building operation, any deviation from the design operation can be identified and corrected before an impact on occupant comfort and energy performance of the building is created. Building performance can also be optimized by longer-term trending, observation of performance characteristics, and benchmarking performance against expected operation.

The EMS should comprise the following:

Sensors should be provided as follows:

- Sensors to trend outdoor air temperature.
- Sensors to monitor and trend equipment status for all equipment with motors greater than ½ hp.
- Indication and trending of damper and valve commanded position.
- Sensors to monitor building electrical, natural gas, and heating oil demand and consumption.
- Sensors to monitor indoor and outdoor CO₂.
- Sensors to monitor and trend (create trend logs) controlled variables at the operator interface. Control variables may include air and/or water flow, temperature, pressure, CO₂, and pump or fan speed. Relevant multiplexed data from microprocessors located in chillers, boilers, humidifiers, VAV box controllers, variable speed drives, and other HVAC equipment with multiplexing capabilities may be used in lieu of specifying separate sensors.
• Wells and other ports shall be specified for the installation of calibration devices to facilitate calibration of sensors.

Points Matrix: A points matrix including all hardwired input and output devices connected to the automation system, all set points, upper and lower control limits.

Trend Capabilities: Trend requirements including a trend point list and preprogrammed sample of point (performed by controls contractor), sample rate, storage interval, upload interval, custom trend abilities, alarms, and automated trend data review and notification (automated diagnostics).

System Architecture: A system architecture capable of allowing sampling of these points to facilitate building commissioning and diagnostics without significantly affecting system performance.

Data Storage: A data storage system with adequate capacity to record trend data for use by building operators. Data export requirements must facilitate user-friendly data access and manipulation.

Operator Interface: An operator interface designed for remote/web access, monitoring requirements, trend-log reporting and diagnosing building problems through a user-friendly interface. This includes providing a visual (non-text based) operations and reporting interface to facilitate rapid system assessment that utilizes color coding, diagrams of floor plans and graphing capabilities.

Communications: the EMS system may automatically generate reports on a regular basis summarizing recent system functionality and energy use. Such automatic reporting can be helpful for staff to continually understand how building systems are operating.

Documentation Requirements

Design Review Requirements
EE 5.1: Construction drawings and specifications that show a compliant EMS.
EE 5.2: No additional documentation. Compliance will be reviewed with EE 5.1.

Resources

Natural Ventilation & Energy Conservation
Interlocks

Intent

Provide a bonus for school designs that incorporate natural ventilation and an incentive to install interlocks on doors and windows.

Natural ventilation is an effective energy design strategy for schools in many climates. Natural ventilation is already credited in the Superior Energy Performance criterion (EE 1.1) and this criterion offers additional bonus points when the strategy is employed.

<table>
<thead>
<tr>
<th>EE 6.1 – Natural Ventilation & Energy Conservation Interlocks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>This criterion applies to new schools, a new building on an existing campus, additions and to major renovations based on the scope of the project. While this criterion applies to renovation projects; the cost of installing interlocks on existing windows can be prohibitive. A good opportunity to install interlocks occurs when the windows are being replaced as part of the project. For new buildings and renovation projects, interlock switches may only be installed in just the new building(s) or the building(s) being renovated/modernized to earn these points.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
Design schools such that at least 90% of the classrooms are designed to provide comfort conditions with no mechanical cooling according to the comfort conditions defined in ASHRAE Standard 55-2010.

Naturally ventilated classrooms (with no mechanical cooling) shall meet the classroom ventilation requirements of ASHRAE Standard 62.1-2010 § 5.1 or demonstrate that engineered natural ventilation systems satisfy the requirements.

For hybrid systems that use natural ventilation in combination with mechanical cooling, install interlocks, or an equivalent mechanism, to prevent heating and cooling equipment from operating when exterior windows or doors are open.

Implementation

Outdoor air Ventilation

Comply with ASHRAE 62.1-2010 § 6.4 requirements for classroom natural ventilation or include an engineered natural ventilation system that meets ASHRAE requirements. The former requires a minimum operable area in comparison to the classroom size, that openings are unobstructed, and that there is means to open the required operable windows or doors are readily accessible, in addition to other requirements. Adequate amounts of ventilation must be supplied to occupied classrooms at all times.

Interlock Switches

For hybrid spaces, specify and install interlock switches on all relevant classroom and non-classroom operable windows and doors. Consider including a strategy (such as a red light/green light system) to notify staff when the air temperature outside is appropriate for opening windows and utilizing natural ventilation.

Each year, significant amounts of energy are lost when teachers or staff members open exterior doors or windows while the HVAC heating and cooling equipment dedicated to that space continues operating. Interlocks installed on windows and doors can be used to shut off this equipment when windows and doors are opened for extended periods. If the heating or cooling equipment provides conditioned air to multiple rooms, the equipment should only be shut down when all related rooms have a window or door open. Interlocks must not turn off supply air fans that are used for ventilation, only equipment that is used to condition the air such as furnaces, heat-pumps, air-conditioner compressors and coil valves. Adequate amounts of ventilation must be supplied to the classroom at all occupied times.

Controls that use some form of time delay must be included so that normal use of doors do not cause the HVAC equipment to cycle on and off unnecessarily, and teachers must be educated on how the system works and why it is needed. The energy savings for natural ventilation are included in the calculations for EE 1.0 Energy Performance and EE 1.1 Superior Energy Performance.
Documentation Requirements

Design Review Requirements

Complete the CHPS Verified Plan Sheet to verify compliance. Construction drawings, ideally the mechanical plans, must include system details.

Construction Review Requirements

Provide proof of installation or pictures for required features.

Resources

- ASHRAE 55-2010: www.ashrae.org/technology/page/548
Local Energy Efficiency Incentives and Assistance

Intent

Require participation in local energy efficiency incentives and technical assistance programs.

Virtually every utility customer in the Northeast region is eligible to participate in at least one, and typically several, energy efficiency programs. The programs offer either technical assistance or incentives for efficient equipment and practices. Many programs offer both technical assistance and financial incentives for the installation of efficient equipment and the incorporation of efficient design practices.

EE 7.0 – Local Energy Efficiency Incentives and Assistance

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>2 points</th>
</tr>
</thead>
</table>

Applicability

This criterion applies to all projects.

<table>
<thead>
<tr>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement

2 points

Participate in energy efficiency incentive and technical assistance programs that are available through applicable utility and governmental programs.

Implementation

Virtually every utility customer in the Northeast region is eligible to participate in at least one, and typically several, energy efficiency programs. The programs offer either technical assistance or incentives for efficient equipment and practices. Many programs offer both technical assistance and financial incentives for the installation of efficient equipment and the incorporation of efficient design practices.

In addition to utility and state government operated programs, the Federal Government offers a tax credit program that will allow the designers of energy efficient buildings to apply for a tax credit to help offset the costs of the design and construction of efficient buildings.
Participation in these programs not only leads to possible financial incentives, but often provides valuable information regarding best practices in the local area and local expert design and consultation services. School administrators should contact their electric and gas utility companies as well as their state energy office for specific program information.

Documentation

Design Review
Submit copies of utility and/or governmental program documents that demonstrate participation in available energy efficiency programs. Requirements may vary by state. Check state addendum for possible additional reporting requirements.

Construction Review
Submit documentation to confirm participation in any programs that could not be utilized prior to construction.

Resources

Cape Light Compact, www.capelightcompact.org/
National Grid. www.nationalgridus.com/
United Illuminating, www.uinet.com/
Western Mass Electric, www.wmeco.com/
Variable Air Volume Systems

Intent

Install a VAV system to ensure exceptional access to fresh air.

School buildings require abundant amounts of fresh air in order to maintain indoor air quality. If the air volume is not carefully controlled, energy will be wasted needlessly conditioning excess fresh air.

EE 8.1 – Variable Air Volume Systems

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 points</td>
<td>1 points</td>
</tr>
</tbody>
</table>

Applicability

This criterion applies to all projects.

Verification Required

- Design Review
- Construction Review
- Performance Review

Implementation

School buildings require abundant amounts of fresh air in order to maintain indoor air quality. If the air volume is not carefully controlled, energy will be wasted needlessly conditioning excess fresh air.

To qualify for this credit, a VAV system must be installed that responds to indoor air quality through the use of CO2 sensors or other air quality monitoring systems. Fans 5 hp and greater associated with this system are to be controlled by variable speed drives that respond to the air quality and thermal comfort needs. Additionally, pumps associated with the HVAC system are to use variable speed drives to regulate flow.

“Displacement” ventilation systems that are responsive to indoor air quality demands may also be submitted for this credit.

Systems that simply monitor temperature are not eligible for this credit.

Documentation

Design Review
Submit HVAC design document complete with pump, fan, and controls schedules, along with a "sequence of operations" document.

Resources

Advanced Buildings Core Performance Guide, www.advancedbuildings.net/corePerf.htm
Renewable Energy Performance Monitoring

Intent

Monitor the performance of renewable energy systems and publicly display results online.

Renewable energy systems are significant investments for schools. Ensure that they are performing as expected by specifically monitoring their performance. Displaying the results online helps drive accountability and improve community engagement in the school.

EE 9.1 – Renewable Energy Performance Monitoring

<table>
<thead>
<tr>
<th>EE 9.1 – Renewable Energy Performance Monitoring</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

This credit applies to all projects that install renewable energy systems.

Verification Required

- Design Review
- Construction Review
- Performance Review

Requirement

| 1 points | EE 9.1 | Install a performance monitoring system that monitors installed on-site renewable energy systems and displays the results on a Web site accessible by the public. |

Implementation

For any of the on-site renewable energy systems installed on site, install a performance monitoring system that monitors and records system performance over time. Include a protocol for uploading performance information to a Web site allowing open access to the information.

Documentation

Design Review

Provide specifications for a performance monitoring system and a protocol for the automatic or scheduled uploading of performance data to an open access project Web site.

Construction Review

Submit screenshots of the website specific to the school.

Resources
Renewable energy system manufacturers typically supply or recommend monitoring equipment.

Electric Vehicle Charging

Intent
Provide electric vehicle supply equipment to support electric vehicle charging.

Electric vehicles have rapidly gained popularity in the Northeast and throughout the country. Infrastructure to charge and support electric vehicles is still developing. This credit incentivises projects to provide charging stations at schools to further encourage the adoption of electric vehicles.

EE 10.1 – Electric Vehicle Charging

<table>
<thead>
<tr>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability | Verification Required
All projects. | Design Review Construction Review Performance Review

Requirement

EE10.1 1 point
Install electrical vehicle supply equipment (EVSE) in 2% of all parking spaces used by the project. Clearly identify and reserve these spaces for the sole use by plug-in electric vehicles. Parking spaces that include EVSE must be provided separate from and in addition to preferred parking spaces for green vehicles.

The EVSE must:

- Provide a Level 2 charging capacity (208 – 240 volts) or greater.
- Comply with the relevant regional or local standard for electrical connectors, such as SAE Surface Vehicle Recommended Practice J1772, SAE Electric Vehicle Conductive Charge Coupler or IEC 62196 of the International Electrotechnical Commission for projects outside the U.S.
- Be networked or Internet addressable and be capable of participating in a demand-response program or time-of-use pricing to encourage off-peak charging.

Documentation
Design Review
Submit plans showing the location of charging stations and specifications complying with the credit requirements.

Construction review

Submit photographs of the charging stations installed on site.
Minimum Reduction in Indoor Potable Water Use

Intent

Maximize water efficiency within buildings to reduce the burden on municipal water supply, aquifers, and wastewater treatment systems.

The growing value of potable water in the United States underscores the importance of lowering demand. Efficient water consumption naturally reduces the amount of water pumped from the ground or transported from reservoirs to cities and towns. In addition, water efficiency reduces the cost and amount of sewage needing treatment after use. Because water-efficient devices can vary in quality and performance, specify only durable, high performance fixtures.

Well designed water efficient systems may earn one or more points by reducing the overall amount of potable water used in the schools and by reducing the amount of potable water used for sewage conveyance.

<table>
<thead>
<tr>
<th>WE 1.0 – Minimum Reduction in Indoor Potable Water Use</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 points</td>
</tr>
</tbody>
</table>

Applicability | Verification Required

| All projects. | Design Review | Construction Review | Performance Review |

Requirement

5 points WE 1.0 Provide fixtures and fittings that, in aggregate, reduce potable water use for new construction, and for major renovations to meet the performance requirements as specified in Table 9: Fixture Performance Requirements.

Implementation

WE 1.0
This credit requires that all indoor water fixtures listed in Table 9: Fixture Performance Requirements comply with the listed maximum water consumption figures. These fixture requirements are not averages – every fixture must comply.

Table 9: Fixture Performance Requirements

<table>
<thead>
<tr>
<th>Fixture/Fitting Type</th>
<th>Maximum Water Consumption</th>
<th>Other Requirements & Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showerheads</td>
<td>2.0 gpm @ 80 psi</td>
<td>Must be listed to WaterSense</td>
</tr>
<tr>
<td>Commercial lavatory faucets</td>
<td>0.5 gpm @ 60 psi</td>
<td></td>
</tr>
<tr>
<td>Private lavatory faucet</td>
<td>1.5 gpm</td>
<td></td>
</tr>
<tr>
<td>Metering faucets (self-closing)</td>
<td>0.20 gallons/cycle</td>
<td>There is no maximum flow rate for metering faucets</td>
</tr>
<tr>
<td>Water closets - other than remote locations*</td>
<td>1.28 gallons/flush</td>
<td>Tank-type water closets must be listed to WaterSense</td>
</tr>
<tr>
<td>Water closets - remote locations*</td>
<td>1.6 gallons/flush</td>
<td></td>
</tr>
<tr>
<td>Urinals</td>
<td>0.5 gallons/flush</td>
<td>Flushing urinals must be listed to WaterSense</td>
</tr>
<tr>
<td>Commercial pre-rinse spray valves</td>
<td>1.3 gpm @ 60 psi</td>
<td>Must be listed to WaterSense</td>
</tr>
<tr>
<td>Kitchen faucets</td>
<td>2.2 gpm</td>
<td></td>
</tr>
<tr>
<td>Drinking fountains (manual)</td>
<td>0.7 gpm</td>
<td></td>
</tr>
<tr>
<td>Drinking fountains (metered)</td>
<td>0.25 gallons/cycle</td>
<td></td>
</tr>
</tbody>
</table>

*Remote location is where a water closet is located at least 30 feet upstream of the nearest drain line connections or fixtures, and is located where less than 1.5 drainage fixture units are upstream of the water closet’s drain line connection.

Documentation Requirements

Design Review Requirements

Construction drawings must include a plumbing fixture schedule that reflects the required flow rates.

Construction Review Requirements

Provide pictures of installed fixtures, and manufacturer receipts, proof of purchase, or approved submittals for the water-efficient products purchased.

Resources
- US Environmental Protection Agencies Water Sense® program for efficient fixtures and sensors: www.epa.gov/watersense/.
Reduce Potable Water Use for Sewage Conveyance

The growing value of potable water in the United States underlines the importance of lowering demand. Water efficiency naturally reduces the overall amount of water needing to be pumped from its source or distributed around the city or state, thus resulting in lower energy needs. In addition, water efficiency reduces the cost and amount of sewage needing treatment after use. Because water-efficient devices can vary in quality and performance, specify only durable, high performance fixtures.

The mantra of watershed protection organizations across the world is “keep water local.” In other words, harvest, use, treat, and re-infiltrate water close to the source of its use. Every step of extracting water, treating it, transporting it, and eventually reintegrating it into the water cycle uses energy. Transporting water, in particular, uses enormous electrical and infrastructure resources.

Use water-efficient fixtures and reclaimed water (where available) to reduce the amount of potable water used for sewage conveyance. Reclaimed water (tertiary treated wastewater) and/or recycled water from municipal sources (greywater, or harvested rainwater cooling tower blowdown, foundation drain water) may be suitable for flushing toilets and urinals, which typically produce the largest amounts of wastewater in a school. However, check first with the manufacturer(s) of the toilets and urinals to determine the minimum water quality requirements for the plumbing fixtures being considered. Note that fixture warranties may be voided by the manufacturer if the water quality fails to meet minimum specifications.)

A new generation of High Efficiency Toilets (HETs) and Urinals (HEUs) that use a maximum volume of 1.28 and 0.5 gallons per flush, respectively, are now readily available. Third party testing to determine the Maximum Performance (MaP) for different toilet fixtures has been available since 2003. Performance test results are available for both tank-type toilets and flushometer valve and bowl combination type toilets. For more information and test results, refer to: www.map-testing.com.

<table>
<thead>
<tr>
<th>WE 2.1 – Reduce Potable Water Use for Sewage Conveyance</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 Points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All new schools and major renovations. New building on an existing campus and</td>
<td>Design Review</td>
</tr>
</tbody>
</table>
additions may be eligible for these points if enough toilets and urinals are provided within the building to meet the occupant load. In cases where compliance with the toilet-occupant load ratio is determined on a campus wide basis the calculations should be performed for the entire school site.

Requirement

<table>
<thead>
<tr>
<th>2 points</th>
<th>WE 2.1.1</th>
<th>Provide shut-off capabilities for water supply to all urinals and water closets to prevent water leakage when unoccupied. Reduce the use of potable water for building sewage conveyance by a minimum of 20% through the utilization of water-efficient fixtures, use of rainwater catchment systems, or both.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2 point</th>
<th>WE 2.1.2</th>
<th>Comply with the requirements in WE 2.1.1, but reduce the use of potable water for building sewage conveyance by a minimum of 40% through the utilization of water-efficient fixtures, use of rainwater catchment systems, or both.</th>
</tr>
</thead>
</table>

Implementation

This criterion requires reductions in total indoor water use; therefore all significant water uses are included in the calculations. Differentiation was made between the necessary reductions for new construction and major renovation due to the difficulty of working with existing grading of pipes.

Use the CHPS Templates to calculate the total water use (excluding landscaping) for the baseline design and for the proposed efficient design (to be used for Criterion WE.4). Create a spreadsheet that lists each fixture type, the flow rate, estimated duration of use, and any automatic controls. For the baseline design calculations assume the water consumption amounts shown in Table 9 - Fixture Performance Requirements. Food service and laundry appliances and fixtures should be considered to the extent that there is an existing baseline for those items, such as food steamers, Combi ovens, clothes washers, dishwashers, and ice machines. Fixtures and appliances that are used for consumption, such as a soda machines or coffee makers, should not be included. Baseline recommendations for food service appliances and fixtures should not compromise school health regulations or codes. Then estimate the number of occupants that will use each fixture type and the number of uses per day. Use this data to calculate the water use for each fixture type and the total daily and annual water use of the school. Create a similar spreadsheet for the efficient design.
case (if it improves on the prerequisite) using actual flow rates of the specified fixtures and equipment. The estimated number of occupants and daily uses remains the same for both cases.

Use water-efficient fixtures and/or site-collected water to reduce the amount of potable water used for sewage conveyance. Only those sources that produce blackwater, such as toilets and urinals, are included in this calculation. Rainwater is suitable for flushing toilets and urinals, which typically produce the largest amounts of wastewater in a school.

To quantify water use reductions, use the CHPS water use spreadsheet to determine baseline and design water consumption. List each fixture that produces blackwater, the amount of daily uses, number of occupants, and total water use. A water-efficient design for a 1,000-student school is shown in Table 11. The example assumes the use of low-flow toilets and waterless urinals, with all fixtures either using no water or using non-potable water.

Example Calculation

Question: How is the total potable water consumption savings calculated beyond the baseline established by Table 10 for the school in this example?

Example: Calculate the water use of the efficient design using high-efficiency fixtures where possible and the using Table 10 as the baseline design case. Divide the efficient design annual use by the baseline design annual use and subtract this from 1. The total savings in the following example is 34.1%, which exceeds this criterion and can be applied for under WE.4. If reclaimed or recycled water, or graywater are used for irrigation in place of potable water, that volume of water is further subtracted from the efficient design.

Table 10: Baseline Design Case Total Water Consumption

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily uses</th>
<th>Water use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Toilet (male)</td>
<td>1.28 gal/flush *</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>640</td>
</tr>
<tr>
<td>Conventional Urinal (male)</td>
<td>0.5 gal/flush *</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>Conventional Toilet (female)</td>
<td>1.28 gal/flush *</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>1920</td>
</tr>
<tr>
<td>Bathroom Lavatory – conventional faucet</td>
<td>0.5 gal/min</td>
<td>.25 min</td>
<td>500</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>Bathroom Lavatory equipped with metering faucet</td>
<td>0.2 gal/cycle</td>
<td>N.A.</td>
<td>500</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Conventional Shower</td>
<td>2.0 gal/min *</td>
<td>5 min</td>
<td>100</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Fixture Type</td>
<td>Flow-rate</td>
<td>Duration</td>
<td>Occupants</td>
<td>Daily uses</td>
<td>Water use (gal)</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>High-Efficiency Toilet (male)</td>
<td>1.1 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>550</td>
</tr>
<tr>
<td>High-Efficiency Urinal (male)</td>
<td>0.13 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>130</td>
</tr>
<tr>
<td>High-Efficiency Toilet (female)</td>
<td>1.1 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>1650</td>
</tr>
<tr>
<td>Bathroom Lavatory – conventional faucet</td>
<td>0.5 gal/min</td>
<td>.20 min</td>
<td>500</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Bathroom Lavatory equipped with metering faucet</td>
<td>.18 gal/cycle</td>
<td>N.A.</td>
<td>500</td>
<td>3</td>
<td>270</td>
</tr>
<tr>
<td>Low-flow Shower**</td>
<td>1.5 gal/min</td>
<td>5 min</td>
<td>100</td>
<td>1</td>
<td>750</td>
</tr>
<tr>
<td>Low-flow Kitchen Faucet – Food Service Kitchen</td>
<td>1.8 gal/min</td>
<td>45 min</td>
<td>N.A.</td>
<td>10</td>
<td>810</td>
</tr>
<tr>
<td>Efficient Clothes Washer</td>
<td>20 gal/load</td>
<td>1 load</td>
<td>-</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>4,350 gal</td>
<td>Total Daily Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Number of School Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>783,000 gal Total</td>
<td>Baseline Total Annual Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.3%</td>
<td>Percentage Savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Low Flow Showers at flow rates below 2.5 gpm should not be installed without Automatic Compensating Valve certified at the same flow rate as the showerhead.

* Water Sense® compliant

*This is not a comprehensive list. Among other fixtures found in schools, there are food service fixtures and appliances that consume a considerable amount of water and should be included in the baseline as outlined in the implementation section above where appropriate and established limits have been set.

Table 11: Efficient Design Case Total Indoor Water Consumption
Comparing the two spreadsheets, the water-efficient fixtures reduced potable water use by:

\[
\% \text{ Savings} = 100 - \left[\frac{\text{Efficient Design Total Annual Volume}}{\text{Baseline Design Total Annual Volume}} \right] \times 100
\]

\[
\% \text{ Savings} = 100 - \left[\frac{800,100}{1,156,140} \right] \times 100 = 100 - (0.692 \times 100) = 30.8\%
\]

If a rainwater collection system part of the project, then provide justification for the volume of collected, useable rainwater over the school year. If seeking SS 5.1 Post-Construction Stormwater Management, documentation used to justify rainwater storage sizing may be used for this criterion. Helpful documentation would include: a building rainwater reuse plan and a water balance analysis that includes integrated analysis of source, storage, and demand. A source analysis should take into consideration the contributing watershed, daily and/or weekly rainfall data, the variations in rainfall during the year, and rainfall abstraction.

Rainwater Collection and Water Storage

For some schools, installation of a rainwater catchment system with underground storage tanks is a cost-effective option to provide water for flushing water closets (toilets) and urinals as well as for supplemental irrigation. Catchment systems can decrease some irrigation water demand depending on the size of the fields being irrigated. However, they are unlikely to contribute much to schools with many playing fields and large irrigation demands.

A rainwater catchment system should be designed with a water storage capacity for sewage conveyance and/or irrigation in typical years under average conditions. Oversizing water storage to meet drought conditions will be costly and under sizing storage may simply result in a system that is too small to significantly offset potable water consumption. In addition, rainwater collection and storage systems should be designed to avoid stagnation that could lead to mold growth and accumulation of bacteria. It will be important to check with your plumbing inspector early in the process if you pursue a catchment system.

The underground storage tanks and cisterns could at times run dry during drought conditions. Therefore, it is acceptable for tanks and cisterns to connect to wells or municipal water supplies.

Table 12: Design Sewage Conveyance Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily Uses</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilets (male)</td>
<td>1.1 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>550</td>
</tr>
<tr>
<td>Urinals (male)</td>
<td>0.13 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>130</td>
</tr>
<tr>
<td>Toilets (female)</td>
<td>1.1 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>1650</td>
</tr>
</tbody>
</table>
Calculate Daily Water Use per fixture using the following equation:

- Daily Water Use = (Flow-rate) (Duration)(Occupants)(Daily Uses)
- Sum Daily Water Volumes for each fixture to find Total Daily Volume.

Multiply the Total Daily Volume by the number of school days for Total Annual Volume.

Subtract the amount of reclaimed water used to find Total Potable Water Used for Sewage Conveyance.

For baseline indoor water consumption calculations, use a similar spreadsheet in the Application Template, but change only the type of fixture and its associated design details. For baseline calculations, assume flow rates outlined by the ASHRAE SS198.1-2011, Section 5 fixture performance requirements:

Table 13: Baseline Sewage Conveyance Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily uses</th>
<th>Water use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Toilet (male)</td>
<td>1.28 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>640</td>
</tr>
<tr>
<td>Conventional Urinal (male)</td>
<td>0.5 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>Conventional Toilet (female)</td>
<td>1.28 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>1,920</td>
</tr>
</tbody>
</table>

Comparing the two spreadsheets, the water-efficient fixtures reduced potable water use for sewage conveyance by:

% Savings = 1 - (Design Total Annual Volume / Baseline Total Annual Volume) = 1 - (23,400/550,800) = 0.95 = 95%

Therefore, this design would earn one point because potable water used for sewage conveyance has been reduced by 95% through using treated rainwater water in the toilets and urinals. Note that the high-efficiency fixtures by themselves were not enough to earn this criterion.

If a rainwater collection system is part of the project, provide justification for the volume of collected, useable rainwater over the school year. If seeking Site SS.11 – Post-Construction Stormwater Management, documentation used to justify rainwater storage
sizing may be used for this criterion. Helpful documentation would include: a building rainwater reuse plan and a water balance analysis that includes integrated analysis of source, storage, and demand. A source analysis should take into consideration the contributing watershed, daily and/or weekly rainfall data, the variations in rainfall during the year, and rainfall abstraction.

Documentation Requirements

Design Review Requirements

WE 2.1.1 – Construction drawings must include the required CHPSVerified Plan Sheet with indoor water calculations provided at the point of registration with the CHPS Verified program. Construction drawings must identify shut-off capabilities for restroom facilities.

WE 2.1.2 & 2.1.3 – Construction drawings must include a plumbing fixture schedule that reflects the indoor water calculations.

Construction Review Requirements

WE 2.1.2 & 2.1.3 – Provide pictures of installed fixtures, and manufacturer receipts, proof of purchase, or approved submittals for the water-efficient products purchased.

Resources

- High-efficiency fixture and fitting standards are available through the American National Standards Institute (ANSI) as published by the American Society of Mechanical Engineers (ASME): www.asme.org/kb/standards#des=A112
- Maximum Performance (MaP) tested toilet fixtures: www.map-testing.com
- US Environmental Protection Agencies Water Sense® program for efficient fixtures and sensors: www.epa.gov/watersense/
Irrigation & Exterior Water Budget / Use Reduction

Intent
Reduce and optimize potable water use for irrigating recreational areas.

A water budget is a reasonable estimate of the amount of irrigation water required for a specific landscape over a given time interval. Local governments may have a different ordinance from the state model for calculating a water budget.

WE 3.0 – Irrigation & Exterior Water Budget / Use Reduction

<table>
<thead>
<tr>
<th>WE 3.0 – Irrigation & Exterior Water Budget / Use Reduction</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects that are installing irrigation systems on recreational fields.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
<table>
<thead>
<tr>
<th>Points</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Develop a water budget for landscape (both non-recreational and recreational) and ornamental water use to conform to the local water efficient landscape ordinance. If no local ordinance is applicable, then use the EPA WaterSense Water Budget tool. Alternatively, install no permanent irrigation for landscaping.</td>
</tr>
<tr>
<td></td>
<td>WE 3.0.1</td>
</tr>
<tr>
<td></td>
<td>Reduce potable water, natural surface water or groundwater consumption for irrigation of non-recreational landscape areas by 20% over landscape budget baselines with the use of water-efficient native (or adapted) climate-tolerant plantings, high-efficiency irrigation controllers, soil moisture meters/rainfall sensors, or using captured rain or reclaimed water.</td>
</tr>
<tr>
<td></td>
<td>WE 3.0.2</td>
</tr>
<tr>
<td></td>
<td>Reduce potable water, natural surface water or groundwater consumption for irrigation of recreational areas by 25% over landscape budget baselines with the use of water-efficient native (or adapted) climate-tolerant plantings, high-efficiency irrigation technologies, soil moisture meters/rainfall sensors, or using captured rain or reclaimed water.</td>
</tr>
<tr>
<td></td>
<td>WE 3.0.3</td>
</tr>
<tr>
<td></td>
<td>Any in-ground irrigation systems used for recreational fields must have soil moisture meters, weather stations, or equivalent technology (ET Controllers) to control and shut off operation of irrigation systems when adequate ambient moisture is available to the turf.</td>
</tr>
<tr>
<td></td>
<td>WE 3.0.4</td>
</tr>
</tbody>
</table>

Implementation

Recreational areas include athletic fields, playing fields, practice fields, etc. Develop a baseline water budget for landscape and ornamental use in accordance with the projects local ordinance. If a local ordinance is not available use the EPA WaterSense Water Budget tool. Exceed this baseline budget by the required amounts. Alternatively, no permanent irrigation must be supplied for landscaping. Temporary irrigation may be supplied for an establishment period of up to two years. Design in-ground irrigation systems to include moisture meters, weather stations, or other equivalent ET controllers to control and shut off the irrigation systems whenever ambient moisture is adequate for turf irrigation. All in-ground irrigation must be connected to such a control system.

Documentation Requirements

Design Review Requirements

Construction drawings must include complete landscape drawings identifying irrigation system components and soil moisture meters if required. Construction drawings must include complete landscape drawings including all outputs of the U.S. Environmental Protection Agency’s WaterSense Water Budget Tool including both the Landscape Water Requirement (LWR) and Landscape Water Allowance (LWA). The outputs should reflect the landscape plans provided.
If no permanent irrigation is installed on site, provide a letter from the landscape architect confirming this fact and explaining how long any temporary irrigation will be supplied.

Construction Review Requirements

Provide proof of purchase, installation, pictures, approved submittals or other supporting documents that show compliance.

If no permanent irrigation is installed, provide a letter from the landscape architect confirming compliance with the design documents or explaining any changes that occurred during construction.

Resources

- For information on local evapotranspiration rates, see lists provided by the Irrigation Association: www.irrigation.org/Resources/ET_Resources.aspx
Reduce Potable Water Use for Non Recreational Landscaping Areas

Intent

Reduce or eliminate potable water use for landscaping irrigation.

In the United States, the patterns of precipitation vary greatly from year to year. When the demand of potable water increases, more water is drawn to accommodate that demand and lakes, rivers and aquifers can be stressed to the point of creating the water shortages. To minimize the shortage and drought problem, irrigation systems should only be provided if necessary. Permanent irrigation systems should be designed with efficiency in mind. Irrigation when necessary should be limited to early morning hours to minimize evaporation. Potable water use can also be minimized by specifying drought tolerant plants and considering the soil composition to support the plants.

<table>
<thead>
<tr>
<th>WE 4.1 – Reduce Potable Water Use for Non Recreational Landscaping Areas</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Points</td>
<td></td>
</tr>
</tbody>
</table>

Applicability

All new schools. New building on an existing campus, additions, and major renovations the calculations must be made for the entire school site, not just the area around the new building or the buildings being modernized.

Verification

Design Review | Construction Review | Performance Review

Requirement
1 point	WE 4.1.2	Reduce potable water, natural surface water or groundwater consumption for irrigation of non-recreational landscape areas by 35%.
OR 2 points	WE 4.1.3	Do not install permanent irrigation systems for watering non-recreational landscaped areas (excluding designated school gardens) AND specify drought resistant plants or grasses in these areas so that irrigation is not needed beyond plant establishment.
	WE 4.1.4	Reduce potable water, natural surface water or groundwater consumption for irrigation of non-recreational landscape areas by 50%.

Implementation

Compliance will be determined based on information submitted for WE 3.0.

Documentation Requirements

Design Review Requirements

Compliance will be determined based on information submitted for WE 3.0.

Construction Review Requirements

Compliance will be determined based on information submitted for WE 3.0.

Resources

- Local water utility staff, water efficient landscape consultants, Certified Irrigation Designers (www.irrigation.org), and Master Gardeners are also good resources for helping achieve this criterion.
Reduce Potable Water Use for Recreational Landscaping Areas

Intent

Reduce or eliminate potable water use for irrigating recreational areas.

Significant amounts of water are used to irrigate recreational fields. A typical natural turf recreation field needs up to 5,000 gallons of water/acre/day during the peak of the irrigation season and in many locations exceeds 7,000 to 8,000 gallons/acre/day.

WE 5.1 – Reduce Potable Water Use for Recreational Landscaping Areas

<table>
<thead>
<tr>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

All new schools. New building on an existing campus, additions, and major renovations the calculations must be made for the entire school site.

Verification

Design Review | Construction Review | Performance Review

Requirement

1 point

WE 5.1.2 Reduce potable water, natural surface water or groundwater consumption for irrigation of recreational areas by 50% over landscape budget baselines with the use of water-efficient native (or adapted) climate-tolerant plantings, high-efficiency irrigation technologies, soil moisture or weather based meters, or by using captured rain or reclaimed water.

Implementation

Recreational areas include athletic fields, playing fields, and practice fields.

Soil Types
The best types of soil for playing fields are 3% to 7% organic content and fall into the US Department of Agriculture soil categories:

Table 14: Watering Requirements by Soil Type

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Watering Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loamy sand</td>
<td>1 in. per week</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>1 in. per week</td>
</tr>
<tr>
<td>Loam</td>
<td>1 in. per week</td>
</tr>
</tbody>
</table>

Artificial Turf

Artificial sports turf can be installed, but no credit will be given for water savings because fields tend to require watering for maintenance and heat control.

Documentation Requirements

Design Review Requirements

Compliance will be determined based on information submitted for WE 3.0.

Construction Review Requirements

Compliance will be determined based on information submitted for WE 3.0.

Resources

- Local water utility staff, water efficient landscape consultants, Certified Irrigation Designers (www.irrigation.org/), and Master Gardeners are also good resources for helping achieve this criterion.
Irrigation Systems Commissioning

Intent
Verify that the site’s irrigation systems and controls are operating as intended and that effective training has been provided.

Irrigation system testing and training is a rigorous quality assurance program administered by a knowledgeable party that ensures the irrigation systems perform as expected. Irrigation system testing can help to ensure that water efficiency measures are working properly and design water savings are achieved.

<table>
<thead>
<tr>
<th>WE 6.0 – Irrigation Systems Commissioning</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification</td>
</tr>
<tr>
<td>All projects that include irrigation systems.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

1 point WE 6.0 Create an irrigation commissioning plan and complete installation review during construction, performance testing after installation, and documentation for ongoing operations and maintenance.

Implementation
Reference specifications for an irrigation commissioning plan. Designate the CSI number, section, and page number. State that irrigation commissioning plan must include:

- Identification of which entity will prepare the irrigation commissioning plan and who will perform the commissioning tasks.
- Review of irrigation system installation during construction, with record of deficiencies found and corrected.
- Performance testing and documentation of results (as compared to specified performance) at least once during the first year of installation.
• Site-specific documentation detailing maintenance requirements and frequency and operation procedures including a recommended irrigation schedule to apply appropriate weekly water amount per week to athletic fields.

Acceptance testing shall be included in the specifications and performed on the following, if applicable:

• Irrigation pipes and fittings. Under static conditions the system pressure loss shall not exceed 3 psi over a one hour time period.

• Irrigation heads and coverage. The system shall have a measured distribution uniformity (lower quarter) of no less than 65%.

• Back-flow devices.

• Automatic sensors, timers and other controls.

For equipment not listed, the design team shall provide acceptable test results, and the contractor shall certify that the tests were performed and the equipment performs as specified.

Supply a letter signed by commissioning agent verifying requirements for performance testing of irrigation equipment and actual performance have been met.

Documentation Requirements

Design Review Requirements

Provide a PDF of the Irrigation Commissioning Plan which includes items listed in the Implementation Section of the credit as well as who will be responsible for the commissioning and when it will occur.

Construction Review Requirements

Provide final commissioning report.

Resources

• Local water utility staff, water efficient landscape consultants, Certified Irrigation Designers (www.irrigation.org/), and Master Gardeners are also good resources for helping achieve this criterion. In particular, www.irrigation.org/Resources/Audit_Guidelines.aspx provides information about testing of irrigation systems.
Rainwater Collection and Storage

Intent

Install a rainwater collection and storage system to be used to convey sewage and/or irrigate play fields.

In order to reduce water demand for sewage conveyance and irrigation, some schools opt to use rainwater catchment systems with cisterns or underground storage tanks. These supplementary systems can significantly decrease water demand by drawing on stored water instead of municipal water supplies or drinking water wells.

WE 7.1 – Rainwater Collection and Storage

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

2 point WE 7.1 Install a rainwater collection and storage system to be used to convey sewage and/or to irrigate the playing fields when no portable water is to be used.

Implementation

A rainwater catchment system should be designed with a water storage capacity for sewage conveyance and/or irrigation in typical years under average conditions. In other words, oversizing water storage to meet drought conditions may be costly and could increase maintenance requirements. On the other hand, undersizing storage may simply result in a system that is too small to significantly offset potable water consumption. Rainwater collection and storage systems should be designed to avoid mold growth, bacteria accumulation, and stagnation.

The underground storage tanks and cisterns could at times run dry during drought conditions. Therefore, it is acceptable for tanks and cisterns to connect to wells or municipal water supplies.

Documentation Requirements

Design Review
Submit construction documents containing specifications for the installation of a rainwater collection system that meets the above requirements. Include the CHPS Verified Plan Sheet with calculations for the sizing of the system.

Resources

- The Irrigation Association, www.irrigation.org/
- Local water utility staff, water efficient landscape consultants, certified irrigation designers
- Master Gardeners are also good resources for helping achieve this credit.
Water Management System

Intent

Provide ongoing accountability and optimization of the building and site water performance over time.

A water management system must monitor both indoor and outdoor water usage to detect leaks and improve efficiency. Water leaks can result in significant water losses and costs, and have the potential to cause structural damage and promote mold growth. Information obtained from water meters is valuable in managing and optimizing water usage. When selecting a water management system take into consideration district and maintenance staff needs, training considerations, and how the system could be integrated with an energy management system. A water management system can potentially save significant water, but only if staff understands its reports and how to operate it. Proper training of district staff is critical, and high turnover rates continue to challenge school districts to provide retraining programs and on-site manuals.

<table>
<thead>
<tr>
<th>WE 8.1 – Water Management system</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>This credit applies to all schools.</td>
<td>Design Review, Construction Review, Performance Review</td>
</tr>
</tbody>
</table>

Requirement

WE 8.1 Install a Water Management System to monitor water use of all indoor and outdoor water uses. Water meters should have a pulsed output for automatic meter readings (AMR). Separate water meters (also called sub-meters) must monitor and report on water usage for the following:

- Gyms with showers
- All other indoor water uses
- Landscaping if irrigated
- Recreational fields if irrigated
- Swimming pools
- Cooling towers if equipped

For new buildings on existing campuses, the water management system may only monitor the new building’s indoor water use.

For major renovations, the water management system may only monitor indoor water use if the scope of the project does not include any outdoor systems.
Implementation

The plans and specifications should include a list of all sensors (measurements to be taken through the building and exterior) and actuators (devices to be controlled). It should also specify the protocol communication between the sensor, actuators, and the computer (controller).

The construction documents should also specify the requirements for the graphic user interface (GUI). The designers should work with the school district maintenance and operation staff to determine the desired features. School districts should consider standardizing on one type of system in order to reduce the need to learn and maintain different operating systems.

Monitoring capabilities should allow for comparison between indoor water usage, landscaping if irrigated and recreational fields if irrigated. This information is valuable and can be used to manage and optimize water use.

Documentation Requirements

Design Review
Construction Documents must clearly indicate equipment and locations for Water Management System.

Construction Review
Provide proof of purchase, installation, approved submittals, pictures or other supporting documents that show compliance.

Resources
None
State and federal laws and regulations for school siting and environmental impact studies were created to prevent schools from being constructed on sites containing pollutants known to be hazardous to student and staff health. A variety of factors, from hazardous materials in the soil to airborne pollutants from nearby sources are included in the site review process. At existing facilities, an assessment should be undertaken to determine the environmental and health problems with the facilities prior to renovations.

SS 1.0 – Site Selection

Applicability

This prerequisite applies to new schools (except some renovations which provide a FIT evaluation) or U.S. EPA Environmental Review. For major renovations and a new building on an existing campus, this prerequisite is required based on the scope of the project. For renovation projects that do not encompass an entire campus, the evaluation shall be provided for each building, portion of building and/or campus area affected by the renovation.

The CHPS requirement regarding siting a school within 500 feet from a freeway or traffic corridor, applies to any project involving the purchase of a school site or the construction of a new elementary or secondary school by a school district.

Prerequisite

Verification Required

<table>
<thead>
<tr>
<th></th>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement

Select sites that are a safe and healthy environment for students and staff, and that protect topsoil.
New Schools. Complete a Phase I (and Phase II if necessary based on Phase I assessment) Environmental Site Assessment in accordance with ASTM E1527-05. This must include:

- Identification of facilities within ¼ mile that might reasonably be anticipated to emit hazardous air emissions, or handle hazardous or acutely hazardous material, substances or waste. A determination shall be made (following ASTM 1527-05) that such facilities will not adversely affect the health of students, staff or teachers.

- A risk assessment and implementation of appropriate mitigation measures, or the establishment of appropriate “buffer zones”, to ensure that the proposed school site would not expose school occupants to significant health or safety risks from rail lines, hazardous material pipelines, high power transmission lines, toxic air emissions from stationary sources, or other sources of pollution including those identified under ASTM 1527-05.

- Written findings verifying that the site is not currently or formerly a hazardous, acutely hazardous substance release, or solid waste disposal site or, if so, that the wastes have been removed in a manner that meets the referenced standard. Also, the written findings must state that the site does not contain pipelines, which carry hazardous wastes or substances other than a natural gas supply line to the school or neighborhood. If hazardous air emissions are identified, the written findings must state that the health risks do not, and will not, constitute an actual or potential danger of public health of students or staff. If corrective measures of chronic or accidental hazardous air emissions are required under an existing order by another jurisdiction, the governing board shall make a finding that the emissions have been mitigated prior to occupancy of the school.

- Identification of train tracks, freeways or traffic corridors within 500 feet of the site and analyses that neither short-term nor long-term exposure to air pollutants poses significant health risks to students.
New Schools:

- Site the school with at least the following distances from the edge of respective power easements above ground: 100 feet for 50-133 kV lines, 150 feet for 220-230 kV lines, and 350 feet for 500-550 kV lines.

- The site shall be self-draining, including detention ponds or other engineered systems (lakes) to control and direct water, and free from depressions in which water may stand and be allowed to stagnate. The site shall be kept free from refuse, weed overgrowth, and other hazards. Livestock or poultry shall be located more than fifty (50) feet from food service areas, offices, or classrooms except those offices and classrooms associated with animal husbandry activities.

- The site shall not be located near an above-ground water or fuel storage tank or within 1500 feet of the easement of an above ground or underground pipeline that can pose a safety hazard as determined by a risk analysis study, conducted by a competent professional, which may include certification from a local public utility commission.

- If the site is located in an agricultural area, identify drift problems throughout the year from highly toxic and volatile pesticides. Pesticides under concern are listed as “Restricted Use Products” by the US EPA. If highly toxic and volatile pesticides are identified and not mitigated, the school will not meet this prerequisite.

- If the school drinking water source is an on-site private well, the well water must be tested by the local health department or authority having jurisdiction to ensure the water is free of harmful contaminants prior to occupancy. The local jurisdiction may require further testing during occupancy.

Major Renovations.

- All Major Renovations must identify facilities within ¼ mile, which might reasonably be anticipated to emit hazardous air emissions, or handle hazardous or acutely hazardous material, substances or waste. A determination shall be made (following ASTM 1527-05) that such facilities will not adversely affect the health of students, staff or teachers.

- Refer to U.S. EPA's School Siting Guidelines for additional guidance on identification of nearby facilities that may impact the school site, conducting Phase I and Phase II site assessments, evaluating potential impacts from nearby sources of air pollution and integrating public involvement into the school siting process.

- Renovation projects shall complete the Environmental Review Process as they apply to existing schools, as outlined in School Siting Guidelines published by the US EPA, Chapters 3 through 6.
Implementation

A "Freeway or other busy traffic corridors" refers to those roadways that, on an average day, have traffic in excess of 50,000 vehicles in a rural area, and 100,000 vehicles in an urban area.

Refer to U.S. EPA's School Siting Guidelines for additional guidance on identification of nearby facilities that may impact the school site, conducting Phase I and Phase II site assessments, evaluating potential impacts from nearby sources of air pollution and integrating public involvement into the school siting process.

Major Renovations:

US EPA School Siting Guidelines: Renovation projects shall undertake the Environmental Review Process as it relates to existing school buildings, including completion of the EPA’s Healthy School Environments Assessment Tool (HealthySEAT). Provide a copy of the results of the HealthySEAT assessment, completed within six months of the start of the design phase of the project. The assessment shall be reviewed by the project architect, if prepared by others. After review, changes shall be incorporated into the design plan as much as possible.

Documentation Requirements

Design Review Requirements

Provide Phase 1, and Phase 2 if necessary, Environmental Site Assessment in accordance with ASTM E1527-05. The Site Assessment should include all items covered in SS.P1 regardless of whether or not they are normally covered in a Phase 1 or Phase 2 Environmental Site Assessment.

A memo from the architect summarizing the results of the assessment and explaining what changes have been made as a result.

Resources

- ASTM Environmental Assessment Requirements: www.astm.org/Standards/E1527.htm
- US EPA School Siting Guidelines: www.epa.gov/schools/siting/download.html
- US EPA Healthy School Environments Assessment Tool (HealthySEAT): www.epa.gov/schools/healthyseat/
- US EPA Restricted Use Product List: www.epa.gov/opprd001/rup/
- US EPA Travel and Environmental Implications of Schools Siting: www.epa.gov/smartgrowth/school_travel.htm
- Lists of Prime and Statewide Important Farmland Soils are maintained for each soil survey area and may be obtained from the Field Office Technical Guide (FOTG) located in each NRCS field office. County and state offices of the NRCS
keep maps showing the status of lands within their jurisdiction. County offices can be located at: http://offices.sc.egov.usda.gov/locator/app

- FEMA Region XI information can be found at: www.fema.gov/regions/xi/. To find a map showing the 100-year flood elevations, contact your community representative on the Region XI Community Status List at: www.fema.gov/regions/xi/, or call 877-336-2627 to talk to a map specialist. Unofficial maps by ESRI are available online at: www.geographynetwork.com.
Environmentally Sensitive Land / Preserve Greenspace & Parklands

Intent

Avoid development on environmentally sensitive sites to reduce impact of the building footprint. Protect open space and channel development to previously developed sites in order to protect habitat and natural resources.

SS 2.1 – Environmentally Sensitive Land / Preserve Greenspace & Parklands

Protect environmentally sensitive site features, such as wetlands and tree stands, and encourage landscaping and architecture that responds to and includes the school’s immediate environment. A district faces many issues during site selection. Cost, student demographics, and environmental concerns all influence when sites are acquired and how the school district uses them. The site is a crucial element in determining the overall sustainability of the school. Sites are sometimes purchased years in advance, and some of these criteria may be out of the control of the districts and/or designers at the time the school is being built. However, districts that are considering multiple sites can substantially lower the environmental impact of the school by choosing centrally located sites, sharing parks or facilities with community organizations, preserving open space, and protecting environmentally sensitive areas.

Urban redevelopment reduces environmental impacts by utilizing established infrastructure and preserving the open space of undeveloped lands. If the site already contains a building, additional credit may be earned with Materials points for MW 8.1 and/or MW 9.1 on Building Reuse.

<table>
<thead>
<tr>
<th>SS 2.1 – Environmentally Sensitive Land / Preserve Greenspace & Parklands</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 points</td>
<td></td>
</tr>
</tbody>
</table>

Applicability

All new schools. A new building on an existing campus or additions to existing buildings can earn this point if the site for the new building or addition is not on environmentally sensitive land. For major renovations, this point may be earned if it can be verified that the site is not environmentally sensitive land as defined by this criterion.

Verification

- Design Review
- Construction Review
- Performance Review

Requirement
Do not develop buildings or impervious surfaces on portions of sites that meet any one of the following:

2 point	SS 2.1.1	Do not temporarily or permanently modify land, which prior to acquisition for the project was public parkland, conservation land, or land acquired for water supply protection.
		Do not build on:
		Greenfields. For the purposes of this criterion, greenfields are defined as undeveloped lands or lands that are used for agriculture, forestry, or park purposes. Undeveloped lands are defined as lands that have not been in use for a period of 50 years or more and cannot be identified, by visual inspection, as having been developed.
	SS 2.1.2	Land specifically identified as habitat for any species on the federal or state threatened or endangered list.
	SS 2.1.3	Land that is prime farmland, unique farmland, or farmland of statewide importance as defined by the US Department of Agriculture (USDA) Natural Resources Conservation Services NRCS.
1 point	SS 2.1.4	Do not develop buildings on:
	SS 2.1.5	Land whose elevation is lower than 5 feet above the elevation of the 100-year flood as defined by FEMA and as shown on the FEMA Flood Insurance Rate Map (FIRM) for the site.
	SS 2.1.6	Land that is within 100 ft. of any wetland as defined by 40 CFR (Code of Federal Regulations), Parts 230-233 and Part 22, OR within setback distances from wetlands prescribed in state or local regulations, as defined by local or state rule or law, whichever is more stringent.
	SS 2.1.7	Previously undeveloped land that is within 50 feet of a water body, defined as seas, lakes, rivers, streams and tributaries that support or could support aquatic life, recreation or industrial use, consistent with the terminology of the Clean Water Act.

Implementation

SS 2.1.1

A district faces many issues during site selection. Cost, student demographics, and environmental concerns all influence site acquisition. The site is a crucial element in determining the overall sustainability of the school design. Some sites are purchased years in advance, which leaves little room for input from the districts and designers. However, districts that are considering multiple sites can substantially lower the environmental impact of the school by choosing centrally located sites, sharing parks or
facilities with community organizations, preserving open space, and protecting environmentally sensitive areas.

Provide a current existing site survey with the school site property boundaries marked in bold.

SS 2.1.2

During the site selection process, use previously developed sites instead of greenfields. Redevelopment reduces environmental impacts by utilizing established infrastructure and preserving the open space of undeveloped lands.

SS 2.1.3

Verify that the proposed site is not habitat to any species on the federal or state, threatened or endangered list. Provide the excerpt of document indicating that the site is not habitat to any species on the federal or state, threatened or endangered list.

SS 2.1.4

Verify that the proposed site is not prime farmland, unique farmland, or farmland of statewide importance farmland as defined by the US Department of Agriculture (USDA). The Natural Resources Conservation Services (NRCS) division of the USDA maintains the definitions and soil surveys that designate areas as “prime farmland, unique farmland, or farmland of statewide importance.” Provide NRCS map indicating site location.

SS 2.1.5

Do not construct permanent buildings, or structures to support buildings within the 100-year flood plain. Both federal and state agencies have worked together over the last several decades to prevent construction of buildings in 100-year floodplains to achieve two important results: 1) a significant decrease in building damage and liability and 2) a restoration of functional floodplains to absorb flood waters and minimize impacts to downstream communities.

“Above the floodplain” means that the building footprint must be above the 100-year flood plain, but the requirement does not apply to non-building areas of the site.

Consult with FEMA to determine the 100-year floodplain for the school site. Verify that the proposed building footprint is located at an elevation five feet or higher than the 100-year floodplain. Provide the site plan indicating site is located five feet or higher than the 100-year flood plain.

SS 2.1.6

Do not build on sites, which are within 100 ft. of a wetland as defined below. Site development includes the school facilities, playing fields and parking lots and construction operations that are not related to wetlands improvement. Survey the site to determine if wetlands exist on, or near the site. Verify that all construction activity,
including parking lots, playgrounds or any structures are located more than 100 feet from wetlands. Consult with federal regulations 40 CFR, Parts 230-233 and Part 22, or local, or state rule to determine if an area qualifies as a wetland. If more than one definition exists, use the one that is more stringent. The term wetlands is defined in Title 40 as “those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.” [Source: CFR: Title 40. 330.4]. Provide the site plan indicating that the site is located more than 100 feet from wetlands.

During construction, protect all wetlands with a fence or other physical barrier that cannot be easily moved (wildlife-permeable barrier, if appropriate) that protect the wetland from equipment parking and traffic, storage of materials, and other construction activities. All construction and maintenance personnel shall be educated about the locations and protective measures of the wetlands. In construction documents, outline consequences to contractor if wetland boundaries are not respected.

SS 2.1.7

Do not build on sites, which are within 50 ft. of a water body as defined below. Site development includes the school facilities, playing fields and parking lots and construction operations that are not related to water body improvement. Survey the site to determine if water bodies exist on, or near the site. Verify that all construction activity, including parking lots, playgrounds or any structures are located more than 50 feet from water body.

Water bodies include navigable waters, waters of the contiguous zone, the oceans and adjoining shorelines as well as wetlands and watersheds that feed the water bodies listed. See www.epa.gov/tp/pdf/wous_guidance_4-2011.pdf for further guidance.

Provide the site plan indicating that the site construction is located more than 50 feet from water bodies.

Documentation Requirements

Use the CHPS Verified Plan Sheet to provide site parcel number and physical address (or intersections if street address is unknown), as well as to confirm project meets credit requirements.

Provide a drawing (site plan) that identifies the building footprint and any wetlands within 100’. (Utilize the U.S. Fish and Wildlife Service Wetlands Mapper at: http://wetlandsfws.er.usgs.gov/wtlnds/launch.html to identify wetland locations.) On the same drawing include the 100-yr flood plain and a line indicating a 5’ in elevation above the flood line if either cross the site (use a map from the FEMA web site to identify 100-yr flood plain), or provide equivalent documentation through attaching a PDF of a part of a CEQA report, or other Mitigated Negative Declaration item.

SS 2.1.1 – Provide a current existing site survey with the school site property boundaries marked in bold.
SS 2.1.2 – Provide evidence of historical property use through submittal of aerial photographs, environmental assessment or similar verification that property is not a greenfield.

SS 2.1.3 – Provide the excerpt of document indicating that the site is not habitat to any species on the federal or state, threatened or endangered list.

SS 2.1.4 – Provide NRCS map indicating site location.

SS 2.1.5 – Provide the site plan indicating site is located five feet or higher than the 100-year flood plain.

SS 2.1.6 – Provide the site plan indicating that the site is located more than 100 feet from wetlands. In construction documents, outline consequences to contractor if wetland boundaries are not respected.

SS 2.1.7 – Provide the site plan indicating that the site construction is located more than 50 feet from water bodies.

Resources

- Lists of Prime and Statewide Important Farmland Soils are maintained for each soil survey area and may be obtained from the Field Office Technical Guide (FOTG) located in each NRCS field office. County and state offices of the NRCS keep maps showing the status of lands within their jurisdiction. County offices can be located at: offices.sc.egov.usda.gov/locator/app. Maps are also available at websoilsurvey.nrcs.usda.gov/app/HomePage.htm (main page) and websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (actual map page).
- Federal Wetlands information (40 CFR, Parts 230-233) can be found at the US EPA website: water.epa.gov/lawsregs/rulesregs/cwa/40cfr_index.cfm. Many wetlands are digitally mapped and downloadable from the National Wetlands Inventory, www.fws.gov/wetlands/; or from state, county, or municipal GIS departments or Natural Resources Conservation Service offices.
- Federal Water Pollution Control Act (Clean Water Act) can be found at epw.senate.gov/water.pdf and www.epa.gov/oecaagct/lcwa.html.
- FEMA Flood Maps: https://msc.fema.gov/webapp/wcs/stores/servlet/info?storeId=10001&catalogId=10001&langId=-1&content=firmHelp_1&title=How%20to%20Find%20Your%20Flood%20Map
Minimize Site Disturbance

Intent

Reduce the extent of land used for development and discourage the use of automobiles for transportation to and from school.

This criterion is intended to mitigate negative impacts on existing ecosystems. Reducing a building footprint, reducing parking, and limiting paved site development can reduce site disturbance to these systems. Multi-story schools decrease the amount of land used in construction and help preserve existing open space. Excess parking spaces encourage increased automobile use, contribute to urban heat island effects, and can increase pollution from stormwater runoff. Design parking so as not to exceed listed amounts and include clearly marked, preferred parking areas for carpools. Combined, strategies for reducing the footprint of buildings and limiting parking and paving while encouraging alternate means of transportation can minimize the effects existing ecosystems.

<table>
<thead>
<tr>
<th>SS 3.1 – Minimize Site Disturbance</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

All projects

Verification

Design Review Construction Review Performance Review

Requirement
| 1 point | SS 3.1.1 Increase the Floor Area Ratio (FAR) of the school to be at least 1.4 to reduce the development footprint and preserve open space. In this document, the FAR is defined as a building’s gross square footage divided by the square footage of the building footprint. |
| SS 3.1.2 Do not exceed minimum local parking requirements. Comply with the following, unless they result in more parking than local requirements: |
| **New Construction and Additions:** |
| Size parking capacity not to exceed: |
| • High schools: 2.25 spaces per classroom plus parking for 30% of students. |
| • Elementary and Middle schools: 2.25 spaces per classroom. |
| If event parking is provided, it must be permeable. |
| AND provide preferred parking spaces and signage for 5% of total parking spaces for carpools, vanpools, and low-emitting vehicles. |
| **Major Renovations:** |
| • Add no new parking compared to existing conditions, |
| AND provide preferred parking spaces and signage totaling 5% of total parking spaces for carpools or vanpools and for low-emitting or fuel-efficient vehicles. |
| **SS 3.1.3 Limit total site development so that open space is 25% more than Zoning Open Space requirements. If no Zoning Ordinances apply to open space, provide a minimum of 50% vegetated open space. If a school is located in a densely populated area (SS 6.1: Central Location), provide a minimum of 25% vegetated open space.** |

Implementation

For a new building, addition or major renovation project to earn these points, the calculations must be based on the entire campus, not the individual building or building(s) being modernized. A major renovation project, a new building on an existing campus, and an addition can also claim these points if the existing campus already satisfies the requirement.

SS 3.1.1

Demonstrate that the design meets this requirement through the following equation:

\[
\frac{\text{Total Floor Area of Building (ft}^2)}{1.4} \geq 1.4
\]
Total Floor Area of the Building Footprint (ft²)

Calculate the Floor Area Ratio (FAR) by dividing the school facility’s footprint by the facility’s entire square footage including all stories. Said another way, achieving a floor area ratio (FAR) of 1.4 requires at least 40% of the total building square footage needs to be above the first floor. The building footprint is defined as the ground surface occupied by the structure and excludes awnings, overhangs and projections from the building.

SS 3.1.2

Excess parking spaces encourage increased automobile use, contribute to urban heat island effects, and can increase pollution from stormwater runoff. Design parking so as not to exceed listed amounts, and include clearly marked, preferred parking areas for car pools, van pools and low-emitting, fuel-efficient vehicles. For the purposes of making calculations for this criterion, classrooms include:

- General classrooms
- Art rooms
- Music classrooms
- Computer labs
- Science labs
- Special needs collaborative, and remedial classroom space

For new construction, provide a site plan showing parking layout (indicate total number of parking spaces). Highlight preferred parking spaces. Signage schedule highlighting Preferred Parking signage. Indicate number of classrooms (as defined for this criterion) and total number of students.

Low-emitting vehicles are defined as compliant with the US EPA Low Emitting Vehicle Standard. Fuel-efficient vehicles are defined as vehicles that have achieved a minimum green score of 50 on the American Council for an Energy Efficient Economy (ACEEE) annual vehicle rating guide

For major renovation, provide an existing site plan showing existing parking conditions (indicate total number of parking spaces). Site plan of new parking layout (indicate total number of parking spaces). Highlight preferred parking spaces and provide a signage schedule or other graphic highlighting Preferred Parking signage.

If event parking is provided, it must be permeable (gravel, permeable paving or concrete grid with drainage).

SS 3.1.3
Calculate building and paving areas to determine open space remaining within the site boundary. Calculate building footprint as listed above. Only vegetated areas will be considered open space.

Where State or Local Zoning Ordinance specifies Open Space requirements, open space must measure a minimum of 25% greater than Required Open Space.

Where no State or Local Zoning Ordinances apply to open space, vegetated open space must measure a minimum of 50% of total site area.

Where project complies with SS 6.1: Central Location and no State or Local Zoning Ordinances apply to open space, open space must measure a minimum of 25% of total site area.

When reducing the floor area ratio (FAR), a careful balance must be achieved between the energy benefits and costs of the building envelope, the footprint of the building, and daylighting best practices. Tuck-under parking and sharing of off-site parking facilities can minimize site disturbance.

Documentation Requirements

Design Review Requirements

SS 3.1.1 – Complete the CHPS Verified Plan Sheet to include both the building’s gross square footage and the building footprint square footage.

SS 3.1.2 – Construction drawings that indicate the number of parking spaces. Preferred parking spaces must be clearly indicated. Provide references to specifications for preferred parking signage. Complete the CHPS Verified Plan Sheet to indicate compliance.

SS 3.1.3 – Construction drawings, ideally the title page that provides the overview of the project, must include the square footage of open space.

- [US EPA Low Emitting Vehicle Standard](http://www.epa.gov/otaq/lev-nlev.htm)
Construction Site Runoff Control / Sedimentation

Intent

Reduce erosion and negative impacts on water and air quality during construction.

Erosion results when wind and precipitation carry away soil that has not been protected during site clearing and earth moving operations. This leads to degradation of property and sedimentation of local waterways. Mitigation measures to protect soil during construction reduce negative impacts to water and air quality.

The Federal Clean Water Act mandates that the discharge of pollutants to the waters of the United States from any point source is unlawful unless the discharge is in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. The NPDES stormwater permitting program is administered by most states, otherwise the NPDES is administered through the US EPA. It is the responsibility of all municipal jurisdictions including schools to apply for a permit in order to verify compliance with established state program or EPA requirements.

<table>
<thead>
<tr>
<th>SS 4.1 – Construction Site Runoff Control / Sedimentation</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects that disturb the site.</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>Construction Review</td>
</tr>
<tr>
<td></td>
<td>Performance Review</td>
</tr>
</tbody>
</table>

Requirement
Control erosion and the transport of soil and other pollutants off the site during construction. Design and implement a site-specific plan that incorporates the use of best management practices in compliance with the US EPA's National Pollutant Discharge Elimination System (NPDES). The plan should incorporate Part 2 of the NPDES Construction General Permit: General Permit for Stormwater Discharges from Construction Activities (see link in resources below).

The plan shall meet the following objectives:

- Prevent soil loss by wind and water erosion, including protecting topsoil by stockpiling for reuse.
- Prevent transport of sediment and particulate matter to storm sewers or receiving waters and/or to air.
- Eliminate or reduce off-site discharge of construction waste.
- Establish maintenance commitments on post-construction pollution control measures.

Implementation

The owner must submit and implement a site-specific Stormwater Pollution Prevention Plan (SWPPP) that includes specific controls for preventing water and air-borne soils from being carried off-site. Controls must stay in place and be maintained throughout the period of construction. Provide specification language requiring filing of a SWPPP to the agency having jurisdiction.

The property owner must submit a Notice of Intent (NOI), and develop and implement a site-specific Stormwater Pollution Prevention Plan (SWPPP) to comply.

The property owner shall verify with local agencies whether or not any additional requirements apply to the project site.

Documentation Requirements

Design Review Requirements

Construction drawings must include the site runoff control measures and Property Owner Notice of Intent.

Construction Review Requirements

Provide the SWPPP and pictures identifying measures taken throughout construction.

Resources

- To verify if your state administers the NPDES program: cfpub2.epa.gov/npdes/statestats.cfm
- Stormwater Pollution Prevention Plan: cfpub.epa.gov/npdes/stormwater/swppp.cfm
- US EPA's NPDES electronic Notice of Intent: cfpub2.epa.gov/npdes/npdesnoi.cfm
Reducing runoff is the most effective way to minimize its negative impacts to water quality. Many strategies exist to limit stormwater runoff, including Nonstructural Best Management Practices, such as using green or vegetated roofs, or preserving natural areas by concentrating or clustering development on a portion of the site, and leaving remaining land in its natural condition by limiting clearing and grading, maximizing trees and other vegetation, promoting natural vegetation, and preserving riparian areas and wetland.

There are also Structural Best Management Practices. They include maximizing site stormwater infiltration by retaining pervious and vegetated areas and reducing impervious surfaces and capturing rainwater from impervious areas of the building for groundwater recharge or landscaping. Projects should minimize stormwater pollutants designated by federal, state, or local jurisdictions, by designing the project to minimize direct connection between impervious areas with stormwater drainage through BMP’s such as silt fences, earth dikes, drainage swales, and sediment traps. Finally, slopes and channels can be protected by conveying runoff safely from the tops of slopes and stabilizing disturbed slopes, utilizing natural drainage systems to the maximum extent practical, stabilizing permanent channel crossings, vegetating slopes with native or drought tolerant vegetation as appropriate, and installing energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, etc.

SS 5.1 – Post Construction Stormwater Management

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
<td>Construction Review</td>
</tr>
</tbody>
</table>
SS 5.1.1 For sites with an existing imperviousness of less than or equal to 50%, limit the post-development peak stormwater runoff discharge rate so that it does not exceed the estimated pre-development rate.

For sites with an existing imperviousness of more than 50%, implement a stormwater management plan that results in a 25% reduction in the rate and quantity of stormwater runoff.

AND

SS 5.1.2 For all sites, design trash storage areas to provide appropriate drainage from adjoining roofs and pavement to divert stormwater runoff around the trash storage areas. The trash container areas must be screened or walled to prevent off-site transport of trash.

AND

SS 5.1.3 Provide post-construction treatment control Best Management Practices (BMP). Incorporate, at a minimum, either a volumetric or flow based treatment control design standard, or in combination, as identified below to mitigate (infiltrate, filter or treat) stormwater runoff:

Volumetric Treatment Control BMP

The 85th percentile 24-hour runoff event determined as the maximized capture stormwater volume for the area, from the formula recommended in Urban Runoff Quality Management, WEF Manual of Practice No. 23/ ASCE Manual of Practice No. 87, (1998); or

The volume of runoff produced from a historical-record based reference 24-hour rainfall criterion for “treatment” that achieves approximately the same reduction in pollutant loads achieved by the 85th percentile 24-hour runoff event.

OR

Flow Based Treatment Control BMP

The flow of runoff produced from a rain event:
- equal to at least two times the 85th percentile hourly rainfall intensity for the area; or
- that will result in treatment of the same portion of runoff as treated using volumetric standards above; or
- the intensity-duration-frequency method, with a hydrograph corresponding to a 50-year storm; or
- 0.2 inches per hour.

Implementation

Applicability for Quality:
- If the new project results in an alteration of more than 50% of the impervious surface of a previously existing development, and the existing development was not subject to stormwater treatment measures, then the entire project must be included in the treatment measure design.
• If the new project results in an alteration of less than 50% of the impervious surface of a previously existing development, and the existing development was not subject to stormwater treatment measures, then only the new and replaced impervious surface must be included in the treatment system design. In order to earn a point under this criterion, the area of site altered must be greater than 25% of the site area.

• For new school on Greenfield site the entire project must be included in the treatment measure design.

This criterion applies to new construction projects on previously developed land and renovation projects. The criterion does not apply to newly constructed schools on Greenfield sites (open land).

For the purpose of verifying compliance, the peak stormwater discharge rate is assumed to be directly proportional to the imperviousness of the site. For example, a 25% reduction in imperviousness is assumed to equate to a 25% reduction in the peak stormwater runoff discharge rate.

Provide fully enclosed trash areas or garbage containers with self-closing lids. Fully enclosing trash areas prevents feral animal intrusion and contamination of stormwater.

The impervious site area is the sum of the area of each surface multiplied by its runoff coefficient, and the imperviousness of the site is the impervious site area divided by the total site area. Use the runoff coefficients for typical surfaces in the (statewide Stormwater Management Handbook or as recommended by US EPA stormwater resources). Other surfaces or systems not listed may be considered if proper documentation is shown for runoff coefficients. Use manufacturers information or a “best estimate” for surfaces not included in the table. Calculate the imperviousness of the site both before and after development using the following equations. Note that many sites have vegetated surfaces but are underlain with high clay content soils that do not perc. For these sites, Runoff coefficients for the existing site should be adjusted to reflect higher runoff rates and care should be taken to develop methods for reducing the rate of runoff and increasing infiltration, if possible.

\[
\text{ImperviousSiteArea} = \text{SurfaceArea} \times \text{RunoffCoefficient}
\]

\[
\text{Imperviousness} = \frac{\text{ImperviousSiteArea}}{\text{TotalSiteArea}}
\]

This calculation should be completed for the proposed development and pre-development conditions. For sites with an existing imperviousness less than 50%, the post-development imperviousness must be equal to, or less than, the pre-development conditions. In cases where the existing imperviousness is greater than 50% the post-development imperviousness must be 25% less than the existing conditions.

Example Calculations
Question: What is the imperviousness of an approximately ½ acre site (20,787 ft²) before and after development? The site is being converted from a gravel parking lot (11,420 ft²) to a new school.

Answer: The site has an existing imperviousness of 49% as calculated in Table 15.

After the site is developed, it is estimated to have an imperviousness of 43% as calculated in Table 16.

The post-development site has imperviousness less than the pre-development site, therefore, the peak stormwater runoff may be assumed to be lower and the criterion may be earned.

Table 15: Calculation of Existing Imperviousness

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Runoff Coefficient</th>
<th>Area (ft²)</th>
<th>Impervious Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement, Gravel</td>
<td>0.75</td>
<td>11,420</td>
<td>8,565</td>
</tr>
<tr>
<td>Vegetation, Flat</td>
<td>0.10</td>
<td>2,332</td>
<td>233</td>
</tr>
<tr>
<td>Vegetation, Average</td>
<td>0.20</td>
<td>7,035</td>
<td>1,407</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20,787</td>
<td>10,205</td>
</tr>
<tr>
<td>Imperviousness</td>
<td></td>
<td></td>
<td>49%</td>
</tr>
</tbody>
</table>

Table 16: Calculation of Post-Development Imperviousness

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Runoff Coefficient</th>
<th>Area (ft²)</th>
<th>Impervious Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement, Pervious</td>
<td>0.60</td>
<td>4,128</td>
<td>2,477</td>
</tr>
<tr>
<td>Pavement, Brick</td>
<td>0.85</td>
<td>1,072</td>
<td>911</td>
</tr>
<tr>
<td>Roof, Conventional</td>
<td>0.95</td>
<td>4,020</td>
<td>3,819</td>
</tr>
<tr>
<td>Roof, Rain Water Collection</td>
<td>0.0</td>
<td>3,400</td>
<td>0</td>
</tr>
<tr>
<td>Turf, Flat</td>
<td>0.25</td>
<td>3,542</td>
<td>886</td>
</tr>
<tr>
<td>Vegetation, Average</td>
<td>0.20</td>
<td>4,625</td>
<td>925</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20,787</td>
<td>9,018</td>
</tr>
<tr>
<td>Imperviousness</td>
<td></td>
<td></td>
<td>43%</td>
</tr>
</tbody>
</table>

Question: What is the imperviousness of an approximately ½ acre site (20,787 ft²) before and after development? The site is being converted from a paved parking lot (11,420 ft²) to a new school.

Answer: The site has an existing imperviousness of 60% as calculated in
Table. After the site is developed, it is estimated to have an imperviousness of 43% as calculated in Table 18.

60% x 25% = 15%.

60% - (60% x 25%) = 45% > 43%

The site’s imperviousness is at least 25% less than it was before development.

Table 17: Calculation of Existing Imperviousness

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Runoff Coefficient</th>
<th>Area (ft²)</th>
<th>Impervious Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement, Gravel</td>
<td>0.95</td>
<td>11,420</td>
<td>10.849</td>
</tr>
<tr>
<td>Vegetation, Flat</td>
<td>0.10</td>
<td>2,332</td>
<td>233</td>
</tr>
<tr>
<td>Vegetation, Average</td>
<td>0.20</td>
<td>7,035</td>
<td>1,407</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20,787</td>
<td>12,489</td>
</tr>
<tr>
<td>Imperviousness</td>
<td></td>
<td></td>
<td>60%</td>
</tr>
</tbody>
</table>

Table 18: Calculation of Post-Development Imperviousness

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Runoff Coefficient</th>
<th>Area (ft²)</th>
<th>Impervious Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement, Pervious</td>
<td>0.60</td>
<td>4,128</td>
<td>2,477</td>
</tr>
<tr>
<td>Pavement, Brick</td>
<td>0.85</td>
<td>1,072</td>
<td>911</td>
</tr>
<tr>
<td>Roof, Conventional</td>
<td>0.95</td>
<td>4,020</td>
<td>3,819</td>
</tr>
<tr>
<td>Roof, Rain Water Collection</td>
<td>0.0</td>
<td>3,400</td>
<td>0</td>
</tr>
<tr>
<td>Turf, Flat</td>
<td>0.25</td>
<td>3,542</td>
<td>886</td>
</tr>
<tr>
<td>Vegetation, Average</td>
<td>0.20</td>
<td>4,625</td>
<td>925</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20,787</td>
<td>9,018</td>
</tr>
<tr>
<td>Imperviousness</td>
<td></td>
<td></td>
<td>43%</td>
</tr>
</tbody>
</table>

Design the project to maintain natural stormwater flows by promoting infiltration, using alternative surfaces (e.g., green roofs or permeable paving materials) and sustainable design strategies. Show BMP’s on site plans, civil drawings and specifications. Include calculations to verify required levels are met. Schools should consider using organic, natural turf fertilizers during operation to improve water quality.

Documentation Requirements

SS 5.1.1 – Complete the CHPS Plan Sheet to calculate stormwater management provided to CHPS Verified projects at the point of registration. Surfaces identified will be crosschecked with plans.
SS 5.1.2 – Construction drawings must identify trash storage areas, how water is diverted from this area, and measures taken to ensure the trash is not transported off-site (walls, screens).

SS 5.1.3 – Construction drawings must include the total volume of runoff and the total volume of runoff treated. In addition, drawings must call out where Best Management Practices (BMP’s) are located and details where appropriate.

Construction Review Requirements

SS 5.1.2 – Provide picture(s) of the primary trash storage areas showing appropriate draining from adjoining roofs, pavement diverting stormwater runoff and screen or wall preventing transport of trash.

SS 5.1.3 – Provide pictures of at least one implemented BMP.

Resources

- US EPA NPDES Construction General Permit: cfpub2.epa.gov/npdes/stormwater/cgp.cfm
Central Location

Intent

To make the school more accessible to its occupants and to promote smart growth through centrally locating new schools close to dense, mixed-use areas to encourage alternatives to automobile use.

Over the lifetime of the building, schools and parents invest significant amounts of time, energy, and money transporting students to and from school. Cars driven by parents, guardians, or the students themselves are one of the largest resource users and sources of pollution. Centrally located sites allow more students to walk or bike to school, while reducing the distance cars must travel.

Furthermore, locating new schools in areas of density and/or mixed use allows more students to walk or bike to school, while reducing the distance cars must travel. Schools located near public and private services such as libraries and community centers not only allow students to access these services after school, they put parents en route to these services if they pick their children up after school (though use of public transportation is strongly encouraged). Planning around centers of public and private activity is embodied in the concept of Smart Growth, which promotes dense development in order to preserve public parks and natural features such as open space and wildlife habitat.

Recent Federal transportation initiatives have required local jurisdictions to amend their Comprehensive Plans to accommodate pedestrian-friendly access to roads and community schools.

<table>
<thead>
<tr>
<th>SS 6.1 – Central Location</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

Applicability

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects</td>
</tr>
</tbody>
</table>

Verification

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
</tr>
<tr>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
</tr>
<tr>
<td>Points</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>OR</td>
</tr>
</tbody>
</table>
| OR | SS 6.1.3 | If the project is in a rural school district as defined by the National Rural and Small Schools Consortium (the district inhabitants number is fewer than 150 per square mile, or if the district is located in a county where 60% or more of the population lives in communities of 5,000 or fewer), locate the school so that it relates to the historic central main street business district of the town/city by meeting at least one of the following criteria:
 - Locate the school within a quarter (1/4) mile of the historic central main street business district. Provide a direct pedestrian connection between the school and the business district that includes walking paths and bicycle paths; or
 - Locate the school on the grounds of a historic school grounds, that is, or has been the site of school buildings constructed before 1940; |
| OR | | If there are long-term energy use or transportation circumstances that lead it to be more efficient to site the school in a centralized location to serve multiple districts, or between schools, submit your own proposal showing why it is more transportation and/or energy efficient. |

Implementation

This criterion applies to new schools, a new building on an existing campus, additions and to major renovations. A major renovation project and a new building on an existing campus may claim this criterion if the existing campus already satisfies the requirement, or if the site is expanded and satisfies the requirement.

For all cases, base calculations must include the total school population, not just the population of the new building, addition or the building(s) being renovated/modernized.

SS 6.1.1
To earn this criterion, calculations must be based on the estimated school population when the school opens or when a new building on an existing campus opens. Develop a site map that identifies the school site and the location of the student population that the school supports. Draw a circle centered on the school using the mile requirement by school level listed in SS.6.1 as the radius.

Schools located near busy arterials or highways are encouraged to develop Walking School Bus programs – see also SS 9.1 Human Powered Transportation.

Verify that at least 50% of the school’s students are within the circle.

SS 6.1.2

Provide a map showing the ½ mile perimeter around the school and indicating the names and location of eight of the basic services listed in the criterion text box. The ½ mile radius may be drawn from EITHER the front entrance of the school, where the school driveway meets the public way, or from the front door of the school. The front door of the basic service identified on the map must fall within the ½ mile radius. Online tools such as MapQuest® or Google Maps™ may also be submitted as documentation of the ½ mile radius.

SS 6.1.3

Submit a proposal showing why a particular school siting is more transportation and/or energy efficient than other locations.

Documentation Requirements

Design Review

Use the CHPS Verified Plan Sheet to provide School Level, Distance Requirements, Student Capacity, and Student/Site distance to calculate the Percentage of Students Near School Site.

Provide a narrative that describes the assumptions made above. OR provide a district letter explaining the school selection criteria, a supporting map, demographic information or other document as an attachment that justifies the number entered in this template.

For rural schools, provide a narrative, maps and/or other proof of compliance with one of the criteria options.

SS 6.1.2 – Provide a map showing the ½ mile perimeter around the school and indicating the names and location of eight of the basic services listed in the criterion text box. The ½ mile radius may be drawn from EITHER the front entrance of the school, where the school driveway meets the public way, or from the front door of the school. The front door of the basic service identified on the map must fall within the ½ mile radius. Online tools such as MapQuest® or Google Maps™ may also be submitted as documentation of the ½ mile radius.

SS 6.1.3 – Submit a proposal showing why a particular school siting is more transportation and/or energy efficient than other locations.
Resources

- US EPA’s Smart Growth site: www.epa.gov/smartgrowth
- US Census Bureau Population Information: www.census.gov/geo/www/ua/ua_2k.html
- Radius Around Point Map: www.freemaptools.com/radius-around-point.htm
Located Near Public Transportation

Intent

Encourage the use of public transportation

Transportation is the second largest energy using sector, accounting for approximately 28 percent of total energy use in the United States. Public transportation is a more efficient method of transportation than the private automobile. Some school districts offer reduced or subsidized fares for students and staff who use public transportation. If sufficient capacity exists, schools can use public transportation to replace district provided bus service. Schools located near high traffic areas must ensure safe student access. In addition, all transportation-related pollution must be considered when investigating site air quality and the potential for natural ventilation.

<table>
<thead>
<tr>
<th>SS 7.1 – Located Near Public Transportation</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification

Design Review | Construction Review | Performance Review

Requirement

1 point

SS 7.1 Locate building within 1/4 mile of a commuter rail, light rail or subway station, or within 1/8 mile of one bus line.

Implementation

The energy use and pollution associated with transportation often dwarfs the total lifetime energy used by the school itself. Locating the site close to public transportation, encouraging use of public transportation and carpooling by minimizing parking, and creating bike facilities and safe walking/biking access all reduce the automobile-related pollution (additional criteria SS 9.1). Some school districts offer reduced or subsidized fares for students and staff using public transportation. If sufficient capacity exists, schools can use public transportation to replace district provided bus service.

Provide an area map locating transportation lines within the distance to school as noted. Measure from the main entrance of the school building (i.e. front door), and mark bus stops or stations for commuter rail, light rail, or subway lines.

Documentation Requirements
Design Review Requirements

Provide a map showing the required features and distance to the school.

Resources

- Center for Neighborhood Technologies: What is Locational Efficiency?
 http://www.cnt.org/tcd/projects/location-efficiency/
Joint-Use of Facilities

Community common-pool resources such as school facilities and grounds, park and recreation space (for example, habitat areas, playgrounds and athletic fields), parking lots, gardens and libraries are shared with the community. Joint-use of school facilities is a growing trend. Increasingly, schools are making their facilities available to community groups during and/or outside schools hours, providing mutual benefits to both the school and the community.

The benefits of sharing community common-pool resources have been well documented (Elinor Ostrom, et al), and include social benefits such as communication, trust, cooperation, security, ecological benefits and cost sharing (resource costs such as energy and water use, capital and operating costs).

In planning for shared community common-pool resources, care must be taken to provide for programmatic and operational needs. For example, a school campus shared with joint-use programs must be able to maintain separate access and security between the main campus student areas and the after-hours community joint-access areas. Another example would be a parking lot that could well serve multiple community needs on a 24/7 basis. Similarly, a school garden could be made accessible to qualified community members.

Joint-use facilities may be owned and/or maintained by other organizations or agencies, but be available for school use. If so, the contractual agreement(s) must clearly provide for the long-term benefit to the school community.

SS 8.1 – Joint-Use of Facilities

<table>
<thead>
<tr>
<th></th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
<td>Construction Review</td>
</tr>
</tbody>
</table>

Requirement
<table>
<thead>
<tr>
<th>1 point</th>
<th>Implement any two of the following measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 8.1.1</td>
<td>Provide for controlled access and amenities: With community involvement, design one or more spaces (2,500ft² minimum for interior spaces) for use by community or other appropriate organizations. The plans shall designate this area as the "Joint-Use Area" and must contain toilet facilities that can be accessed without compromising the security of the non-Joint-Use portions of the facility (1 point). Provide direct access to "Joint-Use Area" owned and/or operated by a non-school entity. The "Joint-Use Area" must be accessed and secured independently of the non-joint-use portions of the facility (1 point). Provide an entrance for spaces identified for Joint-Use so that non-school hours’ access can be segregated the non-public parts of the school facilities and grounds. The "Joint-Use Area" must be accessed and secured independently from the non-Joint-Use portions of the site (2 points).</td>
</tr>
<tr>
<td>SS 8.1.2</td>
<td>Share at least 75% of school grounds based on total square feet of availability with the community.</td>
</tr>
<tr>
<td>SS 8.1.3</td>
<td>Share at least 50% of parking space required, based on total availability, with the community, and make those spaces available outside school hours.</td>
</tr>
<tr>
<td>SS 8.1.4</td>
<td>Share at least 75% of garden space based on total availability, with the community, and make that space available to community members.</td>
</tr>
<tr>
<td>SS 8.1.5</td>
<td>Share at least 75% of library space based on total availability, with the community as a community library.</td>
</tr>
</tbody>
</table>

Implementation

A new building on an existing campus can claim this criterion only if the building is designated as a “Joint-Use Area”, and the above requirements are satisfied for the whole campus. A renovation project can claim this criterion if new measures are taken or if the existing campus already satisfies the requirements. Schools with special needs facilities may request a variance based on circumstances.

SS 8.1.1

The most successful schools have a high level of parent and community involvement, but there is a need to control access for security reasons. Therefore, this involvement can be enhanced if a school is designed so that neighborhood meetings, recreation activities, and other community functions can take place at the school in a safe and secure fashion.
Building or renovating a school provides an opportunity for the community to incorporate community programs and services into the building program. During the planning stages, school districts should give careful thought to the types of programs, services, and facilities they may wish to offer via the future school building (e.g., library services, recreation services, meeting space, space for special events, etc.).

Other strategies that contribute to shared use of the school building include designing separate entrances for spaces likely to be shared, adjusting building orientation and layout to separate classroom and administration areas from shared spaces, planning for shared kitchen and toilet facilities, and designing special features into the school that the community can use.

Alternately, the school can incorporate spaces owned and operated by other entities, but available for direct access from the school during school hours. These spaces must incorporate separate security and may include separate toilet facilities if school-site facilities are not directly available. Letter signed by project architect and school superintendent indicating features of the school that enhance its shared use with the community.

To earn this criterion the physical design must incorporate measures to facilitate joint-use while providing security for the school. Provide doors or security gates to close off portions of the school that are used during non-school events.

If a joint-use facility is owned by another entity, provide a copy of the formal agreement between the school district and outside entity on joint use of facilities, including any operations / maintenance provisions and provide copies of applicable insurance policies for use of the facilities by the school if the spaces are owned and maintained by others. Joint-Use facilities owned by other entities will be considered for this criterion only if use by the school occurs on a regular (at least weekly) basis. Provide a description of contractually approved use pattern by the school.

SS 8.1.2

Joint Use of school facilities and grounds is a growing trend across the country. This criterion is intended to encourage schools to share their outdoor space with the community at large or vice versa – to encourage municipalities to allow schools to use local parks, in lieu of having the school construct separate facilities. Either arrangement allows the community to optimize resources dedicated to community common pool needs.

Provide a copy of the formal Joint-Use agreement between the school district and other entity and provide copies of applicable insurance policies for use of the space. Include maintenance and operations provisions in any agreement.

Urban schools with a lack of adequate outdoor space may consider use of off-site public park and recreation space to comply if such space is within safe, walkable 1/8 mile route.

SS 8.1.3
Joint Use of parking facilities provides both social and ecological benefits. Socially, it provides a node for safe interaction. Ecologically it limits disruption of the landscape, reduces heat island effects and reduces stormwater runoff by minimizing construction of impervious paving.

Provide a copy of the formal Joint-Use agreement between the school district and other entity and provide copies of applicable insurance policies for use of the space. Include maintenance and operations provisions in any agreement.

Joint-Use parking facilities will only be considered if 50% of a school’s parking lot capacity is used by an outside organization on a regular basis, or 50% of the school’s parking requirement is satisfied by use of another organization’s parking lot. Provide a calculation and a schedule of use substantiating this requirement.

SS 8.1.4

Share at least 75% of garden space based on total availability, with the community, and make that space available on a 24/7 basis to qualified community members.

Joint Use of garden space provides both social and ecological benefits. Socially, it provides a place for community social interaction, communication, and building relationships of mutual trust and cooperation. Furthermore, it provides for local food security. Ecologically it mitigates climate change by protecting soil fertility, biodiversity, water management, and so forth.

Provide a copy of the formal Joint-Use agreement between the school district and other entity and provide copies of applicable insurance policies for use of the space. Include maintenance and operations provisions in any agreement.

Joint-use garden space will only be considered if 75% of a school’s garden space is shared based on total availability, with the community, and make that space available to community members. Provide a calculation and a schedule of use substantiating this requirement.

SS 8.1.5

Share at least 75% of library space based on total availability, with the community, and make that space available during normal library operating hours as a community library.

Joint Use of library space provides both social and ecological benefits. Socially, it provides a place for community social interaction, communication, and building relationships of mutual trust and cooperation. Furthermore, it provides for a node for local information resource sharing. Ecologically it mitigates climate change by reducing redundant facilities.

Provide a copy of the formal Joint-use agreement between the school district and other entity and provide copies of applicable insurance policies for use of the space. Include maintenance and operations provisions in any agreement.

Documentation Requirements
Design Review Requirements

SS 8.1.1: Construction drawings must include a site plan that identifies the "Joint-Use Area" and the bathroom facilities that can be accessed without compromising the security of the non-joint-use portions of the facility.

SS 8.1.2 – 8.1.5: Construction drawings must include a site plan that identifies the area of space available for joint-use. A calculation must be provided on the sheet that includes the total amount of space available, and the percentage of that space available for joint-use.

Provide a copy of the agreement between organization(s) and school district, school principal, or school board to provide joint-use. The agreement should be signed by both parties and state the facilities /parks to be used and for what purpose. OR provide copies of applicable insurance policies governing use of the parks or recreational space by the municipality or by the school if the spaces are municipally owned.

Resources

- US EPA SMART Growth, benefits of Smart Growth provisions: www.epa.gov/dced/basic_info.htm
- New Schools Better Neighborhoods offers information on the benefits of joint-use facilities, examples of joint-use projects, joint-use analysis, recommendations, and policies at: www.nsbn.org/case/jointuse/
Human Powered Transportation

Intent

Encourage alternative transportation methods to and from school that increase physical activity, improve healthy, and reduce dependence on fossil fuels.

Walking, biking, and using scooters and skateboards, are a popular and pollution-free form of transportation. When encouraging the use of bicycles it is important to encourage the safety of pedestrians and bicyclists through providing bike lanes and sidewalks.

SS 9.1 – Human Powered Transportation

<table>
<thead>
<tr>
<th>SS 9.1 – Human Powered Transportation</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
| 1 point | SS 9.1.1 | Provide sidewalks or walkways and bike lanes that extend at least from the school entrance to the end of the school property; and

AND

Provide suitable means for securing bicycles, and scooters outside the school, skates and skateboards and helmets indoors (including lockers and/or cabinets). The storage must be safe, convenient, and at accessible locations for a minimum number of occupants (students, teachers and staff) as specified below:
- Elementary: 20% (up to 500 occupants), 15% (over 500 occupants)
- Middle school: 15%
- High school: 10%, and plan for an additional 5% in the event of growth through designated space, but not suitable means for securing.

Other novel forms of human-powered transportation, such as skiing, also qualify for this credit in areas where such transportation is viable. |
| 1 point | SS 9.1.2 | In addition to requirements of SS 9.1.1, collaborate with local organizations and the municipality to provide safe bike lanes that extend appropriately from the school site at least one mile into neighboring communities or access ways. |
| **OR** | SS 9.1.3 | Walking School Bus/ Safe Routes to School: for elementary schools that also comply with SS.6 Central Location, provide an active Safe Routes to School Program involving parents, students, school and city traffic officers and transportation planners. Program can include walking school buses, bike trains, bike and walk skills training, bike helmet promotion and other active transportation encouragement events. |

Implementation

For a new building, addition or major renovation project to earn these points, the calculations must be based on the number of occupants for the entire campus, not the individual building or building(s) being modernized. A major renovation project, a new building on an existing campus, and an addition can also claim these points if the existing campus already satisfies the requirement.

Calculations must be based on the number of occupants for the entire campus.

SS 9.1.1

The purpose of this criterion is to provide safe access to the school by students and staff who choose to walk or ride their bicycles to school.

To earn these points, bike storage areas must be:
• In a prominent location that is easily viewable from a main administrative location or within 100’ of main entrance and accessible from the bicycle lane or route.

• Have sufficient electric lighting.

• Half of bike rack area must be protected from precipitation for schools in areas with more than 20 inches of annual precipitation. Projects are encouraged to employ photovoltaic panels as roof structure.

• Racks must be fixed in place and must provide for locking of wheel and frame. Additionally, projects are encouraged to provide supplemental bike racks for visitors near the main entrance.

To earn these points, safe bicycle lanes must extend from the school entrance to the ends of the school property to protect and encourage cyclists. There should be no barriers (e.g., fences) on school property line at cycling routes/access points, unless gates that can be locked open during appropriate hours are provided. Work with the local authorities to extend the bike lanes beyond the project limits and across busy roads. Illustrate how site bike lanes relate to neighborhood use patterns. Bike lanes should be designed to accommodate significant traffic (lane width established by the local jurisdiction) and be separated from pedestrian sidewalks and parking.

As a supplement to encouraging bicycle use, projects are encouraged to provide skateboard lockers, racks, or other means of separately and safely storing skateboards, scooters, roller skates, and helmets. Where individual lockers or lockable racks are provided reduce the required number of bike racks by the count of lockers or skateboard racks provided.

Projects may also provide storage for other novel forms of human-powered transportation, such as skiing, in areas where such transportation is viable. Where individual lockers or lockable racks are provided for these other novel forms of transportation, the project may reduce the required number of bike racks by:

• 50% of the count of lockers or racks provided if these alternative forms of transportation are not readily available for at least four months of the year, or

• 100% of the count of lockers or racks provided if these alternative forms of transportation are available for at least four months of the year.

For example, if racks for ski equipment are provided, the amount of bike storage that can be reduced depends on how often skiing is a viable option.

SS 9.1.2

In addition to the requirements of SS 9.1.1 provide a map showing the relationship of the school to existing or new bike lanes that extend at least one mile from the school site into neighboring communities.

SS 9.1.3
Provide a description of a Walking School Bus / Safe Routes to School program including a map indicating route(s) and a statement of participant levels and school population. Provide a map indicating routes and showing the relationship of the school to existing or new sidewalks that extend at least one mile from the school site into neighboring communities. Include organizational description listing how program will be implemented and maintained. Provide a written confirmation from the school district that they will institute at least a yearlong program.

Documentation Requirements

SS 9.1.1 – Construction drawings must identify the location and required storage. Complete the CHPS Verified Construction Drawing with required calculations.

SS9.1.2 – Construction drawings must indicate bike lanes that meet the requirements.

Construction drawings must include the required features.

Construction Review Requirements

SS 9.1.1 – Provide picture(s) of the features.

SS 9.1.3 – Provide the Safe Routes to School Plan (SRTS). Include pictures of strategies implemented to provide safe bike lanes or a network that extends appropriately from the school site at least one mile into neighboring communities or access ways.

Resources

- Safe Routes to Schools www.saferoutesinfo.org/guide/index.cfm
Reduce Heat Islands – Landscaping / Sites

Intent

Reduce heat islands to minimize impact on microclimate and human and wildlife habitat.

Heat islands raise temperatures and can impact school communities by increasing peak energy demand, air pollution levels, air conditioning costs, and heat-related illness. Employ design strategies, materials, and landscaping designs that reduce heat absorption of exterior materials.

<table>
<thead>
<tr>
<th>SS 10.1 – Reduce Heat Islands – Landscaping / Sites</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All new schools. For a new building on an existing campus, additions, and major renovations, the requirement applies to the entire school site, not just the area around the new building or the buildings being modernized. A major renovation project, a new building on an existing campus, and an addition can also claim this point if the existing campus already satisfies the requirement.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
1 point SS 10.1 Provide shade (within five years) on at least 50% of non-roof, impervious surfaces on the site, including parking lots, walkways, plazas, etc.

OR

Use light-colored/ high-albedo materials (a Solar Reflectance Index* (SRI) of at least 0.29) for 50% of the site’s non-roof, impervious surfaces

OR

Use a combination of shading and high-albedo materials for 50% of the site’s non-roof surfaces.

*SRI or Solar Reflectance Index is calculated according to ASTM E 1980. Reflectance is calculated according to ASTM E 903, ASTM E 1918 or ASTM C 1549. Emittance is calculated according to ASTME E 408 or ASTM C 1372.

Implementation

Note that the “heat island effect” is largely an urban phenomenon. Dark surfaces, such as pavement, cladding, and roofing absorb heat and radiate it back to surrounding areas. In a city, where there are many dark, heat absorbing surfaces, infrared radiation can easily boost temperatures by 10°F or more. The heat island effect increases the need for air conditioning (and therefore electricity consumption) and is detrimental to site plantings, local wildlife, and maintaining comfortable temperatures.

Employ design strategies, materials, and landscaping designs that reduce heat absorption of exterior materials. Note Solar Reflectance Index (SRI) requirements in the drawings and specifications. Provide shade using native or climate-tolerant trees and large shrubs, vegetated trellises, or other exterior structures supporting vegetation. Substitute vegetated surfaces for hard surfaces. Explore elimination of blacktop and the use of new coatings and integral colorants for asphalt to achieve light colored surfaces.

Where artificial turf is provided, provide turf with light aggregate to reduce heat island effect caused by black aggregate. Artificial turf will be considered impervious for the purposes of this criterion.

A site plan or landscaping plan should show trees that contribute to shade and/or highlight light-colored, non-roof impervious surfaces.

Calculations for shading and/or high-albedo materials:

- Shading
 - Identify all non-roof impervious surfaces on the project site and sum the total area.
 - Identify all trees that contribute shade to non-roof impervious surfaces. Highlight these trees on the plan you submit.
• Calculate the shade coverage provided by these trees after five years of growth on the non-roof impervious surfaces on June 21 at solar noon to determine the maximum shading effect.

• Determine the total area of shade provided for non-roof impervious surfaces. To calculate the percentage of compliant hardscape surfaces, divide the non-roof impervious surface area that is shaded by the total hardscaped area.

For use of light-colored/high-albedo materials:

• Identify all non-roof impervious surfaces on the project site and sum the total area.

• Calculate the total area of non-roof impervious surfaces designed with light-colored/high-albedo materials. Divide by total—result must be 20%.

• If light-colored/high-albedo materials are used to achieve this criterion, provide specifications showing an SRI of 29 or better.

Note: Projects may achieve 20% coverage by adding together areas of shading and areas of light-colored/high-albedo materials to total 20%.

Documentation Requirements

Design Review Requirements

Construction drawings, including the landscaping plans, must provide the results described under the implementation section.

Resources

• Sustainable Development with Concrete www.concretethinker.com

• US EPA Heat Island resources and strategies: www.epa.gov/heatisland/.
Reduce Heat Islands – Cool Roofs

Intent

Employ cool roofs, green roofs, or green walls to reduce the heat island effect.

Cool roofs can significantly reduce school cooling loads and urban heat island effects by reflecting the sun’s energy, instead of absorbing, retaining, and radiating it into the occupied spaces below. This criterion is most beneficial for schools with significant cooling loads.

SS 11.1 – Reduce Heat Islands – Cool Roofs

<table>
<thead>
<tr>
<th>Credit</th>
<th>1 point</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

<table>
<thead>
<tr>
<th>1 point</th>
<th>SS 11.1.1</th>
<th>Cool Roofs. Use roofing materials that have a Solar Reflectance Index* (SRI) as listed below for roof type for a minimum of 75% of the roof surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Roof Type</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low-Sloped Roof</td>
<td><=2:12</td>
</tr>
<tr>
<td></td>
<td>Steep-Sloped Roof</td>
<td>>2:12</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>1 point</th>
<th>SS.C11.2</th>
<th>Install a green or vegetated roof equal to at least 25% of the roof surface. Develop a guide and maintenance plan for the green roof.</th>
</tr>
</thead>
</table>

OR

| 1 point | SS 11.1.3 | Green Wall/Trellis: Provide vegetated wall surface, shading from trees or other landscaping (within 5 years) or exterior shading device shading 30% or more of glazed surfaces that are not north facing, at 9:00am and 3:00pm at the equinox. |

Implementation

Cool roofs can significantly reduce school cooling loads and urban heat island effects by reflecting the sun’s energy, instead of absorbing, retaining, and radiating it into the occupied spaces below. Both the reflectivity and emissivity are important.
characteristics of cool roofs. A solar reflectance of 0.0 means that all the solar energy hitting the surface is absorbed and none is reflected. Emissivity is the ability of a material to shed infrared radiation.

Schools that do not have significant cooling loads (i.e. schools that do not have significant summer use) or are not located in urban areas, or are in areas dominated by winter heating (northern plains) may not wish to pursue this criterion. In these cases, a cool roof can actually result in more energy use in the heating season than it will offset in cooling loads during the summer. Energy modeling can help predict which facilities would be likely to experience an energy benefit by installing a cool roof. To find qualifying roof products, see the Cool Roof Rating Council website at www.coolroofs.org.

While some solar panel systems shade roofing surfaces and decrease heat transmission through the roof, they differ in their emissivity. Projects that wish to earn credit for roof areas covered with solar panels in lieu of cool roofing materials must show reflectance and emissivity properties to assess overall SRI of roof + solar panel assembly.

Vegetated roofs have been found to significantly reduce both the heating and cooling loads of buildings on which they are implemented. While they may significantly reduce the urban heat island effect by not using traditional building materials, they can also provide increased insulation and help reduce heating costs in the winter months, unlike cool roofs, which possibly increase a building’s energy use during the winter. Green roofs greater than 3-inch soil thickness have also been found to considerably lengthen the lifespan of a roof and reduce stormwater runoff. In some cases implementing a vegetated roof has been found to more than double the lifespan of a roof.

Green walls, shading from trees or other landscaping or exterior shading device can shade glazed areas and prevent intrusion of sunlight in to spaces that experience cooling loads. Like cool roofs, care should be taken to assess cooling vs. heating loads in order to determine overall effect of planting on building energy use. Provide plans and sections to calculate the shading effect of green walls, landscape trees or vegetated trellises on glazing. Provide information about yearly duration of vegetation if deciduous and indicate expected growth within 5 years of planting.

Green roofs may be difficult to implement on existing structures due to limitations on the weight load of the existing roof. Retrofitting roofs with certain types of green roofs may not be possible because the substrate and vegetation placed on the roof will exceed permitted static loading. In addition to issues concerning weight load, waterproofing the existing roof structure can potentially be an obstacle because of the amount of water retained on the roof and the potential for roots to penetrate the waterproof membrane. For an informational database containing more information on the implementation and different kinds of green roofs that exist, see http://www.greenroofs.com/.

Documentation Requirements

Design Review Requirements
Construction drawings, including a roof plan or landscaping plan, must include the square footage of total roof surface and the total surface covered by cool roof, or the size of green wall. For cool roofs, the specifications must include the CRRC Product ID#, emissivity and reflectance. For vegetated wall, details should be provided on the construction.

Construction Review Requirements

Provide picture(s) of the installed cool roof or green wall.

Resources

- Cool Roof Rating Council (CRRC): www.coolroofs.org
- US EPA Heat Island resources and strategies: www.epa.gov/heatisland/
- Lawrence Berkeley National Laboratory (LBNL), Heat Island Group resources: www.epa.gov/heatisland/
- LBNL Winter heating penalty map: heatisland.lbl.gov/coolscience/cool-science-cool-roofs
Avoid Light Pollution and Unnecessary Lighting

Intent
Reduce or eliminate uses of artificial night lighting that are not needed or contribute to light pollution.

Night lighting represents a significant source of energy use on campuses and can adversely affect the nighttime environment, while well-designed lighting can ensure safety, security, and beneficial use of properties. Avoidance of unnecessary lighting reduces resource use and minimizes the potential adverse environmental effects on the nighttime environment. Approaches may range from “dark campus” programs to careful controls on direction, intensity, duration, and spectrum of lighting.

<table>
<thead>
<tr>
<th>SS 12.1 – Avoid Light Pollution and Unnecessary Lighting</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All new or existing schools. For a new building on an existing campus, additions, and major renovations, the calculations must be made for the entire school site, not just the area around the new building or the buildings being modernized.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
Implementation

Unnecessary light pollution will be moderated by the prerequisite EE 1.0 that requires controls to automatically turn off unnecessary interior and exterior lighting after hours.

SS 12.1.1 & 12.1.2 – Product Information & Plans

Provide site plan indicating all exterior lighting with different fixtures referenced. Provide exterior light fixture data indicating lumens, CRI, cutoff & color temperature, as appropriate. Provide calculation of lumens per acre.

Definitions:

Emergency Lighting

“Emergency Lighting” used here will be considered any lighting required for occupants safety in and around the building. Examples include:

1. Lighting providing the minimum required for the means of egress that must be maintained at all times any space served by the means of egress is occupied, and may not be controlled by motion sensors.
2. Lighting in areas designated as security or emergency areas. Parking lot lighting is not considered security lighting.

3. Emergency lights upon activation during loss of power.

4. Lighting in spaces where an automatic shutoff would endanger occupant safety or security.

Fully Shielded (Light Fixture)

A light fixture constructed in such a manner that all light emitted by the fixture, either directly from the lamp or a diffusing element, or indirectly by reflection or refraction from any part of the fixture, is projected below the horizontal. Any structural part of the light fixture providing this shielding must be permanently affixed, and part of the fixture, not part of any surrounding building or architectural elements.

Partially Shielded (Light Fixture)

A light fixture constructed and mounted such that most light emitted by the fixture, either directly from the lamp or a diffusing element, or indirectly by reflection or refraction from any part of the fixture, is projected below the horizontal. Light emitted at or above the horizontal direction (sideways or upwards) arises only from decorative elements or strongly colored or diffusing materials such as "honey" or colored glass or plastic. Fixtures using spot or flood lamps are considered partially shielded if the lamps are aimed no higher than 45 degrees above straight down (half-way between straight down and straight to the side).

Documentation Requirements

Design Review Requirements

Construction drawings must include:

- Interior Lighting: provide building section(s) diagramming the angle of the maximum candela value, or the lighting plans should show that all non-emergency lighting is on a programmable timer that turns lighting off during non-operable hours and that provides manual override capability for after hours use.

- Provide a photometric site plan (that shows at least 10' beyond the property line) produced by a computer model that includes the average, maximum and minimum illuminances for each area (walkways, parking lots, building entries etc.) Horizontal illuminances at ground level on a minimum ten-foot by ten-foot grid with the property line clearly marked in bold on photometric plan and abutting residential properties, parks, or natural wildlife areas noted. The plan should indicate the location and mounting height of all site building mounted exterior fixtures clearly indicated by fixture type designations relating to the lighting fixture schedule.
• Exterior lighting fixture schedule with manufactures and model numbers, and manufacturers spec sheets, with a clear description of the specified lamps, wattage, IESNA cutoff classification and shielding accessories for each fixture.

Construction Review Requirements

Provide manufacturer receipts or proof of purchase for compliant light fixtures. Provide pictures as alternatives if appropriate.

Resources

• IDA approved lighting fixtures: www.darksky.org/outdoorlighting/74-manufacturers
• Illuminating Engineering Society (IES), www.iesna.org/
• International Dark Sky Association, www.darksky.org/
School Gardens

Intent

Promote learning about the environmental systems and healthy foods

School gardens can provide a diverse learning environment as well as a beautiful respite from the demands of the rest of the school day. Gardens promote learning about the environmental systems and healthy foods. Students who are not engaged by traditional learning methods often find the experience of working and learning in the garden a welcome path to understanding.

Gardens can be integrated into natural science, social sciences or humanities curriculum. Gardens should promote ecologically sustainable practices such as building soil health, alternatives to the use of chemical fertilizers, soil amendments, pesticides & herbicides. School Gardens can also be the site of school-wide composting programs.

<table>
<thead>
<tr>
<th>SS 13.1 – School Gardens</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 13.1 – School Gardens</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>All projects.</td>
</tr>
<tr>
<td>Design Review</td>
<td>Construction Review</td>
</tr>
<tr>
<td>Performance Review</td>
<td></td>
</tr>
</tbody>
</table>

Requirement
| ½ point | SS 13.1.1 | Provide a site on campus for one or more school gardens with a minimum of 200 sf for a student enrollment of 499 or less, and 500 sf for student enrollment greater than or equal to 500. The garden must promote learning about the environment, natural systems and/or healthy foods. It shall have a permanent source of water for irrigation that may include access to a tap and hose, an installed irrigation system, or access to a rain collection system. There must also be dedicated storage space for garden maintenance supplies and tools.

Provide signage to designate the area as a school garden and to differentiate it from the surrounding grounds.

Develop a long-term ecologically sustainable maintenance plan to ensure the garden is implemented and continues to thrive.

For existing school sites (major renovations or new building on existing campus project) the soil must be tested to ensure there are no harmful contaminants. New school sites are covered under SS.1 site requirements. |

| ½ point | SS 13.1.2 | Provide a native plant hedgerow around the school garden. The plant materials must provide habitat for beneficial insects such as pollinators, which in turn will increase garden yield and support biodiversity. The hedgerow may also provide materials for traditional basketry, building materials, clothing or herbs. |

Implementation

SS 13.1.1

To earn this point, the project shall designate an area(s) appropriate for gardening by the school community. Examples of acceptable uses of garden space include a vegetable garden, pollinator or butterfly habitat, or for animal husbandry, such as raising turtles, fowl (ducks, geese, chickens), rabbits, fish amphibians or other animals.

Indicate on the plans the location of the garden and its components. A school garden can come in many different forms. It can be fenced off, or physically separated from buildings, making it easily accessible to the school and to community members, or it can be integrated onto the school site in multiple areas or planters. Unique gardens, such as roof gardens, can also be considered for credit.

It is highly recommended that school community members, including staff and parents, be involved with the school garden and its development. When school is closed during summer months, for example, the garden will still need care, and community support is essential for this purpose.

The garden must have:

- A prominent entrance that is easily accessible and/or identified by signage.
• A long-term maintenance plan to ensure the garden is implemented and continues to thrive.

• Soil that has been tested (for existing school sites or redeveloped sites) to ensure there are no contaminants.

• Permanent irrigation or water source.

Submit plans and specifications for the garden that meet the above requirements.

Submit either a) the long-term maintenance plan or b) a letter of commitment from the school committee or the superintendent indicating that the plan will be developed and by whom.

Because the primary intent of this credit is to make the garden available as a teaching tool, schools are very strongly encouraged to incorporate it into their curriculum.

SS 13.1.2

Provide a native plant hedgerow surrounding the garden area. Hedgerows are closely planted rows of native bushes, shrubs, forbs and grasses. The hedgerow must contain at least five different species of plants native to the locale.

Documentation Requirements

Design Review Requirements

Construction drawings should identify the location and size of the garden as well as its storage space and hedgerow. Irrigation for the garden should be identified on a landscape irrigation design plan.

A letter from the landscape architect summarizing the planting schedule and confirming compliance.

Construction Review Requirements

Submit a picture(s) of the completed garden(s). Submit the long-term maintenance plan for the garden spaces. For existing schools, submit proof that the garden site soil has been tested and no harmful contaminants are present.

Resources

• California native hedgerows – Audobon: www.ca.audubon.org/hedgerows-turn-farm-edges-bird-habitat

• Green Schoolyard Network: greenschoolyardnetwork.org/

• Hedgerows Enhance Beneficial Insects: ucanr.org/repository/cao/landingpage.cfm?article=ca.v065n04p197&fulltext=yes
- Native plant hedgerow in Maryland: www.agnr.umd.edu/Extension/local/Frederick/files/NativeHedgerowBrochure8-08.pdf
- Square Foot Gardening: www.squarefootgardening.org
- The Edible Schoolyard: www.edibleschoolyard.org
- EarthWorks Boston is a non-profit that promotes environmental and health education for urban children in the Boston area through the planting and care of school orchards and gardens: http://www.earthworksboston.org
Use Locally Native Plants for Landscape

Intent

Increase use of locally native and ecologically appropriate plants to increase biodiversity and associated teaching opportunities and to reduce use of irrigation.

Native plants have multiple benefits. These include increased biodiversity, especially birds and insects, reduction in need for supplemental irrigation, and increased opportunities to teach about these topics, especially in the biological sciences. If appropriately designed, native plantings can reduce maintenance needs as well.

SS 14.1 – Use Locally Native Plants for Landscape

<table>
<thead>
<tr>
<th>SS 14.1 – Use Locally Native Plants for Landscape</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 point</td>
<td></td>
</tr>
</tbody>
</table>

Applicability

All projects. Calculations must be made for the entire school site, not just the area around the new building or the buildings being modernized.

Verification

- Design Review
- Construction Review
- Performance Review

Requirement

- ½ point
 - SS 14.1.1 At least 80% of the trees planted on the site are native species. Existing non-native trees can be retained without penalty. Native trees outside of development footprint must be retained.

- ½ points
 - SS 14.1.2 At least 80% of non-turf ornamental plant species (excluding trees) installed are native species.

Implementation

Native Plant

A species of plant that was historically present in the vicinity (usually defined as local watershed) of the project site. This does not include cultivars. Historical presence can be assessed using local floras, surveys of natural areas, or herbarium records.

If, due to climate change or other shifting conditions, historically native planting are no longer appropriate in this context, similar species may be substituted that are adapted to...
the expected conditions. In this case, select species from nearby ecosystems that will work harmoniously with the local ecology.

Provide a site planting plan listing plant varieties indicating native and non-native species. Provide a reference designating locally native plants.

Documentation Requirements

Design Review Requirements

Construction documents must contain the planting schedule, noting which plants are native and non-native. Existing site plans and proposed development plans must indicate existing trees.

Resources

Site and Building Best Practices

There are many other best practices for site selection and building orientation not covered elsewhere. To help ensure that a comprehensive and thorough site analysis is completed, choose at least three measures from the list of seven best practices to implement.

<table>
<thead>
<tr>
<th>SS 15.0 – Site and Building Best Practices</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification</td>
</tr>
<tr>
<td>All new building projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Intent

Ensure a thorough and comprehensive site and building orientation analysis by implementing at least three of seven best practices.

Requirement

Choose any three of the following best practices to implement:

15.0.1: Orient the building(s) to take advantage of maximum natural daylighting and plot shadow patterns from surrounding buildings and place buildings to optimize solar gain (for urban-infill sites).

15.0.2: Consider prevailing winds when determining the site and building layout. For example, consider how the shape of the building itself can create wind-sheltered spaces and consider prevailing winds when designing parking lots and driveways to help blow exhaust fumes away from the school.

15.0.3: Take advantage of existing land formations and vegetation to provide shelter from extreme weather or to deflect unwanted noise.

15.0.4: Plant or protect existing deciduous trees to block summer sun and allow winter solar gain. Plant or protect existing coniferous trees to block winter wind.

15.0.5: Minimize importation of non-native soils and exportation of native soils. Optimize Cut & Fill (ideally 1:1) during clearing and excavation.

15.0.6: Create physical connections to existing bike paths, natural features, or adjacent buildings and neighborhoods.

15.0.7: Design parking lots and driveways to limit student proximity to bus emissions. Design bus loading and unloading areas such that...
buses need not be lined up head to tail. Do not design bus loading and unloading areas such that bus exhaust is in proximity to any of the school's air intake vents.

Implementation

Performing a thorough site analysis at the pre-design phase is critical to understanding all the opportunities and complexities of a building site. A good site analysis allows the designer to make informed design decisions to take full advantage of solar orientation, prevailing wind direction, topography, and tree species and locations. Adjacent streets and traffic patterns should be considered, functional synergies with surrounding buildings created, and special environmental elements featured.

Item #1 highlights the importance of building orientation. Energy efficiency and environmental impacts are affected by decisions made early in the planning process. For example, when the building is oriented along the east-west axis, the designer can take advantage of natural daylighting, which reduces the need for electrical lighting and resultant energy consumption.

Note: Urban infill projects do not usually have the opportunity to orient the building to the sun, due to tight site constraints. However, project designers are encouraged to think about maximum solar exposure within the limits of the surrounding buildings.

Item #2 encourages designers to consider prevailing winds to help move vehicle exhaust away from the school, minimizing exposure to students and staff.

For items #3 and #4, earth berms, forests, and other natural features can help shape the layout of the school building during early design. Likewise, manmade structures, such as storage structures for bio-mass fuel, can be sited carefully to provide protection to the site. Plantings of deciduous trees provide shade to the school during warmer months and access to sunlight at the end of autumn when the trees' leaves have fallen.

Importation or exportation of soil can be costly in terms of both dollars and environmental impact. Item #5 encourages the conservation of the environment by minimizing excavation and importation of non-native soils. By optimizing cut and fill (ideally 1:1) during clearing and excavation, use of native soils is maximized, reducing the adverse impacts on the site.

In item #6, “creating physical connections” means considering features on adjacent properties and designing the site layout such that it promotes their use.

For item #7, avoid head-to-tail lineups of school busses, which is the traditional dismissal practice experienced at many schools. Instead, require that busses ready for students park head-first towards the curb so that bus exhaust is not near the intake for other buses or the school ventilation system. When considering site placement of bus parking, also consider prevailing winter winds so that exhaust is not blown into the school air intakes.
Documentation Requirements

Design Review

For all strategies attempted, submit site analysis sketches outlining all of the site’s features before the building is placed and submit the following for individual strategies for at least three of the items listed below. Site layouts and design narratives may be combined where appropriate.

1. Site layout and design narrative showing how the project responds to natural daylighting.
2. Site layout and design narrative showing how the project responds to prevailing winds.
3. Site layout and landscape design narrative showing how the existing topography and tree coverage respond to weather or deflect unwanted noise.
4. Site layout and landscape design narrative showing how the intended or existing plantings increase shade in the summer and allow solar gain in the winter.
5. Submit a cut and fill analysis report that shows a maximum of a 5% deviation to a 1:1 ratio. If avoidable, please do not submit the entire report, only the sections that identify the report and support the intent of a 1:1 ratio of excavation and infill with native soils.
6. Site layout and design narrative showing how the project responds to natural features and/or adjacent buildings.
7. Site plan showing bus loading and unloading area. Also show on this drawing, or submit a separate drawing, that shows that the building’s air intake vents are not located near the loading/unloading zone.

Resources

Asthma Regional Council: www.asthmaregionalcouncil.org/about/BusToolkit.htm
Storage & Collection of Recyclables

Intent
Facilitate the separation and collection of materials for recycling.

Providing easily accessible recycling to the students, teachers and staff ensures a significant portion of solid waste can be diverted from landfills and incineration/transformation facilities. Recycling of paper, cardboard, metals, plastics and organics diminish the need to extract virgin materials.

MW 1.0 – Storage & Collection of Recyclables

<table>
<thead>
<tr>
<th>MW 1.0 – Storage & Collection of Recyclables</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
Prerequisite

<table>
<thead>
<tr>
<th>MW 1.0</th>
</tr>
</thead>
</table>

Condition 1: School jurisdiction has a local recycling ordinance.

The school building must meet the local ordinance for recycling space.

Provide easily accessible areas serving the entire school that are dedicated to the collection and storage of materials for recycling. There must be at least one centralized collection point (e.g. loading dock), and ability for separation of recyclables where waste is disposed of for classrooms and common areas such as cafeterias, gyms or multipurpose rooms. The team must provide a copy of the ordinance.

Provide means for recycling inside of each classroom. Administration areas must have one central recycling station set up per 20 employees.

OR

Condition 2: School jurisdiction does not have a local recycling ordinance but local recycling services are available to the school district.

Recycling must include a minimum of two of the following: paper, cardboard, glass, plastics, and metals. The school must have a written program stating the logistics of the recycling efforts.

Provide easily accessible areas serving the entire school that are dedicated to the collection and storage of materials for recycling. There must be at least one centralized collection point (e.g. loading dock), and ability for separation of recyclables where waste is disposed of for classrooms and common areas such as cafeterias, gyms or multipurpose rooms.

Provide means for recycling inside of each classroom. Administration areas must have one central recycling station set up per 20 employees.

OR

Condition 3: School jurisdiction does not have a local recycling ordinance and no recycling services are available to the school district.

If there is no recycling infrastructure within the boundaries of the school district then the project is exempt from this prerequisite. If there is no recycling infrastructure and the project establishes a recycling program, the project should consider applying for an innovation credit.

Implementation

For sizing guidelines on spaces for storage and handling of recyclable material, see the CalRecycle’s *Recycling Space Allocation Guide:*

Early in the design phase, be sure to reserve space for recycling functions and show areas dedicated to the collection of recycled materials on floor plans. Consider the question of how recyclable materials will be collected and removed from classrooms, teachers’ prep rooms, and offices. When recycling bins are used, they should be able to accommodate a 75% diversion rate (from normal waste basket contents) and be easily accessible to students and staff as well as custodial staff. Consider bin designs.
that allow for easy cleaning to avoid health issues. Consider claiming innovation credit for establishing a composting program for landscape waste and food.

Documentation Requirements

Design Review Requirements

Construction drawings, site and classroom plans, must include the centralized collection point and recycling bins/dumpsters/areas in classrooms and common areas such as cafeterias or multi-purpose rooms.

Construction Review Requirements

Provide pictures of the centralized recycling collection point and typical classroom/common area recycling bins/dumpsters.

Resources

- US EPA School Recycling:
 www.epa.gov/osw/conserve/tools/localgov/sectors/school.htm
- US EPA List of Common Recyclables:
 www.epa.gov/recycle/how_recycle.html
- US EPA Food Waste:
 www.epa.gov/waste/conserve/foodwaste/
- Grasscycling:
- US EPA Toolkit for Starting a Recycling Program
 www.epa.gov/region4/rcra/mgtoolkit/starting.html
Minimum Construction Site Waste Management

Intent
Divert construction and demolition was from landfills.

This criterion is very feasible in many parts of the United States. Even if there are limited recycling facilities or waste management recycling companies in the project area, construction waste management can still take place through sub-contractor sorting the waste into multiple dumpsters. The cost is then associated with the dumpster costs and hauling charges. Recycling construction and demolition (C&D) materials reduces demand for virgin resources and diminishes the need for landfill space. Meet local ordinance requirements concerning C&D materials at construction sites, if applicable; and develop and implement a C&D waste management plan, quantifying material diversion by weight.

<table>
<thead>
<tr>
<th>MW 2.0 – Minimum Construction Site Waste Management</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

| 2 points | MW 2.0.1 | Recycle, reuse, and/or salvage at least 50% (by weight) of non-hazardous construction and demolition waste, not including land clearing and associated debris. |

<table>
<thead>
<tr>
<th>MW 2.1 – Construction Site Waste Management</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>Verification Required</td>
</tr>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
<table>
<thead>
<tr>
<th>Points</th>
<th>Requirement</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MW 2.1.1 Recycle, reuse, and/or salvage at least 75% (by weight) of non-</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>hazardous construction and demolition waste, not including land clearing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and associated debris.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MW 2.1.2 Recycle, reuse, and/or salvage at least 90% (by weight) of non-</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>hazardous construction and demolition waste, not including land clearing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and associated debris.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MW 2.1.3 Fulfill the requirements of MW.2.3, and develop a comprehensive</td>
<td>Fulfill the requirements of MW.2.3, and develop a comprehensive</td>
</tr>
<tr>
<td></td>
<td>Waste Recovery Plan such that a minimum of 50% of the building waste</td>
<td>Waste Recovery Plan such that a minimum of 50% of the building</td>
</tr>
<tr>
<td></td>
<td>(by weight) is reused or salvaged by donating or selling to a reuse</td>
<td>waste (by weight) is reused or salvaged by donating or selling to a</td>
</tr>
<tr>
<td></td>
<td>organization within 1000 miles.</td>
<td>reuse organization within 1000 miles.</td>
</tr>
</tbody>
</table>

Implementation

Successful salvage, recycling, and diversion of construction and demolition materials is usually the result of a well thought out waste management plan and on-site training for contractors and subcontractors.

Compliance calculations for this criterion must be based on weight. Many recycling and landfill facilities weigh incoming materials. Shipments that cannot be weighed can be estimated based on their volume and density.

Recycle Rate (%) = \[
\frac{\text{Recycled Waste [Tons]}}{\text{Recycled Waste [Tons]} + \text{Garbage [Tons]}} \times 100
\]

Note: DO NOT include materials classified as hazardous wastes in these calculations.

The Construction Waste Management Plan should detail the following components:

- The diversion percentage goals for C&D wastes, e.g., 75%. A 90% recycling rate may receive an Innovation point.
- Recycling/reuse strategies and processes for onsite recycling, deconstruction and salvage, e.g., scheduling of different stages of deconstruction to best remove recyclable or salvageable materials intact.
- On-site communication: the general contractor will detail communication strategies for construction workers and subcontractors about the recycling program and goals.
- Waste management documentation: The construction waste management plan will specify documents needed to show waste diversion—e.g., weight tickets for all wastes removed from the site including recycled and salvaged materials.
Recycling summary: Recycling and waste data will be collected into a summary document for construction documentation.

For projects pursuing MW 2.1.3, include a section called “Waste Recovery Plan” in the Construction Waste Management Plan. Identify reuse organizations within 1000 miles that will purchase or accept the donation of construction waste for reuse. The identified organization must intend to reuse the waste as-is, or sell the material for the intent of re-use.

During construction, collect the receipts from the reuse organization that shows the donated or sold items and weight of the donated or sold items form construction & demolition recycling waste.

Documentation Requirements

Design Review Requirements

Construction drawings must include general notes to the Contractor to implement a Construction Waste Management Plan. The notes should specify the required diversion rate through recycling, composting or salvage, compliant and preferred facilities to receive the debris, and that they are responsible to maintain documentation (weight tickets / receipts) for all debris leaving the site to be summarized and submitted after construction as a diversion summary.

Construction Review Requirements

Provide a diversion summary and back up documentation for where debris was taken.

Resources

The number and variety of products using recycled-content materials expands every year. Using these materials closes the recycling loop by creating markets for materials collected through recycling programs across the country. It also reduces the use of virgin materials and landfill waste. Recycled-content alternatives exist for all major building materials and surfaces.

MW 3.1 – Single Attribute – Recycled Content

Applicability

All projects.

Verification

<table>
<thead>
<tr>
<th>Credit</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
<td>Construction Review</td>
</tr>
</tbody>
</table>
Prescriptive Approach: Specify and install at least four major materials from Table 19 for 1 point, or eight major materials from Table 19 for 2 points.

OR

Performance Approach: The weighted average recycled-content value by cost is at least 10% (post-consumer + ½ pre-consumer), or at least 20% for 2 points.

Fly ash generated from municipal solid waste incinerators is not an acceptable recycled content material under this criterion, nor is fly ash generated as a coal combustion by-product where the coal plant is fired with hazardous waste, medical waste or tire-derived fuel.

Mercury concentration should not be more than 5.5 ppb (0.0055 mg/L) as determined by a Toxic Characteristic Leaching Procedure (TCLP) following EPA 7470A. Most US fly ash has mercury content of 2 ppb or less. This is a level that is deemed acceptable for drinking water in the US and is safe for use in construction. Furthermore, when this mercury is bound in the matrix of construction materials, the scientific literature indicates that it does not leach out, even when subjected to more aggressive conditions than anticipated in real life. Certain combinations of coal types and power plant combustion may produce fly ash with higher mercury content, though this appears to be rare.

Implementation

Recycled content is either a post-consumer (collected from end users) or secondary material. Pre-consumer, or post-industrial, waste is collected from manufacturers and industry. The objective of this criterion is to maximize post-consumer recycled content; therefore pre-consumer recycled content is discounted 50% for the calculations.

Recycle content claims must be in accordance with the International Organization of Standards document ISO 14021-1999 – Environmental labels and declarations.

Prescriptive Approach

At least four major materials must be specified and installed in the project that meet the minimum total recycled content levels as listed in Table , Minimum Recycled Content Levels in the appendix. A total of two points must be achieved when at least eight major materials are specified and installed that meet the recycled content levels as listed in Table . A "major" material is defined as those materials covering more than 50% of a major building surface (such as parking areas, floor, roof, partitions, walls), or serving a structural function throughout the majority of the building. For example, credit would not be issued if tackable wall panels were used in only one classroom. Recycled content products with minimum recycled content levels must be used throughout the project.

For Table , Total Recycled Content = Post-consumer Recycled Content + ½ Pre-consumer Recycled Content
Note: If tire derived products are used indoors, they must also meet EQ.C4 standards for low-emitting materials.

Table 19: Minimum Recycled Content Levels *(MW.C2: Recycled Content, Prescriptive Approach)*

<table>
<thead>
<tr>
<th>Category</th>
<th>Product</th>
<th>Total Recycled Content</th>
<th>Post-Consumer Recycled Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Insulation</td>
<td>Fiberglass Insulation</td>
<td>30%*</td>
<td>30 %</td>
</tr>
<tr>
<td></td>
<td>Cellulose Insulation (Including Cotton and Denom)</td>
<td>75%*</td>
<td>75 %</td>
</tr>
<tr>
<td>Flooring</td>
<td>Nylon Carpet (Total) Weight</td>
<td>10%*</td>
<td>10 %</td>
</tr>
<tr>
<td></td>
<td>Polyester Carpet Fiber Face</td>
<td>25%*</td>
<td>25 %</td>
</tr>
<tr>
<td></td>
<td>Plastic</td>
<td>50%</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>Linoleum</td>
<td>40%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Vinyl</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Rubber (non-tire-derived)</td>
<td>40%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Tire-derived Rubber</td>
<td>50%*</td>
<td>50 %</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>50%*</td>
<td>50 %</td>
</tr>
<tr>
<td></td>
<td>Ceramic</td>
<td>45%</td>
<td>0%</td>
</tr>
<tr>
<td>Acoustical Ceiling Tiles and Wall Panels</td>
<td>Glass</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Recycled Newspaper, Slag Wool, Aluminum</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>30%*</td>
<td>30 %</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>50%*</td>
<td>50 %</td>
</tr>
<tr>
<td></td>
<td>Ceramic Tile</td>
<td>45%</td>
<td>0%</td>
</tr>
<tr>
<td>Countertops</td>
<td>Medium Density Fiberboard</td>
<td>80%</td>
<td>0%</td>
</tr>
<tr>
<td>Wall Coverings</td>
<td>Tackable Wall Panels</td>
<td>100%*</td>
<td>100 %</td>
</tr>
<tr>
<td></td>
<td>Paint</td>
<td>50%*</td>
<td>50 %</td>
</tr>
<tr>
<td>Aggregate Base and Subbase</td>
<td>Recycled Aggregate</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>Structural Concrete</td>
<td>Fly Ash, Rice Hull Ash, or other Pozzolanic Materials (See credit restrictions on claiming credit for fly ash.)</td>
<td>25%*</td>
<td>0 %</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>Basic Oxygen Furnace (BOF) Produced Steel</td>
<td>16%*</td>
<td>16 %</td>
</tr>
<tr>
<td></td>
<td>Electric Arc Furnace (EAF) Produced Steel</td>
<td>67%*</td>
<td>67 %</td>
</tr>
<tr>
<td>Shower/Restroom Partitions</td>
<td>Plastic</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td>Windows</td>
<td>Fiberglass Frame</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Roofing Materials</td>
<td>Steel</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Fiber (Felt) or Fiber Composite</td>
<td>50%*</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Tire-derived Products</td>
<td>50%*</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Plastic or Plastic/Rubber Composite</td>
<td>100%*</td>
<td>100%</td>
</tr>
<tr>
<td>Playground Equipment</td>
<td>Plastic</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>BOF Steel, EAF Steel</td>
<td>16%, 67%</td>
<td>16%, 67%</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>25%*</td>
<td>25%</td>
</tr>
<tr>
<td>Playground Surfaces</td>
<td>Plastic</td>
<td>10%*</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Tire-derived</td>
<td>100%*</td>
<td>100%</td>
</tr>
<tr>
<td>Landscaping Products</td>
<td>Compost, Co-compost, and Mulch</td>
<td>80%*</td>
<td>80%</td>
</tr>
<tr>
<td>Plastic Lumber and Timbers</td>
<td>Plastic</td>
<td>10%*</td>
<td>10%</td>
</tr>
<tr>
<td>Parking Stops</td>
<td>Plastic</td>
<td>10%*</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Tire-derived Products</td>
<td>100%*</td>
<td>100%</td>
</tr>
</tbody>
</table>

New product categories may be considered provided the value exceeds 5% of the total project material cost. See ME 4.1.2, which states that a default value of 35% of the Total Construction Cost can be used for Total Project Material Cost. i.e. for a $5,000,000 major renovation project take 35% of that cost then 5% of that cost and a new product category would need to be worth at least $87,500 to be considered.

All Other Product Categories (Maximum of 2 points from this category are eligible for credit under ME4.1. To receive credit, products must also complete a Life Cycle Effects Screening (LCES) to ensure there are no environmental or health tradeoffs).

<table>
<thead>
<tr>
<th>Performance Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Another method to verify compliance with this criterion is to use the performance approach. The weighted average of recycled-content value is calculated using the following equations:</td>
</tr>
<tr>
<td>- Recycled Content Value (RCV): Calculate the Recycled Content Value of each product by multiplying the cost of the product by the percent of postconsumer recycled content and then adding ½ of the cost of the product multiplied by the percent of pre-consumer recycled content. Material Cost is the construction cost of each individual material excluding all labor costs, project overhead, and fees.</td>
</tr>
</tbody>
</table>

$$RCV = (\% \text{ postconsumer recycled content} \times \text{material cost}) + 0.5 \times (\% \text{ pre-consumer recycled content} \times \text{material cost})$$
Total Recycled Content Value: Total Recycled-content Value is the sum of the postconsumer and pre-consumer recycled-content value of all recycled-content products.

\[\sum \text{RCV} = \text{RCV Product A} + \text{RCV Product B} + \text{RCV Product C}, \text{etc.} \]

- Verify RCV of Each Recycled Product DOES NOT Exceed 25% of \(\sum \text{RCV} \): If RCV of Product A is greater than 25% of \(\sum \text{RCV} \), then 25% \((\sum \text{RCV}) \) must be substituted for the value of Product A in the Total Recycled Content Value equation. This step must be repeated for each product to verify that no one material accounts for more than 25% of the \(\sum \text{RCV} \).

\[\text{RCV Product A} \leq (25\%) \times (\sum \text{RCV}) \]

Weighted Average Recycled Content Value (%): The Weighted Average Recycled Content Value is calculated by dividing the Total Recycled-Content Value \((\sum \text{RCV}) \) by the Total Project Material Cost. The Total Project Material Cost is the construction cost of all materials excluding all labor costs, project overhead, and fees. A default value of 35% of the total construction costs can be used for the Total Project Material Cost.

\[\text{Weighted Average Recycled Content Value [\%]} = \frac{\text{Total Material Cost [\$]}}{\text{Total Recycled Content Value [\$]}} \times 100 \]

Documentation Requirements

Design Review Requirements

Submit construction documents specifying use of anticipated recycled content products.

Construction Review Requirements

Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Provide cut sheets for materials claimed to have the required recycled content. Proof of purchase and/or installation is only required if audited during construction review. CHPS recommends that records be kept in the event an audit is requested.

Resources

- CHPS Product Database: www.chps.net/products
- US EPA's Comprehensive Procurement Guideline (CPG) Program: www.epa.gov/cpg
- CA Department of Toxic Substance Control TCLP and WET: ccelearn.csus.edu/wasteclass/mod6/mod6_05.html
Rapidly renewable raw materials are those materials that substantially replenish themselves faster than traditional extraction demand (e.g. planted and harvested in less than a 10 year cycle); and that are sustainably managed. Products in this category include, but are not limited to, bamboo products, wheat grass cabinetry, linoleum and bioplastics. Ensure that the products protect indoor air quality and are durable.

MW 4.1 – Single Attribute – Rapidly Renewable Materials

<table>
<thead>
<tr>
<th>MW 4.1 – Single Attribute – Rapidly Renewable Materials</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification

- Design Review
- Construction Review
- Performance Review

Requirement

1 point

MW 4.1.1 Prescriptive Approach: Specify rapidly renewable materials, for 50% by area of one of the following major interior finish:

- Flooring (ft²)
- Casework (ft³)
- Acoustical Ceiling Tile (ft²)
- Wall Covering (ft²)

A product must contain a minimum of 25% rapidly renewable raw materials based on weight to qualify for this criterion.

OR

1 point

MW 4.1.2 For at least 50% by area of one of the same interior finishes, use certified USDA organic materials or materials utilizing environmentally sustainable agriculture harvest methods certified under the ”Draft National Standard for Trial Use, Sustainable Agriculture (SCS-101)“ certified under a program that meets the criteria for Alliance full membership such as IFOAM organically grown materials.
Implementation

To confirm compliance with this criterion determine the total costs of all qualifying materials and the total cost of all renewable materials. Materials considered as qualifying are listed on Table 20 - Materials to be Included and Excluded from Calculations.

Table 20: Materials to be Included and Excluded from Calculations

<table>
<thead>
<tr>
<th>Name</th>
<th>Included in the cost calculation</th>
<th>Not included in the cost calculation</th>
<th>Notes on DHS Materials Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Conditions</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Site Work</td>
<td>Site furnishings, bike racks, site paving systems (including asphalt, concrete for sidewalks and driveways as well as other paving systems), gravel, fences and gates, parking lot accessories, play ground surfaces, and play ground equipment.</td>
<td>Plant materials, earth, sand and outdoor lighting fixtures (see Division 16).</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Concrete</td>
<td>All products. Include all concrete used in the construction of the building: slabs, structural concrete, basement walls and concrete toppings on steel or wood decks. Concrete used in site work is also included, but in Division 2.</td>
<td>Formwork and temporary scaffolding.</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Masonry</td>
<td>All products. Include all masonry used in the construction of the building, both structural and otherwise. Masonry used in site work is also included, but in Division 2.</td>
<td>Nothing</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Metals</td>
<td>Light gauge metal framing for walls, roofs or floors, wood structural connectors, metal roofing, decorative metal, guard rails and hand rails. Aluminum or steel used in the manufacturing of windows and doors is included in Division 8.</td>
<td>Structural steel including steel reinforcing bars or meshes used in concrete.</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Name</td>
<td>Included in the cost calculation</td>
<td>Not included in the cost calculation</td>
<td>Notes on DHS Materials Testing</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Wood and Plastic</td>
<td>All products used in the permanent construction of the building.</td>
<td>Formwork, temporary fences, construction barriers, scaffolding, bracing, and other elements that are not part of the finished building.</td>
<td>Only applies for materials that are exposed to the interior space. If people can see from inside it you have to test it. Most structural wood products would not need to be tested: framing lumber, OSB, and plywood.</td>
</tr>
<tr>
<td>Thermal and Moisture Protection</td>
<td>All products. All insulation used in walls, roofs, floors and slabs as well as insulation used for pipes and ducts. All air barriers and vapor barriers.</td>
<td>Nothing</td>
<td>Testing required.</td>
</tr>
<tr>
<td>Doors and Windows</td>
<td>All products</td>
<td>Nothing</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Finishes</td>
<td>All products</td>
<td>Nothing</td>
<td>Everything has to be tested.</td>
</tr>
<tr>
<td>Specialties</td>
<td>All products</td>
<td>Nothing</td>
<td>Testing only required for surface mounted whiteboards and tack boards.</td>
</tr>
<tr>
<td>Equipment</td>
<td>Nothing is included.</td>
<td>All products</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Furnishings</td>
<td>Fixed casework and other built-items</td>
<td>Moveable desks, tables, chairs, cabinets and bookcases that are not in the construction contract. Generally everything that is not bolted down is excluded.</td>
<td>Testing required.</td>
</tr>
<tr>
<td>Special Construction</td>
<td>Excluded</td>
<td>All Products</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Conveying Systems</td>
<td>Excluded</td>
<td>All products</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Excluded</td>
<td>All products</td>
<td>No testing required.</td>
</tr>
<tr>
<td>Electrical</td>
<td>Excluded</td>
<td>All products</td>
<td>No testing required.</td>
</tr>
</tbody>
</table>

Material cost is the construction cost of a material excluding all labor costs, project overhead, and fees. Divide the cost of all renewable materials by the total qualifying material cost and multiply by 100 to determine the percentage of renewable materials in the construction.
Renewable Raw Materials [%] = Renewable material cost[$]/Total material cost[$] x100. Be sure to use the total qualifying materials cost for the project in the denominator of the calculation equation.

The prescriptive approach requires that 50% of all material by area from one of the listed groups meet the criteria. For example, a minimum of 50% of all floor coverings used in the school must contain 25% rapidly renewable raw materials based on weight. This calculation may use the formula above for the dollar value of the materials or may be calculated on the base unit:

Renewable Raw Materials [%] = Renewable Material Unit/ Total Material Unit x100

Documentation Requirements

Design Review Requirements

Submit construction documents containing specifications for products with anticipated rapidly renewable or organic content.

Construction Review Requirements

Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Provide cut sheets for materials claimed to have the required rapidly renewable or organically grown features. Proof of purchase and/or installation is only required if audited during construction review. CHPS recommends that records be kept in the event an audit is requested.

Resources

- CHPS High Performance Products Database: www.chps.net/products
- ISEAL Member certifying organizations: www.isealalliance.org/membership
Single Attribute – Certified Wood

Intent

Specify and install sustainably harvested wood.

Wood grown and harvested in an ecological manner is a truly sustainable material that is renewable, biodegradable, energy efficient and recyclable. The Forest Stewardship Council (FSC) guidelines help to ensure wood is grown and harvested with responsible forest management practices.

<table>
<thead>
<tr>
<th>MW 5.1 – Single Attribute – Certified Wood</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW 5.1 – Single Attribute – Certified Wood</td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement

1 point

MW 5.1

Use a minimum of 50% of wood-based materials, by cost, certified in accordance with one of the following programs. This includes, but is not limited to, framing, flooring, finishes and built in cabinetry.

- Forest Stewardship Council (FSC)
- NWFA Responsible Procurement Program (RPP) may be used instead of FSC Certification for flooring products only

Implementation

Refer to one of the wood certification programs listed above for wood building components that comply with the requirements, and incorporate them into the material selection for the project.

The National Wood Flooring Association has developed the Responsible Procurement Program that provides a management structure for wood sources to transition over time to meet the Forest Stewardship Council (FSC) standards. CHPS encourages other wood industries to develop similar improvement plans.

To perform the calculation for this criterion, determine the cost of total new wood based products and the cost of certified wood based products. Exclude all labor costs, project overhead and fees. Divide the total cost of certified wood products by the total cost of all new wood products that are incorporated into the permanent construction. Multiply this
result by 100 to determine the percentage of wood products that are certified. Be sure to use the total wood products cost for the project in the denominator of the calculation equation.

Wood Material Portion [%] =

Documentation Requirements

Design Review Requirements
Submit construction documents containing specifications for compliant wood.

Construction Review Requirements
Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Provide cut sheets for materials, and Certificates of Chain-of-Custody signed by manufacturers certifying that the product meets the required standard. Proof of purchase and/or installation is only required if audited during construction review. CHPS recommends that records be kept in the event an audit is requested.

Resources

- CHPS High Performance Products Database: www.chps.net/products
- Forest Stewardship Council Website at: www.fscus.org
Single Attribute – Materials Reuse

Intent
Specify and install re-used (salvaged) materials to limit waste and the use of raw materials.

Salvaged materials or products are reused from a previous use or application and then used in a new use or application with only superficial modification, finishing, or repair. Commonly salvaged building materials include wood flooring/paneling/cabinets, doors and frames, ironwork and decorative lighting fixtures, brick, masonry and heavy timbers.

MW 6.1 – Single Attribute – Materials Reuse

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects that obtain salvaged material from off-site. For a new building, the calculation should be performed using the total salvaged material costs and the material costs for the new building. The costs of new materials purchased for renovations should be used in the denominator of the equation for calculations in this instance.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Credit
1 point

Requirement
To receive criterion for salvaged materials, the materials may not be considered hazardous, including those containing lead based paint, asbestos, mercury, arsenic, or other harmful PBT’s.

Performance Approach: Specify re-used, salvaged or refurbished materials obtained off-site for 5% of building materials by cost. (1 points)

OR

Prescriptive Approach: Specify re-used, salvaged or refurbished materials for 25% of one (for one point) of the following major interior non-structural materials obtained off-site:

- Flooring (ft²)
- Casework (ft³) and Doors (ft²)
- Acoustical Ceiling Tile (ft²)
- Wall Finishes (ft²)
- Tile (ft²)

Implementation

Re-used materials are defined as material taken from another site and used for the same purpose at the new site, e.g. removing wood flooring from another site to use as flooring in the new school. Salvaged material may also come from the same building site but must be used for a different purpose; otherwise it is considered recycled material. For example, many schools build on the same site and demolish the old school building when the new one is completed. If the project demolished concrete structures from the old school and ground the concrete as fill for the new school, the concrete fill would be considered salvaged material. Commonly salvaged building materials include wood flooring/paneling/cabinets, doors and frames, mantels, ironwork and decorative lighting fixtures, brick, masonry, and heavy timbers.

To verify compliance with this criterion first determine the total cost of all salvaged materials if purchased new, and the total cost of all qualifying materials. Materials considered as qualifying are listed on Table 20 – Materials to be Included and Excluded from Calculations under MW 4.1.

Material cost is the construction cost of a material excluding all labor costs, project overhead, and fees. If the cost of the salvaged or refurbished material is below market valued, use the replacement cost to estimate the material value; otherwise use the actual cost to the project. The next step is to divide the total cost of salvaged materials by the total cost of all qualifying materials and then multiply by 100 to determine the salvage rate as a percentage of all qualifying materials.

Re-Used Rate [%] = Salvaged Material Cost [$]/Qualifying Material Cost [$] x 100

Hazardous re-used or salvaged materials that contain lead based paint, asbestos, mercury, arsenic or other harmful PCB’s must be avoided.
The prescriptive approach requires that 25% of all material from one of the listed groups be salvaged or refurbished for 1 point.

May apply for Innovation points (II 9,1): 25% of all material from two of the listed groups be salvaged or refurbished for 1 point. 50% of the material from one group will also earn point. For example, using salvaged ceiling tile for 55% of all ceilings in the school will earn one points. This calculation may use the formula above for the dollar value of the materials or may be calculated on the base unit:

Re-Used / Salvage Rate [%] = Salvaged Material [Unit]/ Qualifying Material [Unit] x 100

Exclude all labor costs, all mechanical and electrical material costs, and project overhead and fees. If the cost of the salvaged or refurbished material is below market value, use replacement cost to estimate the material value; otherwise use actual cost to the project. Provide the specifications for the salvaged material. Designate the CSI number, section, and page number that highlight compliance with this requirement.

Documentation Requirements

Design Review Requirements

Construction drawings must include notes regarding how salvaged materials will be used in various locations.

Construction Review Requirements

Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Proof of purchase and/or installation is only required if audited during construction review. CHPS recommends that records be kept in the event an audit is requested.

Resources

- CHPS Best Practices Manual, Volume II: Materials Selection and Research Section; Interior Surfaces and Furnishings Chapter: www.chps.net/dev/Drupal/node/31
- CHPS Product Database: www.chps.net/products
Multi-Attribute Material Selection

Intent

Specify materials that contain a third-party Environmental Product Declaration.

The intent of CHPS is to help manufactures and specifiers invest products and materials that throughout their life cycle provide minimal impact on the environment and human health.

Manufactures and specifiers that are committed to understanding their products’ impact on the environment and on human health should be recognized for their efforts.

<table>
<thead>
<tr>
<th>MW 7.1 – Multi-Attribute Material Selection</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Verification

Design Review | Construction Review | Performance Review

Requirement

Select 10 products that contain a third-party certified Environmental Product Declaration conforming to the requirements of ISO 14025 on Type III environmental declarations and/or ISO 21930 on environmental declarations of building products. Environmental Product Declarations must address the requirements found in Appendix A of the ISO standards. The Declaration must justify the omission of any impact category in narrative form within the document.

Implementation

ISO 14025 Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures

ISO 14025 establishes the principles and procedures for developing Type III environmental declarations (EPD). It specifically establishes the use of the ISO 14040 series of standards on life-cycle assessment in the development of these declarations. Type III environmental declarations prepared in accordance with this standard are intended to present quantified environmental life cycle product information to enable comparisons between products fulfilling the same function.
ISO 21930 Sustainability in building construction -- Environmental declaration of building products

Building on the framework and requirements described in ISO 14025, ISO 21930 contains specifications and requirements for type III environmental declarations (EPD) of building products. The standard recommends that Type III declarations for building products account for all life cycle stages of the product. Omissions of life cycle stages must be justified.

ISO 21930 requires that environmental information covering all life cycle stages ("cradle to grave") be subdivided into at least three life cycle stages for reporting purposes:

- product stage (raw material supply, transport to production, manufacturing: "cradle to gate")
- building stage (transport to building site, building installation, use, maintenance and repair, replacement)
- end of life stage (demolition, transport, disposal / recycling)

ISO 21930 also specifies the minimum requirements for the verifiers in terms of competence (ISO 19011:2002, clause 3.14) including:

- Knowledge of relevant industry, product and product-related environmental matters
- Process and product knowledge of the product category
- Expert on LCA and methodology for LCA work
- Knowledge of the relevant standards in the field of environmental labeling and declarations, and life cycle assessment
- Knowledge of the regulatory framework in which requirements for environmental declarations have been prepared
- Knowledge of the program for Type III environmental declarations

Documentation Requirements

Design Review Requirements
Submit construction documents specifying the use of products that meet the requirements

Construction Review Requirements
Update the CHPS Plan Sheet and submit Environmental Product Declarations for each of the 10 chosen products.
Resources

- CHPS High Performance Products Database: www.chps.net/products
- ISO 14025: www.iso.org/iso/catalogue_detail?csnumber=38131
- ISO 21930: www.iso.org/iso/catalogue_detail?csnumber=40435
- Pharos: www.pharosproject.net/about_pharos/
Building Reuse – Exterior

Reusing parts of the building can save significant money and resources, while greatly reducing the amount of construction waste. When materials are re-used, the environmental benefits start with resource savings and extend down through the entire life-cycle of the material: less energy is spent extracting, processing, and shipping the materials to the site. Depending on the amount of building re-used, school districts can significantly reduce their construction and material costs. However, the building envelope will significantly affect many important high performance areas, such as space programming, energy performance, opportunities for daylighting, and indoor air quality. In addition, care must be taken to ensure that any environmental hazards such as toxins, lead, and asbestos have been identified and addressed. Develop a list of benefits and tradeoffs, and make the decision based upon the overall, integrated design tradeoffs.

<table>
<thead>
<tr>
<th>MW 8.1 – Building Reuse – Exterior</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 points</td>
</tr>
</tbody>
</table>

Applicability

For major renovations this criterion would apply in reuse of the existing structure and shell of the building(s) being renovated.

Verification

<table>
<thead>
<tr>
<th>Design Review</th>
<th>Construction Review</th>
<th>Performance Review</th>
</tr>
</thead>
</table>

Requirement

1-2 points

MW 8.1 Reuse large portions of existing structures during renovation or redevelopment projects. Maintain at least 50% of existing building structure and shell (exterior skin and framing, excluding window assemblies). Hazardous materials that are remediated as part of the project scope AND elements requiring replacement due to unsound material condition must be excluded from the calculation of the percent maintained. Points are allocated as follows:

- Maintain 50% of existing structure and shell – 1 point
- Maintain 75% of existing structure and shell – 2 points

Implementation
Reusing parts of the building can save significant money and resources, while greatly reducing the amount of construction waste. When materials are re-used, the environmental benefits start with resource savings and extend down through the entire lifecycle of the material: less energy is spent extracting, processing, and shipping the materials to the site. Depending on the amount of building reused, school districts can reduce their construction and material costs. However, the building envelope will significantly affect many important high performance areas, such as space programming, energy performance, opportunities for daylighting, and indoor air quality. In addition, care must be taken to ensure that any environmental hazards such as toxins, lead, and asbestos have been identified and their removal addressed.

Percentage of reused structural materials (foundation, slab on grade, beams, floor and roof decks, etc.) and shell materials (roof and exterior walls) should be estimated in square feet. Average together the structural and shell reuse percentages. The average will be used to determine the overall reuse percentage for the building.

$$\text{Building Reuse (\%)} = 100 \times \left[\frac{\text{Reused (floor+ roof area + ground floor/slab)} + \text{Reused (exterior wall area excluding window assemblies)]]}}{\left[\text{Total (floor+ roof area + ground floor/slab)} + \text{Total (exterior wall area excluding window assemblies)]}\right]} \right]$$

Note: This criterion will be subject to review if design changes are made affecting the amount of existing structure and shell that are retained.

For new schools to satisfy this criterion, the new school must be in an existing (previously non-school) facility. For new buildings on an existing campus, this criterion would apply in the instance of an existing building, for instance a maintenance shed, being converted into conditioned space for classrooms, administration, or other school functions. In addition, this criterion pertains to a case where a building next to an existing school is purchased by the school district and converted into classroom or other school space.

Documentation Requirements

Design Review Requirements

Construction drawings must include demolition plans and existing site plans that verify features to remain.

Construction Review Requirements

Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Maintain pictures taken before and after of major or large reuse of structural or shell elements.

Resources

- CHPS Best Practices Manual, Volume II: Material Selection and Research Section; Interior Surfaces and Furnishings Chapter: www.chps.net/dev/Drupal/node/31
Building Reuse – Interior

There are many materials that may be reused from within a building beyond the existing shell and structural system. Interior partitions, finishes, doors and ceilings systems are among the items that can be salvaged and reused in the refurbished building. Reuses of these materials not only reduces the amount of waste sent to landfills, but can also significantly reduce material and construction costs.

MW 9.1 – Building Reuse – Interior

Intent	Increase the reuse of interior non-shell elements.		
Applicability	All projects. Refer to the applicability section of criterion MW.8, Building Reuse – Structure and Shell. See also criterion MW.6, Single Attribute – Material Reuse.		
Credit	1 point		
Verification	Design Review	Construction Review	Performance Review

Requirement

1 point
MW.9.1 Maintain 50% non-structural elements (interior walls, doors, floor coverings, and ceiling systems) in at least 50% of completed building (including additions).

Implementation

Percentage of reused, non-shell building portions will be calculated as the total area (ft²) of reused walls, floor covering, and ceiling systems, divided by the existing total area (ft²) of walls, floor covering, and ceiling systems.

Internal Building Reuse (%) = Reused Non-structural Elements [ft²] / Total Non-structural Elements [ft²] x 100

Documentation Requirements

Design Review Requirements

Construction drawings must include demolition plans and existing site plans that verify features to remain.
Construction Review Requirements

Provide the CHPS Materials Worksheet provided to CHPS Verified projects at the point of registration. Maintain pictures taken before and after of major non-structural elements to be provided if audited only.

Resources

- CHPS Best Practices Manual, Volume II: Material Selection and Research Section; Interior Surfaces and Furnishings Chapter:
 www.chps.net/dev/Drupal/node/31
Health Product Related Information Reporting for Building Products

Intent
Specify materials that have a published Health Product Declaration.

The Health Product Declaration Open Standard v1.0 is a streamlined methodology for reporting language to enable transparent disclosure of the content in a material and the related health information.

MW 10.1 – Health Product Related Information Reporting for Building Products

<table>
<thead>
<tr>
<th>MW 10.1 – Health Product Related Information Reporting for Building Products</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Requirement
MW.10.1

Performance Approach

Provide a published Health Product Declaration (HPD) with a disclosure level of 1000ppm for at least 20 permanently installed products from at least five different manufacturers in accordance with the Health Product Declaration Standard Version 1.0.

Products with an HPD with full disclosure of known hazards shall count as two products for these calculations.

OR

Prescriptive Approach

Specify that a published Health Product Declaration with a disclosure level of 1000ppm must be provided for 50% (by cost) of one of the following major interior finish or structural materials (1/2 point each).

- Adhesives & Sealants
- Paints & Coatings
- Flooring Systems
- Composite Wood and Agrifiber Products
- Furniture & Furnishings
- Ceiling & Wall Systems

Implementation

The Health Product Declaration Open Standard v1.0 is a streamlined methodology for reporting language to enable transparent disclosure of the content in a material and the related health information. The standard was developed by the Health Product Declaration Collaborative. The standard is a free resource for manufacturers to use a reporting tool.

Designers and specifiers may collect the completed HPD Template directly from the manufacturer. The Health Product Declaration does not need to be third-party certified to be applicable to this criterion. The third-party certification of a Health Product Declaration may be incorporated in future iterations of this criterion.

If a project collects only third-party certified Health Product Declarations, the team should consider applying for an innovation credit.

Definitions:

“Published” means that the HPD is publicly accessible – either published by the manufacturer on the manufacturer website with other technical data and/or in a registry such as Pharos provides.
“Complete” means the HPD has been completed as required in the HPD Standard. See the “Checklist for a Complete HPD” in the Health Product Declaration Standard v1.0. “Full Disclosure of Intentional Ingredients” means that the HPD discloses the identity of each ingredient added to the product by the manufacturer or suppliers that exists in the product as delivered for final use.

“Full Disclosure of Known Hazards” means that the HPD discloses the role and hazard traits of each ingredient but may mask the identity of certain ingredients that are restricted by IP and/or trade secret policies.

“Full disclosure of intentional ingredients” means that the HPD discloses the role and hazard traits of every ingredient in the product. This is a much higher standard that is not required by this credit, but its use is encouraged where appropriate.

Documentation Requirements

Design Review Requirements
Submit construction documents specifying the use of products that meet the requirements

Construction Review Requirements
Submit Health Product Declarations for each of the 10 chosen products. Complete the CHPS Materials Worksheet.

Resources

- Health Product Declaration Standard 1.0 www.hpdcollaborative.org/standard-documents/hpdstandard_v1_0_121215.pdf
- Health Product Declaration Standard – Template for Manufacturers www.hpdcollaborative.org/standard-documents/hpdtemplate_v1_0_121215.xlsx
Locally Produced Materials

Intent

Specify and install locally produced materials.

The use of locally manufactured materials not only aids the local economy, but it also reduces the environmental impacts from the transportation of goods.

MW 11.1 – Locally Produced Materials

<table>
<thead>
<tr>
<th>MW 11.1 – Locally Produced Materials</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 or 2 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All projects.</td>
<td>Design Review</td>
</tr>
</tbody>
</table>

Applicability

All projects.

Credit

1 point

OR

2 points

Implementation

The use of locally manufactured materials not only aids the local economy, but it also reduces the environmental impacts from the transportation of goods.

To earn this credit show that the required percentage of products, by cost, are manufactured within a 500-mile radius of the project. Include all product costs, except:

- Labor costs
- Mechanical and electrical materials
- Project overhead and fees

Note that lighting fixtures *are to be included* in the calculation. Use the following formula to determine compliance:
Local Product Percent \(\aleph \) \(\frac{\text{Cost of Local products}}{\text{Cost of all products}} \times 100\% \)

Documentation Requirements

Design Review Requirements
Submit construction documents specifying use of compliant products

Construction Review Requirements
Complete the CHPS Materials Worksheet. Maintain receipts or purchase orders to confirm compliance.

Resources
ASHRAE - A global society advancing human well-being through sustainable technology for the built environment. The Society and its members focus on building systems, energy efficiency, indoor air quality, refrigeration and sustainability within the industry.

B-20 - The term for a blend of 20% renewable bio-derived diesel fuel with 80% petroleum-based diesel fuel.

Biodiesel - A domestic, renewable fuel for diesel engines derived from natural oils like soybean oil, which meets the specifications of American Society for Testing and Materials D6751. Biodiesel is not the same thing as raw vegetable oil. It is produced by a chemical process that removes the glycerin from the oil.

Biogas - Gas, rich in methane, which is produced by the fermentation of animal dung, human sewage, or crop residues in an airtight container. It is used as a fuel to heat stoves and lamps, run small machines, and generate electricity. The residues of biogas production can be used as a low-grade organic fertilizer.

Bio-oil - A liquid created from biomass (see below) found in forestry and agricultural residues. The biomass is thermo-chemically converted to bio-oil by using processes called direct liquefaction or fast pyrolysis. The high water and oxygen content of bio-oils reduces their heating value to less than half the value of petroleum. However, bio-oils are low in viscosity and have been successfully burned in boilers, kilns, turbines, and diesel engines.

Biomass - Any biological material that can be used as fuel. Biomass fuel is burned or converted in systems that produce heat, electricity, or both. In this document, biomass-fired systems refer to systems that are fueled by clean wood chips from forestry or saw mill operations.

Brownfields - Industrial or commercial property that is abandoned or underused, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.

CSI - Construction Specifications Institute.

CHPS - Collaborative for High Performance Schools.

COMcheck - Software developed by the U.S. DOE to help commercial projects demonstrate compliance with all commercial energy code requirements for envelope, lighting, and mechanical systems. For more information, see http://www.energycodes.gov/comcheck/.

Commissioning - A systematic process of ensuring that all building systems perform interactively according to the contract documents, the design intent, and the schools operational needs. Commissioning involves three phases: pre-design, construction, and warranty.

Commissioning plan - A plan that includes a list of all equipment to be commissioned, delineation of roles for each of the primary commissioning participants, and details on the scope, timeline, and deliverables throughout the commissioning process.

Cool roof - A roof that reflects most of the sun’s energy instead of absorbing it into the interior spaces below.
Daylighting - The practice of placing windows and reflective surfaces so that the natural light of day provides effective internal illumination. Optimize the daylighting design to minimize glare and eliminate direct-beam light in the classroom and use daylighting controls designed to dim or turn off electric lights when sufficient daylight is available.

dBA - A measure of the level of sound expressed in units of “decibels”. The application of the “A-weighted filter” de-emphasizes low-frequency and very high-frequency sound in a manner similar to human hearing.

Design-build - A construction-project delivery process in which a single entity assumes the obligation of furnishing the design, supervision, and construction services required to complete a project.

DOE-2 - Software that was developed by the U.S. DOE to predict the fuel consumption (both electric and fossil fuel) of a building based on its design. Later iterations include DOE 2.2, a more advanced form of the original software.

DOE-2.1E - An updated version of DOE-2 software.

e-QUEST - (QUick Energy Simulation Tool) - Sophisticated software that allows for detailed energy analysis of a designed building. It also allows users to build 2-D and 3-D displays of the building geometry.

ENERGY STAR - A program that maintains a database of compliant manufacturers and products. Partial list of products include computers, monitors, copy machines, water coolers, printers, scanners, refrigerators, and washing machines.

Energy Use Intensity (EUI) - EUI expresses a building’s energy use as a function of its size or other characteristics. It’s calculated by dividing the total energy consumed by the building in one year (measured in kBTu or GJ) by the total gross floor area of the building.

Electromagnetic field (EMF) - The lowest EMF frequencies (longest wave length) are referred to as Extremely Low Frequency or ELF. Higher frequencies (shorter wave length) are referred to as Radio Frequency (RF) or Microwaves.

Flicker - A relative measure of the cyclic variation in output of a light source (i.e. percent modulation). Also sometimes referred to as the “modulation index.”

Gray water system - Water that has been used in showers, sinks, and laundry machines that may be reused for other purposes, especially landscape irrigation. Toilet water is not used in this system.

Greenfields - Parcels of land not previously developed beyond that of agriculture or forestry use. The opposite of brownfield.

Green Roof/Wall - A roof or wall that utilizes soil-rooted vegetation to absorb water and light that would normally reach the building itself.

Heat island - An effect caused when exterior surfaces absorb the sun’s energy and heat the air near the ground. On a school site, rising temperatures make the school’s air conditioning work harder, increasing energy cost.

HEPA filters - High Efficiency Particulate Air filters

Integrated pest management (IPM) - A sustainable approach to managing pests that minimizes economic, health, and environmental risks.

Integrated design - The consideration and design of all building systems and components. It brings together the various disciplines involved in designing a building and reviews their
recommendations as a whole. It also recognizes that each discipline’s recommendation has an impact on other aspects of the building project.

Life cycle costing - A means of calculating and comparing different designs, equipment, and products to identify the best investment.

Local Educational Authority (LEA) - LEAs include county offices of education, school districts, charter schools, and state special schools.

Minimum Efficiency Reporting Value (MERV) - MERV is a rating system for HVAC system air filters. ASHRAE standards use the MERV. The higher rating indicates increased particle capture efficiency and the capture of smaller particles.

Recycled content - Materials that have been recovered or otherwise diverted from the solid waste stream, either during the manufacturing process (pre-consumer) or after consumer use (post-consumer).

OSHA - Occupational Safety and Health Administration.

Operations and maintenance manual - Provides detailed operations and maintenance information for all equipment and products used in the school.

Operations and maintenance training - Provides a short introduction on operations and maintenance of equipment and products for all school staff and then features hands-on workshops for facility personnel.

Potable water - Water of sufficient quality to serve as drinking water. Northeast Collaborative for High Performance Schools Protocol energy & resource solutions 138

PowerDOE - Software that allows users to detail the predicted energy consumption of a building. Like e-QUEST, it is very graphical in its presentation of both the building description and the display of results. It includes 2-D and 3-D displays of the building geometry.

Rain water collection system - A system that supplies water year round by harvesting both potable and non-potable water.

Rapidly renewable materials - Materials that substantially replenish themselves faster than traditional extraction demand (e.g., planted and harvested in less than a 10-year cycle), do not result in significant biodiversity loss or increased erosion, positively impact air quality, and can be sustainably managed. Products in this category include, but are not limited to, bamboo products, wheat grass cabinetry, oriented strand board, and other wood products made from fast-growing pine trees.

Responsibly produced - Materials that are extracted, harvested, or manufactured in an environmentally friendly manner (includes certified wood products).

Reverberation time - The time in seconds it takes for the sound level to decrease by 60 decibels after the source of the sound has been abruptly interrupted.

Salvaged or reused - Materials that are refurbished and used for a similar purpose rather than processed or remanufactured for different use.

Source Energy: Approach for evaluating energy that represents the total amount of fuel that is required to operate a building and incorporates all transmission, delivery, and production losses, thereby enabling a complete assessment of energy efficiency in a building.

Thermal comfort - A condition of mind that expresses satisfaction with the surrounding environment. It is determined by taking into account environmental factors (such as humidity, A/C, heat) and personal factors (what an occupant is wearing).
VisualDOE - Energy modeling software that is based on DOE-2 and allows users to evaluate energy and demand impacts of design alternatives.

VOC - Volatile Organic Compounds

Wetlands - Areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support vegetation adapted for life in saturated soil. Wetlands generally include swamps, marshes, bogs, and other similar areas.

zEPI: ZERO ENERGY PERFORMANCE INDEX - A scale representing the ratio of energy performance of the proposed design compared to the average energy performance of buildings relative to a benchmark year of 2000, with similar occupancy, operation schedule and climate. The ratio is multiplied times 100 such that 100 represents a building that uses the same amount of energy as the 2000 average and zero represents a zero net energy building.

ZNE: Zero Net Energy - A building design concept which aims to have a building use no more energy than it produces.
Use this scorecard to track expected scores. Note that prerequisites have points associated with them even though they are required. This enables project teams to talk more meaningfully about the effort being put into each section of the criteria. Prerequisite point columns are also highlighted for reference. Mark each credit as ready for review by using the appropriate column for each phase of the review.

Key:
P - Prerequisite; PS - CHPS Plan Sheet Required; CD - Construction Documents Required; A - Attachment Required

Integration and Innovation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Points Possible</th>
<th>Points Targeted</th>
<th>Points Claimed</th>
<th>Responsible Team Member</th>
<th>Design/Review Requirements</th>
<th>Ready for Design Review</th>
<th>Construction Documents Required</th>
<th>Ready for Construction Review</th>
<th>Performance Review Required</th>
<th>Ready for Performance Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1.0</td>
<td>Integrated Design</td>
<td>P</td>
<td>3</td>
<td>CO</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1.1</td>
<td>Enhanced Integrated Design</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 2.1</td>
<td>District Level Commitment</td>
<td></td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 3.1</td>
<td>School Master Plan</td>
<td></td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 4.1</td>
<td>High Performance Transition Plan</td>
<td></td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 5.0</td>
<td>Educational Display</td>
<td>P</td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 5.1</td>
<td>Demonstration Area</td>
<td></td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 5.2</td>
<td>Educational Integration</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 7.1</td>
<td>Climate Change Action / Carbon Footprint Reporting</td>
<td></td>
<td>3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 8.0</td>
<td>Crime Prevention through Environmental Design</td>
<td>P</td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 9.1</td>
<td>Innovation</td>
<td></td>
<td>4</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 250

Operations & Metrics

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Points Possible</th>
<th>Points Targeted</th>
<th>Points Claimed</th>
<th>Responsible Team Member</th>
<th>Design/Review Requirements</th>
<th>Ready for Design Review</th>
<th>Construction Documents Required</th>
<th>Ready for Construction Review</th>
<th>Performance Review Required</th>
<th>Ready for Performance Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM 1.0</td>
<td>Facility Staff and Occupant Training</td>
<td>P</td>
<td>3</td>
<td>CO</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 2.1</td>
<td>Post Occupancy Transition</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 3.0</td>
<td>Performance Benchmarking</td>
<td>P</td>
<td>2</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 4.1</td>
<td>High Performance Operations</td>
<td></td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 5.0</td>
<td>Systems Maintenance Plan</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 6.0</td>
<td>Indoor Environmental Management Plan</td>
<td></td>
<td>2</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 7.1</td>
<td>Green Cleaning</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 8.0</td>
<td>Integrated Pest Management</td>
<td>P</td>
<td>1</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 9.0</td>
<td>Energy Conservation Measures</td>
<td>P</td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 10.1</td>
<td>Green Power</td>
<td></td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 11.0</td>
<td>ENERGY STAR Equipment and Appliances</td>
<td>P</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM 12.1</td>
<td>Computerized Maintenance Management System</td>
<td></td>
<td>1</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal:

Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Title</th>
<th>Prerequisite</th>
<th>Points Possible</th>
<th>Points Targeted</th>
<th>Points Claimed</th>
<th>Responsible Team Member</th>
<th>Design/Review Requirements</th>
<th>Ready for Design Review</th>
<th>Construction Documents Required</th>
<th>Ready for Construction Review</th>
<th>Performance Review Required</th>
<th>Ready for Performance Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 1.0</td>
<td>HVAC Design - ASHRAE 62.1</td>
<td>P</td>
<td>8</td>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 1.1</td>
<td>Enhanced Filtration</td>
<td></td>
<td>2</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 1.2</td>
<td>Dedicated Outdoor Air System</td>
<td></td>
<td>3</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 2.0</td>
<td>Pollutant and Chemical Source Control</td>
<td>P</td>
<td>2</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 2.1</td>
<td>Post Construction Indoor Air Quality</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 7.0</td>
<td>Low Emitting Materials</td>
<td>P</td>
<td>2</td>
<td>PS</td>
<td>CD</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 7.1</td>
<td>Additional Low Emitting Materials</td>
<td></td>
<td>5</td>
<td>PS</td>
<td>CD</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 8.1</td>
<td>Low Radon</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 9.1</td>
<td>Thermal Comfort - ASHRAE SS</td>
<td></td>
<td>4</td>
<td>PS</td>
<td>CD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 10.1</td>
<td>Individual Controllability</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 10.2</td>
<td>Controllability of Systems</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 11.0</td>
<td>Daylighting: Glare Protection</td>
<td>P</td>
<td>4</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 11.1</td>
<td>Daylight Availability</td>
<td></td>
<td>5</td>
<td>PS</td>
<td>CD</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 12.0</td>
<td>Views</td>
<td></td>
<td>3</td>
<td>PS</td>
<td>CD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 12.1</td>
<td>Electric Lighting Performance</td>
<td></td>
<td>3</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 13.0</td>
<td>Superior Electric Lighting Performance</td>
<td></td>
<td>5</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 14.0</td>
<td>Auditory Performance</td>
<td>P</td>
<td>7</td>
<td>PS</td>
<td>CD</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 14.1</td>
<td>Enhanced Auditory Performance</td>
<td></td>
<td>6</td>
<td>PS</td>
<td>CD</td>
<td>PS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 15.1</td>
<td>Low-EMF Wiring</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 15.2</td>
<td>Low-EMF Best Practices</td>
<td></td>
<td>2</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ 16.1</td>
<td>High Intensity Fluorescent Fixtures</td>
<td></td>
<td>1</td>
<td>CD</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal:
Energy	EE 1.0	Energy Performance	P	6	CD	A	
Energy	EE 1.1	Superior Energy Performance	40	CD	A		
Energy	EE 2.1	Zero Net Energy Capable	3	CD			
Energy	EE 3.0	Commissioning Qualifications	P	4	CD	A	
Energy	EE 3.1	Additional Commissioning Qualifications	1	CD	A		
Energy	EE 3.2	Building Envelope Commissioning	1	CD	A		
Energy	EE 3.3	Enhanced Commissioning	1	CD	A		
Energy	EE 3.4	Environmentally Preferable Refrigerants	P	1	CD		
Energy	EE 5.1	Energy Management System	2	CD			
Energy	EE 5.2	Advanced Energy Management System and Submetering	2	CD			
Energy	EE 6.1	Natural Ventilation and Energy Conservation Interlocks	2	PS	CD	A	
Energy	EE 7.0	Local Energy Efficiency Incentive and Assistance	P	2	A		
Energy	EE 8.1	Variable Air Volume Systems	1	CD			
Energy	EE 9.1	Renewable Energy Performance Monitoring	1	CD	A		
Energy	EE 10.1	Electric Vehicle Charging	1	CD	A		
Water	WE 1.0	Minimum Reduction in Indoor Potable Water Use	P	5	PS	CD	A
Water	WE 2.1	Reduce Potable Water Use for Sewage Conveyance	4	PS	CD	A	
Water	WE 3.0	Irrigation and Exterior Water Budget - Use Reduction	P	4	CD	A	
Water	WE 4.1	Reduce Potable Water Use for Non-Recreational Landscaping	2	CD	A		
Water	WE 5.1	Reduce Potable Water Use for Recreational Landscaping	1	CD	A		
Water	WE 6.0	Irrigation Systems Commissioning	P	1	A		
Water	WE 7.1	Rainwater Collection and Storage	2	PS	CD	A	
Water	WE 8.1	Water Management System	2	CD	A		
Sites	SS 1.0	Site Selection	P	2	CD	A	
Sites	SS 2.1	Environmentally Sensitive Land	3	PS	CD	A	
Sites	SS 3.1	Minimize Site Stabilization	1	PS	CD		
Sites	SS 4.1	Construction Site Runoff Control and Sedimentation	1	PS	CD	A	
Sites	SS 5.1	Post Construction Stormwater Management	1	PS	CD	A	
Sites	SS 6.1	Central Location	2	PS	A		
Sites	SS 7.1	Located Near Public Transportation	1	PS	A		
Sites	SS 8.1	Joint Use of Facilities	1	CD	A		
Sites	SS 9.1	Human-Powered Transportation	2	PS	CD	A	
Sites	SS 10.1	Reduce Heat Islands - Landscaping and Sites	1	CD			
Sites	SS 11.1	Reduce Heat Islands - Cool Roofs and Green Walls	1	PS	CD	A	
Sites	SS 12.1	Avoid Light Pollution and Unnecessary Lighting	2	PS	CD	A	
Sites	SS 13.1	School Gardens	1	CD	A		
Sites	SS 14.1	Use Locally Native Plants for Landscape	1	PS	CD	A	
Sites	SS 15.0	Site and Building Best Practices	P	2	PS	CD	A
Materials and Waste Management	MW 1.0	Storage and Collection of Recyclables	P	2	CD	A	
Materials and Waste Management	MW 2.0	Minimum Construction Site Waste Management	P	2	CD	A	
Materials and Waste Management	MW 2.1	Construction Site Waste Management	2	CD	A		
Materials and Waste Management	MW 3.1	Single Attribute - Recycled Content	2	CD	A		
Materials and Waste Management	MW 4.1	Single Attribute - Rapidly Renewable Materials	1	CD	PS	A	
Materials and Waste Management	MW 5.1	Single Attribute - Certified Wood	1	CD	PS	A	
Materials and Waste Management	MW 6.1	Single Attribute - Materials Reuse	1	CD	PS	A	
Materials and Waste Management	MW 7.1	Multi-Attribute Materials Selection	2	PS	CD	PS	A
Materials and Waste Management	MW 8.1	Building Reuse - Exterior	2	CD	PS	A	
Materials and Waste Management	MW 9.1	Building Reuse - Interior	1	CD	PS	A	
Materials and Waste Management	MW 10.1	Health Product Related Information Reporting	1	CD	PS	A	
Materials and Waste Management	MW 11.1	Locally Produced Materials	2	CD	PS	A	

Subtotal | 250

Total | 250
Rhode Island Addendum

Verification in Rhode Island will follow the requirements provided in the NE-CHPS. The Rhode Island Green Buildings Act requires that all new construction projects over 5,000 gsf, and all renovation projects over 10,000 gsf, constructed by a “public agency”... be designed and constructed to the LEED Certified or equivalent high performance green building standard. These rules are clarified by implementation regulations stating that LEED Equivalent Standards include High Performance Schools Standards, as required by the Rhode Island Department of Elementary and Secondary Education, as a condition of construction reimbursement. Additionally, School Construction Regulations established by the Rhode Island Department of Education (RIDE) include a 2% - 4% incentive for approved projects that demonstrate both energy and water efficiency cost reduction beyond the minimum school construction threshold requirements as defined in NE-CHPS. The Energy and Water Efficiency Inventive stipulates: Districts are eligible for 2% additional reimbursement funds for projects that achieve energy efficiency 30% above the RI Building Energy Code; 3% additional reimbursement for energy efficiency 40% above the RI Building Energy Code; and 4% additional reimbursement for energy efficiency 50% above the RI Building Energy Code. For purposes of Rhode Island School construction regulations, this addendum clarifies that the term “RI Building Energy Code” henceforth shall be defined as the 2009 International Energy Conservation Code.

Projects utilizing NE-CHPS should refer to the table below in order to determine their performance relative to the RI Building Energy Code. This is because school construction incentives shall be granted relative to the 2009 International Energy Conservation Code (IECC), but NE-CHPS is based on the 2012 version. The 2012 IECC is approximately 15% more stringent than the 2009 version.

<table>
<thead>
<tr>
<th>Points</th>
<th>NE-CHPS Reduction Requirement (IECC 2012)</th>
<th>zEPI Equivalent</th>
<th>Reduction from RI Code (Anchored to IECC 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>10% minimum reduction</td>
<td>51</td>
<td>23.5%</td>
</tr>
<tr>
<td>12 points</td>
<td>20% minimum reduction</td>
<td>46</td>
<td>32%</td>
</tr>
<tr>
<td>18 points</td>
<td>30% minimum reduction</td>
<td>40</td>
<td>40.5%</td>
</tr>
<tr>
<td>22 points</td>
<td>40% minimum reduction</td>
<td>34</td>
<td>49%</td>
</tr>
<tr>
<td>25 points</td>
<td>50% minimum reduction</td>
<td>29</td>
<td>57.5%</td>
</tr>
<tr>
<td>28 points</td>
<td>60% minimum reduction</td>
<td>23</td>
<td>66%</td>
</tr>
<tr>
<td>31 points</td>
<td>70% minimum reduction</td>
<td>17</td>
<td>74.5%</td>
</tr>
<tr>
<td>34 points</td>
<td>80% minimum reduction</td>
<td>11</td>
<td>83%</td>
</tr>
<tr>
<td>37 points</td>
<td>90% minimum reduction</td>
<td>6</td>
<td>91.5%</td>
</tr>
<tr>
<td>40 points</td>
<td>100% minimum reduction (zero net-energy school)</td>
<td>0</td>
<td>100%</td>
</tr>
</tbody>
</table>
To be more specific, the cutoffs for each level of additional reimbursement funds are as follows:

<table>
<thead>
<tr>
<th>Additional Reimbursement Funds</th>
<th>Reduction from RI Code (Anchored to IECC 2009)</th>
<th>Reduction from NE-CHPS (Based upon IECC 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>30%</td>
<td>18% (11 points)</td>
</tr>
<tr>
<td>3%</td>
<td>40%</td>
<td>30% (18 points)</td>
</tr>
<tr>
<td>4%</td>
<td>50%</td>
<td>42% (22 points)</td>
</tr>
</tbody>
</table>

Rhode Island’s School Construction Regulations and further information can be found at: http://www.ride.ri.gov/Finance/Funding/construction/

RI High Performance Schools Scorecard Addendum

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 2.1 - District Level Commitment</td>
<td>Prerequisite</td>
<td>CHPS membership is available at no cost.</td>
</tr>
<tr>
<td>II 3.1 Facilities Master Plan</td>
<td>Prerequisite</td>
<td>Also required for RIDE “Necessity of School Construction Application”</td>
</tr>
<tr>
<td>II 4.1 High Performance Transition Plan (HPTP)</td>
<td>Prerequisite</td>
<td>Local Educational Authority (LEA) should notify RIDE (emails below), not CHPS, of plan’s progress</td>
</tr>
<tr>
<td>II. 6.1 Educational Integration</td>
<td>Prerequisite</td>
<td>Should align with Rhode Island Environmental Educator’s Association’s School as a Tool Protocol</td>
</tr>
<tr>
<td>OM 12.1 Computerized Maintenance Management System</td>
<td>Prerequisite</td>
<td></td>
</tr>
<tr>
<td>EQ 8.0 Radon</td>
<td>Prerequisite</td>
<td>State Law Requires</td>
</tr>
<tr>
<td>EE 7.0 Energy Efficiency Incentives</td>
<td>Additional Resource</td>
<td>Link to: Rhode Island’s incentive/rebate programs</td>
</tr>
<tr>
<td>EE Energy/Water Efficiency</td>
<td>Demonstrate 30% energy and water reduction beyond code</td>
<td>Eligible for 2% additional reimbursement funds</td>
</tr>
<tr>
<td>EE Energy/Water Efficiency</td>
<td>Demonstrate 40% energy and water reduction beyond code</td>
<td>Eligible for 3% additional reimbursement funds</td>
</tr>
<tr>
<td>EE Energy/Water Efficiency</td>
<td>Demonstrate 50% energy and water reduction beyond code</td>
<td>Eligible for 4% additional reimbursement funds</td>
</tr>
</tbody>
</table>
Rhode Island School as a Tool Protocol
SCHOOL/DISTRICT Agreement

By this agreement, the SCHOOL/DISTRICT commits to implementing the School as a Tool / RI Sustainable Schools Protocol, pursuant to the RIDE School Construction Program.

The SCHOOL/DISTRICT has extensive infrastructure ideal for the School as a Tool protocol. The school itself can become a hands-on teaching tool to enable instruction about the benefits of high-performance design as well as to help prepare an environmentally literate student body. According to the RI Environmental Literacy Plan (2011), an environmentally literate student is one who has “the opportunity to become aware, inquire, investigate, and develop responsible citizenship action plans or behavior regarding local, national, or global environmental issues.” In preparing environmentally literate students, RI schools and communities also “have the opportunity to concurrently improve students’ proficiency” in core academic areas.

The SCHOOL/DISTRICT will develop the School as a Tool program by integrating sustainability through curriculum, campus, and community as outlined in the five (5) components below.

I. Establish a Green Team
The SCHOOL/DISTRICT will assemble a motivated and empowered group of stakeholders including, but not limited to, principals, teachers, facility managers, students, nurses, and/or parents. The Green Team will:
- adopt an environmental vision statement specific to the SCHOOL/DISTRICT.
- plan and develop an action plan to be shared with all stakeholders.
- meet on a regular basis to implement, and monitor the action plan.
- coordinate and direct School as a Tool related initiatives and activities.

Resources for establishing a green team:
- Green Schools Initiative: http://greenschools.net/
- Healthy Schools Campaign: http://www.greencleanschools.org/
- RIC Green Initiatives: http://www.ric.edu/green/
- URI Green Team: http://www.uri.edu/sustainability/greenteams.php
- The Green Team (Massachusetts): http://www.thegreenteam.org/
- Eco-Schools: http://www.eco-schools.org/

II. Conduct a School Environment Survey
Students and teachers will engage in data collection to acquire information about the SCHOOL/DISTRICT that will inform their forthcoming decisions.
- The survey might collect data on: greenhouse gas emissions; water quality and conservation; waste production and disposal; recycling; transportation methods; pest management; air quality; cleaning products and chemical management; physical fitness and outdoor time; food and nutrition; environmental education activities; and more.

Resources for conducting a school environment survey:
- RI Green Ribbon Schools Online Application: http://www.ride.ri.gov/finance/funding/construction/schoolconstruction.aspx
III. Integrate Environmental Literacy into the Existing Curriculum

Using the school as a hands-on laboratory and integrating environmental education activities into science, math, civics and government, engineering and technology, language arts, art, and elective courses provides abundant opportunity for real world problem solving and instruction on the benefits of the SCHOOL/DISTRICT’s sustainable building. The following section describes five (5) key elements in the School as a Tool program, each followed by examples of how the SCHOOL/DISTRICT may integrate them into the curriculum.

- Integrate environmental and sustainability concepts throughout the curriculum. Examples include:
 - creating environmental education units and lesson plans aligned to state and national standards (i.e. Common Core State Standards, Grade Level Expectations/Grade Span Expectations, etc.).
 - using sustainability and the environment as a context for learning science, technology, engineering and mathematics thinking skills and content knowledge.
 - establishing opportunities for interdisciplinary learning about the key relationships between environmental, energy and human systems.
 - allowing students to undertake study of environmental and sustainability themes such as energy, water, forest, pollution, and waste.
 - providing real-world contexts and relevant issues by using the facility as a teaching tool for indoor environmental quality, energy efficiency, renewable energy, and more.
 - involving the entire school in initiatives such as saving water, recycling, and saving energy.
 - using sustainability and the environment as a context for learning green technologies and career pathways.
 - offering environmental science courses.

- Integrate environmental literacy into student exhibitions, portfolios, and course assessments. Examples include:
 - incorporating environmental and sustainability concepts into classroom based and school wide assessments.
 - allowing students’ civic and community engagement projects to focus on environmental and sustainability topics.
 - creating an environmental or sustainability literacy graduation requirement.

- Provide and/or promote professional development opportunities in environmental and sustainability education for all teachers.

- Promote outdoor education and time spent in nature. Examples include:
 - using the school yard, parks, and/or field trips to engage students in meaningful outdoor learning experiences at every grade level.
 - using outdoor settings to teach an array of subjects in contexts, engage the broader community, and develop civic skills.

- Increase alignment to North American Association for Environmental Education’s (NAAEE) Guidelines for Learning.

Resources for integrating environmental literacy into the existing curriculum:

- Green Strides Resources: http://www2.ed.gov/about/educ/green-strides/resources.html
- PLT Green Schools! Program: http://www.plt.org/about-project-learning-tree-greenschools-program
- Green Education Foundation: http://www.greeneducationfoundation.org/
IV. Inform and Involve the Community

The SCHOOL/DISTRICT will facilitate communication about the School as a Tool program within and outside of the whole school community. Such activities can include:

- partnering with external organizations to implement the School as a Tool program.
- operating an information kiosk in the community where information pertaining to the School as a Tool program is regularly updated.
- developing a website/webpage to update the community on the School as a Tool program.
- organizing a semi-annual or annual event to showcase the ways in which students are involved in the School as a Tool program.
- conducting educational workshops for school personnel, parents, students, and/or community members.

Resources for informing and involving the community:

- RI Environmental Education Association: http://rieea.org/
- Sustainable Schools Network: http://www.apeiron.org/new/education/rissn.php
- Earth Day Network: http://edu.earthday.org/

V. Monitor and Evaluate Progress

By gathering and analyzing information and data initiated through the School as a Tool program, the SCHOOL/DISTRICT will be able to measure progress, inform future decisions, and even promote the program when applying for recognition or funding. Such activities can include:

- conducting an annual school survey of teachers, students, parents, and other project partners.
- facilitating an annual meeting or seminar to obtain feedback from project partners.

Resources for monitoring and evaluating progress:

- School Survey Templates: http://www.websurveymaster.com/1-School-Survey-templates-

VI. Apply to the Green Ribbon Schools Program

The SCHOOL/DISTRICT will apply for a Green Ribbon Schools Award, a national program that recognizes schools that save energy, reduce costs, feature environmentally sustainable learning spaces, protect health, foster wellness, and offer environmental education to boost academic achievement and community engagement.

Resources for applying to the Green Ribbon Schools Program:

- Online Application: http://www.ride.ri.gov/finance/funding/construction/schoolconstruction.aspx

Timeline

By _______________________, the SCHOOL/DISTRICT will submit an environmental vision statement, action plan, roster, and meeting schedule.

By _______________________, the SCHOOL/DISTRICT will submit the results from the school environment survey.

By _______________________, the SCHOOL/DISTRICT will submit a preliminary proposal for how it will integrate environmental literacy into the curriculum; inform and involve the community; and monitor and evaluate progress.
By ______________________, the SCHOOL/DISTRICT will submit a final program description for how it will integrate environmental literacy into the curriculum; inform and involve the community; and monitor and evaluate progress.

By ______________________, the SCHOOL/DISTRICT will implement the approved program.

By ______________________, the SCHOOL/DISTRICT will apply to the Green Ribbons School program.

In addition, the SCHOOL/DISTRICT will welcome the opportunity to be active participants in sustainable schools opportunities in the future. These activities might include participation in sustainable schools meetings or hosting RIDE-sponsored events such as sustainable schools meetings.

__
Signature of SCHOOL/DISTRICT authorized representative

__
Date

__
Print name of SCHOOL/DISTRICT authorized representative

__
Title of SCHOOL/DISTRICT authorized representative

__
SCHOOL/DISTRICT
Massachusetts Addendum
As described in the March 19, 2014 Board Memorandum and recently updated at the January 14, 2015 Board meeting, the Massachusetts School Building Authority (the “MSBA”) has performed an evaluation of current practices associated with its Sustainable Building Design Guidelines. This memorandum provides a summary of these efforts and makes recommendations for related policy updates that will affect all new construction and major renovation/addition Core Program projects requesting Preferred Schematic approval on or after the July 29, 2015 MSBA Board meeting.

Since its formation, the MSBA has been an advocate of “Green” sustainable building design for all MSBA-funded public K-12 school buildings. MSBA guidelines include a base level of sustainable requirements for all projects and also include provisions that award a school district an additional 2% of a project’s eligible costs if the project achieves higher levels of sustainability under the established criteria. Staff monitor revisions to building and energy efficiency codes and have updated the sustainable criteria accordingly, and as follows:

- From the outset, the MSBA demonstrated a commitment to sustainable building design by adopting the 2006 version of Massachusetts Collaborative for High Performance Schools (“MA-CHPS”) Massachusetts High Performance Green Schools Guidelines, as administered by the Collaborative for High Performance Schools (“CHPS”) organization.

- In March 2010, the MSBA further developed the Sustainable Building Design Guidelines by establishing a minimum standard for all Core Program projects using either the 2009 MA-CHPS or 2009 United States Green Building Council LEED for Schools (“USGBC LEED-S”) criteria.

- In March 2014, the MSBA recommended an update to require projects that submit for Preferred Schematic approval after the June 4, 2014 MSBA Board meeting to register with United States Green Building Council (“USGBC”) LEED-S version 4. At the time of this recommendation, updates to the Massachusetts Collaborative for High Performance Schools (“MA-CHPS”) guidelines and the Massachusetts “Stretch Energy Code, were still under review by others and, therefore, staff recommended adoption of the revised LEED-S criteria as its only sustainable criteria until such time that the other updates were final.

As of the January 2015 Board meeting, 107 Core Program projects have registered with either CHPS or USGBC, with 39 projects completed. The total additional reimbursement from MSBA through this program to date is $92.1 million, averaging over a million dollars per project.
Discussion

State and federal standards continue to require increasing levels of energy efficiency with a goal of “Zero Net Energy Buildings” by 2030. Massachusetts adopted the 2012 International Energy Conservation Code (“IECC”) as part of the Massachusetts State Building Code increasing the energy efficiency standard over the prior code. In response to the nationwide increase in code standards, CHPS and USGBC have phased in compliance with updated sustainable criteria. Potential updates to the Massachusetts “Stretch Energy Code” may be forthcoming, pending the outcome of ongoing efforts by the State to update current energy efficiency standards. However, if and when proposed changes may be implemented is unknown at this time.

In response to these increased standards, USGBC introduced LEED-Version 4 for schools in 2013. The Collaborative for High Performance Schools did not update its 2009 MA-CHPS criteria but did introduce Northeast CHPS (“NE-CHPS”) Version 3 in 2014. These revisions establish levels of efficiency and sustainability well above previous standards.

With assistance from one of its consultants, MSBA staff assessed these changes by performing the following tasks:

- Reviewed the new 2012 IECC, LEED-S Version 4 and NE-CHPS Version 3.0 including comparisons to previous editions.
- Verified equitable levels of achievement and requirements between the new NE-CHPS and LEED-S criteria.
- Conducted outreach meetings with design consultants and related organizations to receive feedback from professionals that have direct experience with these sustainable requirements.
- Recommended updated minimum “best practices” standards for all Core Program projects and potential additional reimbursement for Districts that elect to achieve higher levels of energy efficiency.

The MSBA has completed its comparison of these sustainable standards, including a recommendation to adopt NE-CHPS 3.0 as an alternative system to LEED-S V4 as a measure of sustainability, and to continue using the LEED-S criteria with increased levels of energy efficiency to match the minimum standards of NE-CHPS 3.0. By allowing school districts and design teams an option to choose either system, the MSBA will continue to recognize two approaches to achieve its commitment to sustainable schools based on the needs of the individual project. Although MSBA policy places emphasis on increased energy efficiencies, the sustainable design elements promoted by this policy also support more efficient transportation costs, lower water consumption, reduced use of materials, and encourages a quality educational indoor environment.

Recommendation

As presented at the Facilities Assessment Subcommittee on March 11, 2015, recommendations for this proposed policy require that all new construction and major renovation/addition Core Program projects funded by the MSBA participate in the High Efficiency Green School Program by achieving, at a minimum, and for no additional reimbursement, the levels of certification noted below, including energy efficiencies of 10% above the current building code. Districts that
attempt 2% additional reimbursement points through this program will be required to achieve higher levels of sustainable achievement, including energy efficiency at approximately 15% above the current building code (with considerations for addition/renovation vs. new construction).

MSBA staff recommends that all new construction and major renovation/addition Core Program projects requesting Preferred Schematic approval on or after July 29, 2015, must comply with one of the four following options:

- Using LEED-S V4, for no additional reimbursement, achieve a minimum of “Certified” (40 points), including a minimum of 3 points in Energy & Atmosphere (“EA”) Credit “Optimize Energy Performance.”
 OR;
- Using NE-CHPS 3.0, for no additional reimbursement, achieve a minimum of “Verified” (110 points for new construction or 85 points for addition/renovation), including 6 points in Energy Efficiency (“EE”) Prerequisite #1.0.
 OR;
- Using LEED-S V4, for 2% additional reimbursement points, achieve a minimum of “Silver” (50 points), including a minimum of 6 points in EA Credit “Optimize Energy Performance.”
 OR;
- Using NE-CHPS 3.0, for 2% additional reimbursement, achieve a minimum of “Verified” (110 points for new construction or 85 points for addition/renovation), including a minimum of 9 points in EE Credit #1.1.

The requirement to comply with the current policy remains in effect for all Core Program projects that request Preferred Schematic approval before the July 29, 2015 MSBA Board meeting.

MSBA Sustainable Schools Policy

(In addition to 963 CMR, 2.04 General Site and School Construction Standards)

<table>
<thead>
<tr>
<th>Minimum Requirements</th>
<th>Current Policy</th>
<th>Proposed Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using LEED-S V4, for no additional reimbursement, achieve a minimum of “Certified” (40 points).</td>
<td>Using LEED-S V4, for no additional reimbursement, achieve a minimum of “Certified” (40 points), including a minimum of 3 points in EA Credit “Optimize Energy Performance.” OR, Using NE-CHPS 3.0, for no additional reimbursement, achieve a minimum of “Verified” (110 points for new construction or 85 points for addition/renovation), including 6 points in EE Prerequisite #1.0.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Reimbursement</th>
<th>Current Policy</th>
<th>Proposed Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using LEED-S V4, for 2% additional reimbursement, achieve a minimum of “Silver” (50 points), including a minimum of 6 points in EA Credit “Optimize Energy Performance.”</td>
<td>Using LEED-S V4, for 2% additional reimbursement points, achieve a minimum of “Silver” (50 points), including a minimum of 6 points in EA Credit “Optimize Energy Performance.” OR, Using NE-CHPS 3.0, for 2% additional reimbursement, achieve a minimum of “Verified” (110 points for new construction or 85 points for addition/renovation), including a minimum of 9 points in EE Credit #1.1.</td>
<td></td>
</tr>
</tbody>
</table>
The MSBA will continue to monitor advancements in the industry and the effectiveness of MSBA policy to support the sustainable qualities of the schools in Massachusetts.