NE-CHPS
NEW CONSTRUCTION AND
MAJOR RENOVATIONS
Version 2.0, October 2009

Prepared by:
ERS, Inc.
13 Railroad Square, Suite 504
Haverhill, MA 01832-5716

For:
High Performance Schools Exchange
Northeast Energy Efficiency Partnerships
5 Militia Drive
Lexington, MA 02421
This publication is designed to provide accurate and authoritative information with regard to the subject matters covered. However, although great care has been taken in the compilation and publication of this manual, it is published with the understanding that (1) the publisher and authors make no guarantee that the manual meets all federal, state, and local statutory, regulatory, or other requirements, and (2) the publisher and authors are not engaged in rendering professional advice via this manual or their work and/or affiliation with CHPS, Inc. The publisher and authors cannot be responsible for errors or omissions, or any agency’s interpretations, applications, and changes of regulations or specifications described in this publication. Use of any provision contained herein is the sole responsibility of the specifier.

Published by:

Northeast Energy Efficiency Partnerships, Inc.
5 Militia Drive
Lexington, Massachusetts 02421

and

Energy & Resource Solutions (ERS)
13 Railroad Square, Suite 504
Haverhill, Massachusetts 01832

The publication is based, in part, on materials from:

The Collaborative for High Performance Design, Inc. (CHPS), San Francisco, CA 94104
© 2005 by CHPS, Inc.
All rights reserved. Published 2005.
Printed in the United States of America.
www.chps.net
Contents

Preface .. iv
Northeast-CHPS in Brief .. iv
CHPS .. iv
New Buildings Institute ... iv
Acknowledgments .. v
I. Introduction .. 1
II. Northeast-CHPS Certification Process Details .. 2
 Codes and Regulations .. 3
III. High Performance School Prerequisites – Overview .. 4
 Northeast CHPS for New and Renovated Facilities .. 5
 Summary Tables .. 5
IV. Policy and Operations .. 16
 Summary Tables .. 16
 Policy and Operations Prerequisites .. 18
 Policy and Operations Elective Credits .. 25
V. Indoor Environmental Quality .. 32
 Summary Tables .. 32
 Indoor Environmental Quality Prerequisites ... 36
 IEQ Lighting Quality (Electric Lighting) Category .. 39
 IEQ Indoor Air Quality Category .. 40
 Indoor Environmental Quality Elective Credits .. 53
VI. Energy Efficiency .. 59
 Summary Tables .. 59
 Energy Efficiency Elective Credits .. 74
VII. On-Site Renewable Energy .. 83
 Summary Table .. 83
 Renewable Energy Elective Credits ... 84
VIII. Water Efficiency .. 89
 Summary Tables .. 89
 Water Efficiency Elective Credits ... 91
IX. Materials Selection and Specification .. 97
 Summary Tables .. 97
 Materials Selection and Specification Prerequisites ... 98
 Materials Selection and Specification Elective Credits .. 102
X. Site Selection and Layout .. 109
 Summary Tables .. 109
 Site Selection and Layout Prerequisites ... 110
 Site Selection and Layout Elective Credits .. 116
XI. Section Eleven: Innovation ... 124
Northeast-CHPS Scorecard ... 126
State Addenda .. 132
Glossary .. 136
Preface

Northeast-CHPS in Brief

Northeast-CHPS is based on the Massachusetts Technology Collaborative’s High Performance Schools Guidelines (MA-CHPS), which were in turn based on CHPS, Inc. Guidelines. NEEP has tailored Northeast-CHPS to the climate zones and school construction needs of the states in the Northeast, primarily Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. In addition, NEEP has included a section on school district policy prerequisites and has organized and added new material to emphasize criteria that directly contribute to student learning, reduced maintenance, and long building life.

Sincere thanks go to the Massachusetts Technology Collaborative (MTC) and their project manager, Phoebe Bierlie, who was involved in the final stages of development of the MA-CHPS version and who assisted NEEP in developing Northeast-CHPS, and to Andrea Ranger of the Massachusetts School Building Authority for her review of Northeast-CHPS and her help editing and finalizing it.

CHPS

Northeast-CHPS is adapted, in part, from the CHPS Best Practices Manual by permission of the Collaborative for High Performance Schools, Inc. The CHPS Best Practices Manual is copyrighted by CHPS, Inc. Anyone may use or copy the content without further consent. However, prior permission from CHPS, Inc. must be granted in order to re-license, publish, or develop derivative works from CHPS-copyrighted materials.

New Buildings Institute

Portions of this document are copyrighted by the New Buildings Institute, Inc., www.PowerYourDesign.com and reprinted with permission from the Core Performance New Institute, Inc.a non-profit, public-benefits corporation dedicated to making buildings better for people and the environment. The material contained in this publication was developed by the Institute’s Criteria Review Committee and approved by the Institute’s Board of Directors in October 2003 and is subject to change or withdrawal at any time by the Institute.
Acknowledgments

This document could not have been created without the significant contributions of everyone involved. We gratefully acknowledge and thank the following individuals and organizations:

Ted Smith and the Henry P. Kendall Foundation for their continued guidance and funding support

The dedicated members of our technical review committee and regional working group for providing not only information, feedback, and resources but also for taking so much of their own time to help make Northeast-CHPS a reality

The original Advisory Group members who encouraged the writing of a New England Protocol at a High Performance Schools Forum on September 13, 2004:

Connecticut
 Mike Guarino, United Illuminating, Utility
 Ginny Grzymkowski, Legislative Coordinator, CT Association of Public Schools
 Laurel Kohl, Eastern Connecticut State University, Institute for Sustainable Energy
 Bill Leahy, Eastern Connecticut State University, Institute for Sustainable Energy
 Martin Mador, Green Building Council
 Ted Merritt, Fletcher Thompson Architects and Engineers
 John Ruckes, CT Office of Policy and Management

Maine
 Richard Bacon, Efficiency Maine, Maine Public Utilities Commission,
 Doug Baston, North Atlantic Energy Advisors
 Scott Brown, ME Dept. of Education
 Dale Doughty, Circuit Rider – ME School Management Assoc.

Massachusetts
 Al Argenziano, Superintendent of Schools, Somerville, MA
 Tom Coughlin, National Grid
 Kim Cullinane, Massachusetts Technology Collaborative
 Greta Eckhardt, HMFH Architects, Inc.
 Ed McGlynn, NSTAR
 Andrea Ranger, MA Dept. of Education, Green Schools Program Coordinator
 Doug Sacra, HMFH Architects, Inc.
 John Shea, Director, Environment and Energy Programs, New England Governors Council

New Hampshire
 Teny Bannick, C.N. Carley Associates, AIA
 Loren Belida, H. L. Turner Group
 Bernie Davis, Circuit Rider in New Hampshire
 Chris Drobat, Lavallee Brensinger Architects
 Paul Lentine, PSNH Utility
 Charles Michal, Weller & Michal Architects
 Patrick Miller, Jordan Institute
 Ed Murdough, NH State Dept. of Education
 Gary O’Connell, NH Plant and Property, Rebuild Manager
 David Provan, RightRoad Development Advisors

New York
 Matt Brown, New York State Energy Research and Development Authority
Rhode Island
 Jackie Acsrizzi, RI Dept. of Education
 Bob Cerio, Warwick School District Energy Manager
 Pat Condon, State Energy Office
 Tim Duffy, Ex. Director of RI Association of School Committees
 Wilbur Yoder, Professor, RI School of Design

Vermont
 Keith Dewey, Dewey & Associates Architects
 Mike Godfrey, Dore & Whittier Architects
 Cathy Hilgendorf, VT Dept. of Education
 Jonathon Kleinman, Vermont Energy Investment Corporation
 Chris Owen, VT Dept. of Public Services
 Jonathan Sturges, VT Superintendents Association

Advisors
 Susan Coakley, Executive Director, NEEP
 Sarah Dagher, Consultant to NEEP
 Greg Davoren, U.S. DOE – Boston Regional Office
 Louis DeGeorge, Director of Training and Education, NEEP
 Deane Evans, New Jersey Institute of Technology
 Donald Fudge, High Performance Schools Program Manager
 Kirk Stone, consultant for the Kendall Foundation
 Daniel Strout, U.S. DOE Boston Regional Office

Members of individual state High Performance Schools working groups, partnerships, or initiatives that provided direct review and advice.

Connecticut
 Bill Leahy, Institute for Sustainable Energy, Eastern CT State University
 John Ruckes, OPM
 Doug Disbrow, SLAM Collaborative

Maine
 Scott Brown
 Dale Doughty

Massachusetts
 Andrea Ranger
 Phoebe Bierlie
 Sam Nutter
 Doug Sacra

New Hampshire Partnership for High Performance Schools
 Ed Murdough
 Kirk Stone
 Bernie Davis
 Patrick Miller

New York
 Matt Brown

Rhode Island
 Thomas Coughlin
 Pat Condon
Northeast Collaborative for High Performance Schools Protocol

Vermont
Cathy Hilgendorf
Deb Sachs
Jan Harris
Mike Godfrey

Others who provided support and advised the process:

Norman Anderson, MSPH, American Lung Association
Terry Brennan, Camroden Associates, Inc
Greg Davoren, U.S. DOE – formerly of the Boston Regional Office and now with the National Energy Training Laboratory (NETL)
Charles Eley, FAIA, Collaborative for High Performance Schools (CHPS)
Donald Fudge, Director of Training and Education, NEEP
Kristin Heinen, Collaborative for High Performance Schools (CHPS)
Alan Mulak, PE, Senior BOC Trainer for NEEP
Carolyn Sarno, Manager, High Performance Schools Exchange, NEEP
Ingrid Moulton, AIA Banwell Architects
Daniel Strout, formerly with U.S. DOE Boston Regional Office

And, most of all, the team from Energy & Resource Solutions, who wrote the Northeast-CHPS Protocol from the original draft through several revisions and provided insight and expertise.

Brian McCowan, Team Leader
Gary Epstein, Advisor
Mary McElhinney, Content Reviewer
Jill Rogers, Editorial Coordinator

Nathan Bishop Middle School in Providence, RI is one of the first high performance historic renovations in the country. Image courtesy of Ai3.
I. Introduction

The purpose of Northeast-CHPS is to encourage the construction of schools that provide premium educational environments while providing important benefits for students, educators, administrators, and the public. High performance schools provide high quality learning environments, conserve natural resources, consume less energy, are easier to maintain, and provide an enhanced community resource.

High performance schools are thermally, visually, and acoustically comfortable. Teachers, students, and administrators are neither too hot nor too cold as they teach, learn, and work. High quality lighting assures that visual tasks are made easier. Students and teachers can hear each other without the distractions of ventilation systems or noise from outside or adjoining spaces.

High performance schools take advantage of recent advances in energy efficiency and incorporate heating, cooling, and lighting systems that produce the highest comfort levels for the least cost. Daylight is brought into the school to enhance the learning environment and decrease the need for electrical lighting. The building shell integrates the most effective combination of insulation, glazing, and thermal mass to ensure energy efficiency and occupant comfort. Modern plumbing fixtures and innovative water use strategies combine to reduce water consumption.

Healthy indoor air is another important component of high performance schools. Air intakes are located away from potential sources of contamination and ventilation systems are designed to optimize fresh air. Architects and engineers incorporate the best design practices to prevent water from entering wall and roof assemblies, preventing mold growth and/or premature replacement of indoor finishes and even structural elements.

The school’s site development and construction conserves valuable resources. Additionally the site is convenient to the community, encouraging bicycle, pedestrian, and mass transit access. This environmental stewardship becomes a resource for teachers, students, and the community providing important examples of responsible development.

Above all, a high performance school provides an environment that enhances the primary mission of public schools: the education of future citizens. Northeast-CHPS provides guidelines for the construction of new schools and the renovation of existing schools. The prerequisites outlined in this document represent the core requirements for the establishment of high performance schools. The optional credits provide opportunities for communities to further enhance the educational environment.
II. Northeast-CHPS Certification Process Details

Northeast-CHPS details performance standards and best practices for energy efficient, sustainable school building design and construction. While Northeast-CHPS is appropriate for use in the planning and design of any school building, it is intended for use by individual state education departments as a guide to meeting state mandates and/or performance-based incentive programs.

The Northeast-CHPS Protocol is divided into eight sections: Policy and Operations, Indoor Environmental Quality, Energy Efficiency, On-Site Renewable Energy, Water Efficiency, Materials Selection, Site Selection, and Design Innovation. Each section contains a list of criteria or standards, a description of the standard, the reason it is included, instructions on how to document compliance, and a list of additional resources available. The criteria are listed as prerequisites (required in the design) or electives (optional criteria that lead to enhanced performance). The prerequisites alone define a high performance school and can be achieved through renovation/modernization projects as well as new construction projects.

It is anticipated that the certification/compliance process will vary from state to state, and each state will develop and maintain a certification guideline that assists participants through the certification process. In general, state certification involves meeting the requirements of the prerequisites in this document. Individual states may also require that some Northeast-CHPS “elective credits” be met in order to gain certification. In either case, documentation of compliance for an individual prerequisite or elective criteria to the state education department consists of the documentation listed in the Northeast-CHPS Protocol.

The requirements for NE-CHPS are summarized below:

<table>
<thead>
<tr>
<th>Required: Meet all prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-specific guidelines and requirements can be found in the state addenda attached to the Protocol.</td>
</tr>
<tr>
<td>Prerequisite exceptions: Projects may be exempted from individual prerequisites through a variance process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required: Obtain a minimum of 16 elective credits consisting of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy and Operations – Obtain a minimum of 2 elective credits</td>
</tr>
<tr>
<td>Indoor Environmental Quality – Obtain a minimum of 4 elective credits</td>
</tr>
<tr>
<td>Energy Efficiency – Obtain a minimum of 2 elective credits</td>
</tr>
<tr>
<td>On-Site Renewable Energy – No elective credits required</td>
</tr>
<tr>
<td>Water Efficiency – Obtain a minimum of 1 elective credit</td>
</tr>
<tr>
<td>Materials – Obtain a minimum of 3 elective credits</td>
</tr>
</tbody>
</table>
Codes and Regulations

State, local, and federal governments maintain a collection of codes and regulations that apply to the construction and operation of public schools. Northeast-CHPS does not attempt to present or replace any regulations or code requirements. All relevant codes and regulations should be adhered to and the adoption of this Protocol, or any of its provisions, should be considered as enhancements that improve the educational environment beyond what is required by the appropriate codes and regulations.

Merrimack Valley High School in Penacook, NH was the first NE-CHPS school building. Image courtesy of Banwell Architects.
III. High Performance School Prerequisites – Overview

Each of the criteria in Northeast-CHPS describes a “best practice” in the design and construction/reconstruction of a school building. The criteria reflect commercial building codes and standards and standard school construction regulations and standards and would be included in the design of any modern school. What differentiates a high performance building from a standard building is the clear above code design for energy and indoor environmental quality and the integration of the building’s mechanical systems to achieve these efficiencies. A high performance green building then integrates these high performance elements with renewable technologies and sustainable materials, site choices, and elements.

Although Northeast-CHPS provides for many optional enhancements for school projects, there are some basic procedures and practices that represent the essential requirements for high performance school projects. These prerequisites are outlined in the table below, and each is presented in detail in the appropriate section of this document.

The highlighted prerequisites are those that can carry an incremental cost. Designing to these prerequisites alone may add cost, but the savings are projected to be eight times the initial cost (based on a study conducted by VEIC and HMFH Architects using eight of the recently completed Massachusetts Pilot Project schools).

The key to an energy efficient high performance school is both the design process and what happens after the building is occupied! These Policy and Operations prerequisites are written to define a district strategy that guides the coordination of operations and maintenance plans with financial and procurement plans.
Northeast CHPS for New and Renovated Facilities

Summary Tables

<table>
<thead>
<tr>
<th>Policy and Operations Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required PO P 1. The school district must create a high performance design advisory committee or appoint an individual trained in high performance school issues to oversee the implementation of an integrated design approach and ensure that the high performance standards and the overall goals of Northeast-CHPS are met and that they are consistent with state policy.</td>
</tr>
<tr>
<td>Required PO P 2. Develop policies and procedures for the sharing of facilities between the school district and the town for recreational and other community purposes.</td>
</tr>
<tr>
<td>Required PO P 3. Implement the EPA’s Tools for Schools program or an equivalent indoor health & safety program for the renovated school. Designate a trained staff person as a point of contact for the EPA Tools for Schools program or its equivalent.</td>
</tr>
<tr>
<td>Required PO P 4. Implement a high performance school master plan for the maintenance of all equipment, the training of staff, and a process for assuring that future additions and renovations adhere to high performance standards. The plan must include an inventory of all equipment in the new or renovated school and its preventive maintenance needs. The inventory should cover at least the following systems:</td>
</tr>
<tr>
<td>- HVAC</td>
</tr>
<tr>
<td>- Plumbing</td>
</tr>
<tr>
<td>- Non-HVAC mechanical systems</td>
</tr>
<tr>
<td>- Lighting</td>
</tr>
<tr>
<td>- Building control systems</td>
</tr>
<tr>
<td>- Life and safety systems</td>
</tr>
<tr>
<td>- Interior finishes</td>
</tr>
<tr>
<td>- Roof systems</td>
</tr>
<tr>
<td>- Switchgear</td>
</tr>
<tr>
<td>The plan must address the preventive maintenance needed; include staff/vendor time and materials costs for each maintenance task, a schedule for these tasks, and clearly define who is responsible for performing the task, as well as the overall management of maintenance activities.</td>
</tr>
<tr>
<td>The plan must provide for ongoing staff training in the maintenance and operation of the inventoried equipment and must include provisions for expanding the plan to include any school additions and/or renovations.</td>
</tr>
<tr>
<td>Required PO P 5. Establish a written policy that all newly purchased equipment and appliances to be used in the school be ENERGY STAR compliant (in any product categories where there are applicable ENERGY STAR categories). Additionally, the policy must prohibit the purchase of low efficiency products, including incandescent task lights, halogen torchieres, and portable electrical resistance heaters.</td>
</tr>
<tr>
<td>Required PO P 6. Adopt a no idling policy that applies to all school buses used to transport the students of the school. The policy must include the following minimum provisions:</td>
</tr>
<tr>
<td>- School bus drivers will shut off bus engines upon reaching destination, and buses will not idle for more than five minutes while waiting for passengers. This rule applies to all bus use, including daily route travel, field trips, and transportation to and from athletic events. School buses will not be restarted until they are ready to depart and there is a clear path to exit the pick-up area.</td>
</tr>
<tr>
<td>- Prohibit idling of all vehicles for more than five minutes (including all passenger vehicles and delivery trucks) in the school zone AND post appropriate signage.</td>
</tr>
</tbody>
</table>
Northeast Collaborative for High Performance Schools Protocol

- School bus companies and drivers will limit idling time during early morning warm-up to manufacturers’ recommendations – generally five minutes in all but the coldest weather and for pre-trip safety inspections.
- Establish provisions for an indoor waiting space for drivers.
- Evaluate and shorten bus routes whenever possible, particularly for older buses with the least effective emissions control.
- All bus drivers will receive a copy of the school district’s No Idling Policy or equivalent educational materials at the beginning of every school year.
- Exceptions to this policy are appropriate only to meet state regulations or when running an engine is necessary to operate required safety equipment or perform other functions that require engine-assisted power, e.g., waste-hauling vehicles, handicap accessible vehicles, etc.

Required

- **PO P 7. New Construction (NC)** – Use no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems.
- **PO P 7. Renovations (R)** – Install no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems in the school. Replace any equipment that utilizes CFC- or HCFC-based refrigerants and is over ten years old. And implement a plan to phase-out the use of such refrigerants in all existing equipment within five years.

Required

- **PO P 8.** Develop and implement a plan to utilize the facility as a teaching tool for environmental quality, energy efficiency, and renewable energy. The plan must include annual training of all staff in the educational and environmental benefits of the facility, and an informational kiosk or other display that presents the educational and environmental benefits associated with the CHPS school.

Policy and Operations Elective Credits

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>PO EC 1. In addition to prerequisite P 4 above, the school district shall purchase and use a computerized maintenance management system (CMMS) in the new or renovated school. If the district already uses a CMMS, the system must be expanded to incorporate automated maintenance scheduling for the new or renovated school.</td>
</tr>
<tr>
<td>1 credit</td>
<td>PO EC 2.1. Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 10% of the school’s projected annual electricity needs.</td>
</tr>
<tr>
<td>2 credits</td>
<td>PO EC 2.2. Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 25% of the school’s projected annual electricity needs.</td>
</tr>
<tr>
<td>1 credit</td>
<td>PO EC 2.3 Obtain an additional point if the Renewable Energy Certificates (RECs) are purchased from a local (within 200 miles) generator.</td>
</tr>
</tbody>
</table>
| 1 credit | **PO EC 3.1.** Alternative Fuel Demonstration Project Establish an alternative fuel project that demonstrates the viability of alternative fuels to the school district, the community and the region. The project must meet the following criteria:
 - Commit to using an alternative fuel such as B-20 diesel fuel, hybrid electric-diesel, or compressed natural gas in at least one school bus.
 - Develop an outreach campaign that will publicize the demonstration program to the general public. Outreach programs should include media events, the publication of educational materials, etc. |
Northeast Collaborative for High Performance Schools Protocol

2 credits **PO EC 3.2.** Alternative Fueled Buses

At least 20% of the buses serving the school must use alternative fuel such as compressed natural gas or be clean technology buses with hybrid electric-diesel engines. This credit may also be achieved by committing to use B-20 diesel fuel in all the buses serving the school for a period of two years.

Note: If 20% of the buses serving a school does not equal a whole number, then round down to the nearest whole number. If the number is less than one, then round up to one.

2 credits **PO EC 3.3.** Alternative Fueled Maintenance Vehicles and Equipment

If purchasing maintenance vehicles and equipment as part of the capital budget for the school project, specify alternative fuel power such as electric, propane, or natural gas. This credit addresses lawnmowers, tractors, and maintenance trucks, but does not include life safety equipment. To achieve the credit, 50% of the cost for the above maintenance equipment must go toward the purchase of alternative-fuel-powered items.

1 credit **PO EC 4.** Carbon Footprinting

Implement a carbon footprinting program that allows students and teachers to calculate the carbon footprint of school & municipal buildings as well as community businesses and households.

2 credits **PO EC 5.** Zero-Net Energy Plan

Utilizing DOE’s Zero-Net Energy Commercial Building Initiative, or other program template, adopt a plan for the school to achieve zero net energy status by the year 2030.

Indoor Environmental Quality Prerequisites

Required **IEQ P 1.** Access to Views

Provide direct line of sight to view glazing in 70% of classrooms and administration areas. Qualifying spaces shall have view glazing equal to or greater than 7% of the floor area of that space. View glazing shall be clear and only include window area above 2.5 ft. and below 7.5 ft. from the floor. Install adjustable blinds to control glare.

Required **IEQ P 2.** New Construction (NC) - Provide low-glare, uniformly distributed daylighting for 75% of the total critical task areas of classrooms. **IEQ P 2.** Renovations (R) - Provide low-glare, uniformly distributed, daylighting for 50% of the total critical task areas of classrooms.

All daylighting designs must meet the following requirements:

- The teaching surfaces, or the work plane, must be protected from direct sunlight, from vertical glazing, during normal school hours. Light shelves, blinds, and other shading devices may be utilized to meet this requirement. Areas located within 4 feet of exterior walls may be excluded from this glare elimination requirement.
- Skylights and roof monitors shall also meet the above criteria unless they incorporate diffusing devices.
- The daylighting system must be designed to replace a minimum of 25% of the total electrical illumination needed for the classroom areas.

Whenever possible, the project should be oriented to allow for northern- and southern-exposure classroom windows. East- and west-facing windows are less desirable due to morning and afternoon glare problems.

Required **IEQ P 3.** Install an electric lighting system in all classroom areas to enhance occupants’ visual performance with pendant- or ceiling-mounted high performance lighting fixtures. The lighting fixtures must incorporate high performance T8 (HPT8, as defined by CEE, the Consortium for Energy Efficiency) or T5 technology with lamp efficacy ratings of a minimum of 85 mean lumens per watt and color rendering index (CRI) ratings of 80 or higher. All lighting fixtures must include glare control features.

Required

IEQ P 5. New Construction (NC) - For active entryways that incorporate a vestibule, provide a three-part walk-off system that includes a drop-through mat to capture dirt, particulates, and moisture before they enter the building. Avoid drain pans and traps in the vestibule to prevent a build up of moisture during summer months. At all other active entrances, provide a two-part walk-off system that incorporates grills, grates, etc. to remove dirt and snow, and provide walk-off mats inside the entranceway. The recommended length of interior walk-off mats is 15 feet. Provide, at a minimum, an individual mat for classroom doors that exit directly to the outdoors.

IEQ P 5. Renovations (R) - For renovations where a three-part walk-off system is impractical due to building design and construction, a two-part system that allows the capture of dirt, particulates, and moisture at the entrances is acceptable.

IEQ P 6. Prevent water accumulation by designing surface grades to slope away from buildings and building foundations in order to drain away water, snowmelt, and HVAC condensate to prevent the accumulation of water. Rain leaders and downspouts must be directed to filtration structures, storage, or rain gardens, or to daylight provided that surface drainage moves water away from buildings. Evaporative drip pans for HVAC condensate removal are prohibited.

IEQ P 7. New Construction (NC) - Design and install irrigation systems so that they do not spray on buildings.

IEQ P 7. Renovations (R) - Adjust and/or redesign irrigation systems so that they do not spray water on buildings.

IEQ P 8. During the construction or renovation process, meet or exceed the following minimum requirements to prevent the growth of mold and bacteria:

- Keep building materials dry – wood, porous insulation, paper, and fabric, should be kept dry to prevent the growth of mold and bacteria. Cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials.
- Replace any water-damaged materials, or dry within 24 hours, due to the possibility of mold and bacterial growth. Materials that are damp or wet for more than 24 hours may need to be discarded.
- Immediately remove any materials showing signs of mold and mildew, including any with moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.
- Require that moisture sensitive materials be delivered dry and protected from the elements.
- Allow for time in the construction schedule for materials to dry before they are enclosed.

IEQ P 9. If the building or a portion of the building is to be occupied during construction or renovation, meet or exceed the Recommended Design Approaches of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) *IAQ Guideline for Occupied Buildings Under Construction*, 1995, chapter 3.

IEQ P 10. Following construction or renovations, replace all HVAC filtration media immediately prior to occupancy.

IEQ P 11. Ensure that permanently installed filtration media have a Minimum Efficiency Reporting Value (MERV) of at least 10 except for unit ventilator systems, which shall have a MERV of at least 7.

IEQ P 12. Specify only electric ignitions for the following types of newly installed gas-fired equipment: water heaters, cooking stoves/ovens, air handling units, boilers. Modify any retained gas-fired equipment of the above types with electronic ignitions.
Required IEQ P 13. Locate/ relocate outside-air intake openings a minimum of 25 feet from any hazard or noxious contaminants such as vents, chimneys, plumbing vents, exhaust fans, cooling towers, streets, alleys, parking lots, and loading docks. When the location of an intake opening within 10 feet of a contaminant source is unavoidable, such opening shall be located a minimum of 2 feet below the contaminant source, or other means of avoiding airflow contamination shall be employed.

This prerequisite is based on the BOCA 1993 Mechanical Code Section M-308.1.

Required IEQ P 14. Do not install internally insulated ductwork unless it is double-walled ductwork or includes duct liners that meet ASTM standards C1071 and C1104 for surface erosion and water vapor sorption.

Required IEQ P 15. Prohibit fossil fuel powered mobile machinery from being used inside the building.

Required IEQ P 16. Utilizing the services of a professional acoustical consultant, develop an acoustics strategy to assure that all classrooms achieve acoustic performance levels consistent with best practices. The strategy should utilize the process for evaluating room acoustics outlined in ASHRAE Handbook – Fundamentals 2005 and should follow best practice sound attenuation strategies to reduce both low and high frequency noise, as well as reduce reverberation time.

Or,

Ensure that all classrooms meet the standards of ANSI 12.60-2002, the requirements of which include:

- <35 dB background noise and maximum reverberation time of 0.6 seconds for areas ≤10,000 ft²
- <35 dB background noise and maximum reverberation time of 0.7 seconds for areas >10,000 ft² and ≤20,000 ft²
- <40 dB background noise for areas >20,000 ft²

Required IEQ P 17. Comply with ASHRAE Standard 55-2004 for thermal comfort standards during the heating season, within established ranges per climate zone.

Required IEQ P 18. Adopt or develop an Integrated Pest Management program designed to exclude undesirable pests from the school buildings.

Required IEQ P 19. Minimize mercury exposure by eliminating mercury containing thermostats and other equipment; installing only low-mercury lamps; and labeling any other mercury containing products. In addition, adopt a policy that all fluorescent lamps are recycled.

Required IEQ P 20. Renovations (R)- If the renovated school utilizes unit ventilators, designate that best practices, including annual maintenance and the use of MERV 7 filters be followed.

Indoor Environmental Quality Elective Credits

| Credit | IEQ EC 1. Where chemical use occurs, including housekeeping areas, chemical mixing areas, copying/print rooms, photo labs, science labs, and vocational spaces, use deck-to-deck partitions with dedicated exhaust at a rate of at least 0.50 cubic feet per minute per square foot with adequate make-up air. No air recirculation is permitted, and these spaces must have negative air pressure, which is defined as an outside exhaust at a rate of at least 0.50 cubic feet per minute per square foot, maintaining a negative pressure of at least 5 Pa (0.02 inches of water gauge) to a minimum of 1 Pa (0.004 inches of water) when the doors are closed.
In photo-lab areas, specify table vents to draw chemical vapors away from the breathing zone of darkroom users.

<p>| Credit | IEQ EC 2. Install ducted HVAC air returns to avoid the dust and microbial growth issues. The use of ceiling plenum return vents is not acceptable as part of an HVAC system design. |</p>
<table>
<thead>
<tr>
<th>1 credit</th>
<th>IEQ EC 3. Design the HVAC system with particle arrestance filtration rated at Minimum Efficiency Reporting Value (MERV) of 13 in all mechanical ventilation systems, installing filters immediately prior to occupancy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>IEQ EC 4. Ninety percent (90%) of all classrooms shall have a minimum of one operable window per classroom that is reasonably accessible.</td>
</tr>
<tr>
<td>1 credit</td>
<td>IEQ EC 5. Install high intensity fluorescent lighting fixtures instead of HID fixtures in the gymnasium and other high ceiling areas.</td>
</tr>
<tr>
<td>1 credit</td>
<td>IEQ EC 6. Supply temporary construction ventilation. Continuously ventilate during installation of materials that emit Volatile Organic Compounds (VOCs) and after installation of those materials for at least 72 hours or until emissions dissipate. Ventilate directly to outside areas; do not ventilate to other enclosed spaces that are occupied by students, staff, or contractors. If continuous ventilation is not possible using open windows and temporary fans, then the building’s HVAC system may be utilized provided that MERV 8 filtration media are installed at each return air grill as determined by ASHRAE 52.2-2004.</td>
</tr>
</tbody>
</table>
| 1 credit | **IEQ EC 7.** During construction, seal HVAC supply and return openings to protect them from dust infiltration during such activities as drywall installation and floor sanding. If installing a new duct system, follow SMACNA guidelines “Duct Cleanliness for New Construction Guidelines” according to advanced levels of cleanliness. Of specific importance are the following:
 - Specify that ductwork be sealed during transport.
 - Store ductwork in clean, dry conditions and keep sealed.
 - Wipe down internal surfaces of ductwork immediately prior to installation.
 - Seal open ends of completed and “in-progress” ductwork.
 - During installation protect ductwork with surface wrapping. |
| 2 credits | **IEQ EC 8.** HEPA Vacuuming – Vacuum carpeted and soft surfaces with a high-efficiency particulate arrestor (HEPA) vacuum prior to re-occupancy. For phased, occupied renovations, HEPA vacuum the carpet daily in occupied areas. |
| 2 credits | **IEQ EC 9.** Prior to flushout, filters must be replaced with at least Minimum Efficiency Reporting Value (MERV) 10 filters and replaced again after flushout with a minimum of MERV 10 filters. For unit ventilator systems, a minimum of MERV 7 filters must be installed and then replaced with MERV 7 filters after flushout.
 AND
 Perform one of two flushout options:
 Option 1 – The entire building shall be flushed out continuously (24 hours/day) with outside air for at least 10 days prior to receipt of certificate of occupancy.
 OR
 Option 2 – Flushing of each space may not begin until all major finish materials have been installed on floors, walls, and ceilings. This includes all casework. At that time, each space may be flushed out separately and occupied once 3,500 ft³ of outdoor air per ft² of floor area of the space has been delivered. The space may then be occupied provided that it is ventilated at a rate of 0.30 cfm/ft² of outside air or the design minimum outside air rate, whichever is greater, a minimum of 3 hours prior to occupancy and during occupancy, until the total of 14,000 ft³/ft² of outside air has been delivered to the space. |
Energy Efficiency Prerequisites

Required	EE P 1 (A or B). New Construction (NC) – Energy Efficiency Standard: (A) Follow the design process strategies (section 1) and meet all the Core Performance requirements (section 2) within the New Buildings Institute’s Advanced Buildings Core Performance Guide. In addition, comply with all of the relevant “acceptance criteria” listed in Core Performance appendix A. (B) As an alternative, the Total Building Approach outlined in ASHRAE standard 90.1 may be used to demonstrate that the constructed building(s) will use no more energy than the same building(s) built to the Core Performance criteria or will use 25% less energy than the same building(s) built to ASHRAE standard 90.1 2007 EE P 1. Renovations (R) – Energy Efficiency Master Plan: Working with appropriate energy efficiency programs (see “Resources”), evaluate the overall energy performance of the buildings, identifying energy efficiency opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 15%, or to the level of the same building(s) built to ASHRAE standard 90.1 2007 Portions of the school undergoing “gut” renovations must meet the above EE P 1 for new construction (NC).
Required	EE P 2. Employ air sealing best practices to control air leakage, including the scheduled maintenance of air sealing systems (calking, foams, gaskets, etc.)
Required	EE P 3. Employ best practice HVAC design techniques to prevent the over-sizing of equipment, improve system performance, and meet ASHRAE Standard 55.
Required	EE P 4. New Construction (NC)– Commission or re-commission all energy using systems. EE P 4. Renovations (R)– Commission all newly installed HVAC, lighting, building management systems and retro-commission all retained systems that have not been commissioned within the past three years. Systems to be commissioned:
- Lighting controls (daylight, occupancy, light switching).
- HVAC systems (such as hot water systems, chilled water systems, central air systems, ventilation systems).
- Domestic hot water systems
- Energy management systems |
| Required | EE P 5. Provide effective and complete training and documentation on the operation and maintenance of the building systems identified in the commissioning report. Training programs for school maintenance staff, administrators, teachers, and other staff must be developed and completed. Training is an essential step to protect indoor air quality and maintain superior energy performance. |
| Required | EE P 6. Participate in energy efficiency incentive and technical assistance programs that are available through applicable utility and governmental programs. |
Energy Efficiency Elective Credits

| Credits | EE EC 1. New Construction (NC) (A or B) | (A) Demonstrate superior energy performance beyond prerequisite EE P1 by adopting a minimum of 7 of the 14 Enhance Performance Strategies detailed in the Advanced Buildings Core Performance Guide (New Buildings Institute). Or, (B) utilizing the Total Building Approach outlined in ASHRAE standard 90.1, demonstrate that the renovated building(s) will use 30% less energy than the same building(s) built to ASHRAE standard 90.1 2007.
EE EC 1. Renovations (R)
- Demonstrate superior energy performance beyond prerequisite EE P1. Evaluate the overall energy performance of the buildings, identifying energy efficiency opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 25%. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4 credits</td>
<td>EE EC 2.</td>
<td>Incorporate daylighting throughout the building and control at least 40% of the connected lighting load with automatic daylighting controls and/or hybrid occupancy/daylight controls.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 3.</td>
<td>Perform enhanced building commissioning employing a third party commissioning agent throughout the design and construction or renovation process.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 4.</td>
<td>Design 90% of permanent classrooms without air conditioning or minimize air conditioning loads in classrooms by installing low energy use comfort systems. Qualifying systems could include dehumidification, hot gas bypass systems, energy recovery ventilation, or other innovative approaches.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 5.</td>
<td>Install VAV system with variable speed drives on appropriate fans and motors. Control air volume in response to indoor air quality needs.</td>
</tr>
</tbody>
</table>
| 2 credits | EE EC 6. | Install an energy management system (EMS) to control, monitor and trend the energy consumed throughout the school by the following systems:
- HVAC (heating, cooling, fans)
- Domestic/process hot water system |
| 1 credit | EE EC 7. | In addition to Credit 6, install a submetering system for lighting loads and plug loads, integrating the data collected from the submetering systems with the energy management system. |
| 1 credit | EE EC 8. | Install a "cool roof" to reduce the "heat island" effect and reduce overall energy consumption in schools that are air conditioned or to avoid the installation of air conditioning. |
| 2 credit | EE EC 9. | Install a vegetative roof to reduce the “heat island” effect, to reduce heating and/or cooling loads, and to assist in the handling of rainwater. |
| 1 credit | EE EC 10. | Following the guidelines established by the International Dark-Sky Association’s Dark Campus Initiative, adopt a policy that keeps all interior and exterior lighting off after all daily activities. |

On-Site Renewable Energy Elective Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>RE EC 1 (A or B)</th>
<th>(A) Install on-site solar thermal energy system to meet 1% of the total building energy consumption, or 10% of the domestic hot water heating consumption. (B) Install on-site solar thermal energy system to meet at least 2% of the total building energy consumption or 20% of the domestic hot water heating consumption.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 credits</td>
<td>RE EC 2 (A, B, C, or D)</td>
<td>(A) Install on-site photovoltaic system to either meet 1% of the school’s energy loads, or produce a minimum of 2 kW of electricity. Or, (B) install on-site photovoltaic system to meet 3% of the school’s energy loads. Or, (C) install on-site photovoltaic system to meet 5% of the school’s energy loads. Or, (D) install on-site photovoltaic system to meet 10% of the school’s energy loads.</td>
</tr>
</tbody>
</table>
1-4 credits **RE EC 3 (A, B, C, or D)**. (A) Install on-site wind energy system to either meet 1% of the school's energy loads, or produce a minimum of 2 kW of electricity. Or, (B) install on-site wind energy system to meet 3% of the school's energy loads. Or, (C) install on-site wind energy system to meet 5% of the school's energy loads. Or, (D) install on-site wind energy system to meet 10% of the school's energy loads.

2-3 credits **RE EC 4 (A or B)**. (A) Install on-site biomass energy system to meet 10% of the school's total energy load or 75% of the heating load. Or, (B) Install on-site biomass energy system to meet 20% of the school's total energy load or 100% of the heating load.

1-5 credits **RE EC 5**. Install on-site renewable energy system other than the types listed for credits RE EC 1-4.

1 credit **RE EC 6**. Install a performance monitoring system that monitors installed on-site renewable energy systems and displays the results on a Web site accessible by the public.

1 credit **RE EC 7**. Design and construct a renewable energy educational display at the facility that demonstrates the potential that on-site renewable energy systems could contribute to the school and school district.

Water Efficiency Prerequisites

| Required | WE P 1. Employ strategies that, in aggregate, reduce potable water use by 20% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements. |

Water Efficiency Elective Credits

| 2 credit | WE EC 1. Refrain from installing permanent potable water irrigation systems for watering **non-playing-field** landscaped areas **AND** specify drought resistant plants or grasses in these areas so that irrigation is not needed at all. |

| 1-2 credits | WE EC 2 (A or B). (A) Reduce potable water consumption for irrigation of athletic fields with the use of appropriate soils and drought tolerant grasses. Specify that organic content of soils be between 3% and 7% of total soil content and that grasses be a mixture that performs well in the northeastern United States with little or no irrigation. Utilize high-efficiency irrigation technologies, soil moisture meters/rainfall sensors, and/or captured rainwater. Or, (B) eliminate potable water consumption for irrigation of playing fields with the use of water conservative/climate tolerant plantings, soil moisture meters/rainfall sensors, and/or captured rainwater. |

| 1 credit | WE EC 3. Create an irrigation commissioning plan followed by installation review during construction, performance testing after installation, and documentation for ongoing operations and maintenance. |

| 2 credits | WE EC 4. Install a rainwater collection and storage system to be used to convey sewage and/or to irrigate the playing fields when no potable water is to be used. |

| 1 credit | WE EC 5. Reduce water usage for sewage (blackwater) conveyance by a minimum of 40% through the utilization of water efficient fixtures. |

| 2 credits | WE EC 6. Employ strategies that, in aggregate, reduce potable water use by 30% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements. |

Materials Prerequisites

| Required | MP 1. For all newly installed materials and/or materials to be refinished, specify materials that have been tested and certified for low emissions of volatile organic compounds (VOCs). |
Materials Elective Credits

<table>
<thead>
<tr>
<th>Credit Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>M EC 1</td>
<td>Reuse large portions of existing structures during renovation or redevelopment projects. Maintain at least 50% of existing building structure and shell (exterior skin and framing, excluding window assemblies). Hazardous materials that are remediated as part of the project scope and elements requiring replacement due to unsound material condition shall be excluded from the calculation of the percent maintained.</td>
</tr>
<tr>
<td>1 credit</td>
<td>M EC 2</td>
<td>Maintain 50% of the non-structural interior elements (walls, floor coverings, and ceiling systems).</td>
</tr>
<tr>
<td>1-2 credits</td>
<td>M EC 3 (A or B)</td>
<td>(A) Specify salvaged or refurbished materials for 0.5% of building materials. Or, (B) specify salvaged or refurbished materials for 1% of building materials.</td>
</tr>
<tr>
<td>1-2 credits</td>
<td>M EC 4 (A or B)</td>
<td>(A) Achieve a minimum recycled content rate of at least 5% by using a recycled-content calculation that rewards products that exceed 20% recycled-content material. Or, (B) achieve a minimum recycled content rate of 10% by using a weighted average recycled-content calculation that rewards products that exceed 20% recycled-content material.</td>
</tr>
<tr>
<td>1 credit</td>
<td>M EC 5</td>
<td>Specify rapidly renewable building materials for 0.5% of total building materials installed during renovations.</td>
</tr>
<tr>
<td>1 credit</td>
<td>M EC 6</td>
<td>Specify that a minimum of 50% of the wood-based materials used for construction are certified in accordance with the Forest Stewardship Council (FSC), the American Forest and Paper Association's Sustainable Forestry Initiative (SFI), or the American Tree Farm Certification guidelines for wood building components. This includes all wooden framing, flooring, casework, and finishes.</td>
</tr>
<tr>
<td>1-2 credits</td>
<td>M EC 7 (A or B)</td>
<td>(A) Specify a minimum of 20% of building materials that are manufactured regionally within a radius of 500 miles. Or, (B) specify a minimum of 40% of building materials that are manufactured regionally within a radius of 500 miles.</td>
</tr>
</tbody>
</table>

Site Prerequisites

<table>
<thead>
<tr>
<th>Required</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M P 2</td>
<td></td>
<td>Provide an easily accessible area serving the entire school that is dedicated to the separation, collection, and storage of materials for recycling, including – at a minimum – paper (white ledger and mixed), cardboard, glass, plastics, and metals.</td>
</tr>
<tr>
<td>M P 3</td>
<td></td>
<td>Recycle, reuse, and/or salvage at least 50% (by weight) of non-hazardous construction and demolition waste, not including land clearing and associated debris.</td>
</tr>
</tbody>
</table>

Site Elective Credits

<table>
<thead>
<tr>
<th>Credit Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>S EC 1</td>
<td>Do not temporarily or permanently modify land, which prior to acquisition for the project was public parkland, conservation land, or land acquired for water supply protection unless land of equal or greater value as parkland is accepted in trade or purchased by the public landowner.</td>
</tr>
</tbody>
</table>
Northeast Collaborative for High Performance Schools Protocol

<table>
<thead>
<tr>
<th>Credit</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>SEC 2.</td>
<td>Do not develop buildings on land whose elevation is lower than the elevation of the 100-year floodplain as defined by FEMA and as shown on the FEMA Flood Insurance Rate Map (FIRM) for the site.</td>
</tr>
</tbody>
</table>
| 1 credit | **SEC 3.** | Do not develop school sites that are within 50 ft of any wetland. Site development includes the school facilities, playing fields, parking lots, and construction operations that are not related to wetlands improvement.
--- **Exception:** Drainage outfall structures may be located within the 50 ft. buffer zone. |
| 1 credit | **SEC 4 (A or B).** | (A) In urban areas, do not build on sites that have not been previously developed, or sites that have been restored to agricultural, forestry, or park use. (B) In rural areas, do not build on sites that currently support agricultural, forestry, or recreational uses. |
| 1 credit | **SEC 5.** | Reduced footprint. Increase the Floor Area Ratio (FAR) of the school, or addition to be at least 1.4 to reduce the development footprint and preserve open space. The FAR is the quotient of the building's total square footage divided by the square footage of its footprint. |
| 1 credit | **SEC 6.** | Utilizing the guidelines established by the National Center for Safe Routes to Schools, provide sidewalks or walkways that extend at least to the end of the school zone and bike lanes that connect to residential areas at least 1/4 mile from the school entrance at the public way and into the school zone itself. And, provide suitable means for securing bicycles for 5% or more of building occupants (students and staff). For elementary schools, count only students in the 4th grade and above as building occupants. |
| 1 credit | **SEC 7.** | Implement a stormwater management plan that results in a 25% decrease in the peak runoff rate for the 2-year, 24-hour storm from existing to developed conditions **AND** design a stormwater system that results in a 25% decrease in runoff volume for the 100-year, 24-hour storm from existing to developed conditions. |
| 1 credit | **SEC 8.** | Reduce "heat island" effect – Provide shade (within five years) on at least 30% of non-roof, impervious surfaces on the site, including parking lots, walkways, plazas, etc.
--- **OR** use light-colored / high-albedo materials (reflectance of at least 0.3) for 30% of the site's non-roof, impervious surfaces
--- **OR** use a combination of shading and high-albedo materials for 30% of the site's non-roof surfaces. |
| 1 credit | **SEC 9.** | Minimize light pollution from outdoor lighting by minimizing/reducing the amount of lighting and carefully selecting fixtures. |
| 1 credit | **SEC 10.** | Enhanced Sustainable Site Design. Adopt a minimum of three additional measures from the measures listed in Site Prerequisite 5. |

Innovation

| Credits | **IEC 1.** | The Innovation credits offer an opportunity to earn credits for practices that are not listed in the Protocol, but which enhance the performance attributes of the completed project. These credits can also be garnered to reward efforts that significantly exceed the existing credit parameters. |

energy & resource solutions
IV. Policy and Operations

Purpose: To ensure that integrated design, construction, and maintenance approaches consistent with the goals of Northeast-CHPS are followed throughout the useful life of the school.

Summary Tables

Policy and Operations Prerequisites

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required PO P 1.</td>
<td>The school district must create a high performance design advisory committee or appoint an individual trained in high performance school issues to oversee the implementation of an integrated design approach and ensure that the high performance standards and the overall goals of Northeast-CHPS are met and that they are consistent with state policy.</td>
</tr>
<tr>
<td>Required PO P 2.</td>
<td>Develop policies and procedures for the sharing of facilities between the school district and the town for recreational and other community purposes.</td>
</tr>
<tr>
<td>Required PO P 3.</td>
<td>Implement the EPA’s Tools for Schools program or an equivalent indoor health & safety program for the renovated school. Designate a trained staff person as a point of contact for the EPA Tools for Schools program or its equivalent.</td>
</tr>
<tr>
<td>Required PO P 4.</td>
<td>Implement a high performance school master plan for the maintenance of all equipment, the training of staff, and a process for assuring that future additions and renovations adhere to high performance standards. The plan must include an inventory of all equipment in the new or renovated school and its preventive maintenance needs. The inventory should cover at least the following systems: • HVAC • Plumbing • Non-HVAC mechanical systems • Lighting • Building control systems • Life and safety systems • Interior finishes • Roof systems • Switchgear The plan must address the preventive maintenance needed; include staff/vendor time and materials costs for each maintenance task, a schedule for these tasks, and clearly define who is responsible for performing the task, as well as the overall management of maintenance activities. The plan must provide for ongoing staff training in the maintenance and operation of the inventoried equipment and must include provisions for expanding the plan to include any school additions and/or renovations.</td>
</tr>
<tr>
<td>Required PO P 5.</td>
<td>Establish a written policy that all newly purchased equipment and appliances to be used in the school be ENERGY STAR compliant (in any product categories where there are applicable ENERGY STAR categories). Additionally, the policy must prohibit the purchase of low efficiency products, including incandescent task lights, halogen torchieres, and portable electrical resistance heaters.</td>
</tr>
<tr>
<td>Required PO P 6.</td>
<td>Adopt a no idling policy that applies to all school buses used to transport the students of the school. The policy must include the following minimum provisions: • School bus drivers will shut off bus engines upon reaching destination, and buses will...</td>
</tr>
</tbody>
</table>
not idle for more than five minutes while waiting for passengers. This rule applies to all bus use, including daily route travel, field trips, and transportation to and from athletic events. School buses will not be restarted until they are ready to depart and there is a clear path to exit the pick-up area.

- Prohibit idling of all vehicles for more than five minutes (including all passenger vehicles and delivery trucks) in the school zone AND post appropriate signage.
- School bus companies and drivers will limit idling time during early morning warm-up to manufacturers’ recommendations – generally five minutes in all but the coldest weather and for pre-trip safety inspections.
- Establish provisions for an indoor waiting space for drivers.
- Evaluate and shorten bus routes whenever possible, particularly for older buses with the least effective emissions control.
- All bus drivers will receive a copy of the school district’s No Idling Policy or equivalent educational materials at the beginning of every school year.
- Exceptions to this policy are appropriate only to meet state regulations or when running an engine is necessary to operate required safety equipment or perform other functions that require engine-assisted power, e.g., waste-hauling vehicles, handicap accessible vehicles, etc.

<table>
<thead>
<tr>
<th>Required</th>
<th>PO P 7. New Construction (NC) – Use no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO P 7. Renovations (R) – Install no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems in the school. Replace any equipment that utilizes CFC- or HCFC-based refrigerants and is over ten years old. And implement a plan to phase-out the use of such refrigerants in all existing equipment within five years.</td>
</tr>
</tbody>
</table>

| Required | PO P 8. Develop and implement a plan to utilize the facility as a teaching tool for environmental quality, energy efficiency, and renewable energy. The plan must include annual training of all staff in the educational and environmental benefits of the facility, and an informational kiosk or other display that presents the educational and environmental benefits associated with the CHPS school. |

1 credit	PO EC 1. In addition to prerequisite P 4 above, the school district shall purchase and use a computerized maintenance management system (CMMS) in the new or renovated school. If the district already uses a CMMS, the system must be expanded to incorporate automated maintenance scheduling for the new or renovated school.
1 credit	PO EC 2.1. Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 10% of the school’s projected annual electricity needs.
2 credits	PO EC 2.2. Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 25% of the school’s projected annual electricity needs.
1 credit	PO EC 2.3 Obtain an additional point if the Renewable Energy Certificates (RECs) are purchased from a local (within 200 miles) generator.
1 credit **PO EC 3.1. Alternative Fuel Demonstration Project**
Establish an alternative fuel project that demonstrates the viability of alternative fuels to the school district, the community and the region. The project must meet the following criteria:
- Commit to using an alternative fuel such as B-20 diesel fuel, hybrid electric-diesel, or compressed natural gas in at least one school bus.
- Develop an outreach campaign that will publicize the demonstration program to the general public. Outreach programs should include media events, the publication of educational materials, etc.

2 credits **PO EC 3.2. Alternative Fueled Buses**
At least 20% of the buses serving the school must use alternative fuel such as compressed natural gas or be clean technology buses with hybrid electric-diesel engines. This credit may also be achieved by committing to use B-20 diesel fuel in all the buses serving the school for a period of two years.

Note: If 20% of the buses serving a school does not equal a whole number, then round down to the nearest whole number. If the number is less than one, then round up to one.

2 credits **PO EC 3.3. Alternative Fueled Maintenance Vehicles and Equipment**
If purchasing maintenance vehicles and equipment as part of the capital budget for the school project, specify alternative fuel power such as electric, propane, or natural gas. This credit addresses lawnmowers, tractors, and maintenance trucks, but does not include life safety equipment. To achieve the credit, 50% of the cost for the above maintenance equipment must go toward the purchase of alternative-fuel-powered items.

1 credit **PO EC 4. Carbon Footprinting**
Implement a carbon footprinting program that allows students and teachers to calculate the carbon footprint of school & municipal buildings as well as community businesses and households.

2 credit **PO EC 5. Zero-Net Energy Plan**
Utilizing DOE’s Zero-Net Energy Commercial Building Initiative, or other program template, adopt a plan for the school to achieve zero net energy status by the year 2030.

Policy and Operations Prerequisites

The following prerequisites are essential to the construction and maintenance of a high performance school. Together they form the foundation upon which Northeast-CHPS is built and set the framework for successfully completing a project that meets Protocol requirements and provides a high quality educational environment for years to come.

Policy Prerequisite 1: Establish High Performance Design Advisory Committee

| Required | **PO P 1.** The school district must create a high performance design advisory committee or appoint an individual trained in high performance school issues to oversee the implementation of an integrated design approach and ensure that the high performance standards and the overall goals of Northeast-CHPS are met and that they are consistent with state policy. |

District leaders who institutionalize high performance are not just building better schools, they are protecting student health, improving test scores, and lowering the district’s operating expenses. To qualify for this prerequisite, the district’s school board must pass a resolution that establishes the advisory committee and directs the committee to pursue an integrated design approach that complies with Northeast-CHPS for the projects under consideration.
Documentation for Policy Prerequisite 1
Submit a copy of the signed resolution passed by the School Board or official documentation of School Board vote.

Policy Prerequisite 2: Develop a Policy for the Efficient Joint Use of the Facility

| Required | PO P 2. Develop policies and procedures for the sharing of facilities between the school district and the town for recreational and other community purposes. |

The most successful schools have a high level of parent and community involvement. High performance schools are designed in such a way that the sharing of spaces for neighborhood meetings, recreational activities, adult education, and other community functions can take place in a safe and secure environment.

Building or renovating a school provides an opportunity for the community to incorporate municipal programs and services into the building program. During the planning stages, school districts should give careful thought to the types of programs, services, and facilities they may wish to offer via the future school building (e.g., library services, recreation services, meeting space, space for special events, etc.). As an example, if the community lacks a library, it could plan a library for shared school and community access in the new facility.

Other strategies that contribute to shared use of the school building include designing separate entrances for spaces likely to be shared, adjusting building orientation and layout to separate classroom and administration areas from shared spaces during events, and designing special features into the school that the community can use.

Joint use of recreational space is a growing trend across the country. Schools are used by a variety of community organizations for a variety of recreational purposes. Use of school playing fields by the local recreation department allows the community to optimize resources dedicated to community recreation. This prerequisite is intended to reward both schools that share their recreational space with the community at large AND communities that allow schools to use common fields and open spaces (in lieu of having the school construct its own playing fields).

Documentation for Policy Prerequisite 2
Credit S 1.8:
1. Copies of community meeting notes, minutes, or other relevant communications documenting discussions and conclusions about how the school building will be shared with the community.
2. A narrative signed by the project architect and the school superintendent documenting how the school building has been designed to optimize community use.

3. Regulations and/or policy statement governing the use of parks and recreation spaces.

4. Copy of agreement between school district and municipality on joint use of facilities.
Policy Prerequisite 3: Establish Indoor Environment Management Plan

| Required | PO P 3. Implement the EPA’s Tools for Schools program or an equivalent indoor health & safety program for the renovated school. Designate a trained staff person as a point of contact for the EPA Tools for Schools program or its equivalent. |

EPA’s Tools for Schools program is designed to identify, address, and prevent indoor air quality problems in schools. The prevention and comprehensive planning for indoor air problems is more effective and far less costly than crisis-reaction approaches. The Tools for Schools kit provides a basic set of operations and maintenance guidelines that will help prevent IAQ problems in schools. It establishes responsibilities and clear communication channels so that indoor air problems can be prevented and problems can be quickly identified and solved. In addition, the Tools for Schools system can be used to address other environmental health and safety conditions that arise.

Documentation for Policy Prerequisite 3

Submit a resolution from the school board or letter from the Superintendent declaring participation in EPA’s Tools for Schools (or an equivalent program) for the school. Documentation must include the name and position of the designee who will be the point of contact for the EPA or equivalent program.

Resources

EPA, http://www.epa.gov/iaq/schools; http://www.epa.gov/iaq/schools/tools4s2.html.

Region I Environmental Protection Agency, Northeast office in Boston, Massachusetts, phone: (888) 372-7341.

Policy Prerequisite 4: Establish a Master Maintenance and Staff Training Plan

| Required | PO P 4. Implement a high performance school master plan for the maintenance of all equipment, the training of staff, and a process for assuring that future additions and renovations adhere to high performance standards. The plan must include an inventory of all equipment in the new or renovated school and its preventive maintenance needs. The inventory should cover at least the following systems: |

- HVAC
- Plumbing
- Non-HVAC mechanical systems
- Lighting
- Building control systems
- Life and safety systems
- Interior finishes
- Roof systems
- Switchgear

The plan must address the preventive maintenance needed; include staff/vendor time and materials costs for each maintenance task, a schedule for these tasks, and clearly define who is responsible for performing the task, as well as the overall management of maintenance activities.

The plan must provide for ongoing staff training in the maintenance and operation of the inventoried equipment and must include provisions for expanding the plan to include any school additions and/or renovations.
Regular maintenance and staff training are critically important to the operation and performance of schools. Every district has unique maintenance needs, but districts should invest sufficient staff and resources to ensure that the school’s building systems continue to operate as they were designed and that newly added equipment through future additions and renovations are properly maintained.

High performance schools are not maintenance intensive. However, all buildings and building systems require preventative – not deferred – maintenance if performance goals are to be met.

Qualifying master plans will include:

- Regularly scheduled preventative maintenance tasks over the lifetime of the building system or equipment. These tasks include cleanings, calibrations, component replacements, and general inspections. A commissioning plan and the required maintenance documentation is an excellent starting point and reference for developing the maintenance plan. The plan must include staff/vendor time and materials budgets for each maintenance task and clearly define who is responsible for performing the task, as well as the overall management of maintenance activities.

- An ongoing training plan for staff in the operation and regular maintenance of all building systems.

- Provisions to incorporate newly added equipment and systems that result from equipment replacement, school renovations, and additions.

Documentation for Policy Prerequisite 4
Submit a copy of the district maintenance plan as outlined above.

Policy Prerequisite 5: Specify Equipment Performance Levels (ENERGY STAR)

| Required | PO P 5. Establish a written policy that all newly purchased equipment and appliances to be used in the school be ENERGY STAR compliant (in any product categories where there are applicable ENERGY STAR categories). Additionally, the policy must prohibit the purchase of low efficiency products, including incandescent task lights, halogen torchieres, and portable electrical resistance heaters. |

The energy use of a school is not only associated by the building systems (HVAC, lighting, etc.), but also by the supplementary equipment associated with typical school operations. So called “plug loads” have become a rapidly growing portion of school operating budgets because of the reliance on computer systems and other equipment. Choosing efficient equipment has a large impact on energy consumption and costs.
The ENERGY STAR program was established to provide accuracy and consistency in energy usage ratings and to encourage the purchase of efficient equipment. The program maintains a database of compliant manufacturers and products including computers, monitors, copy machines, water coolers, printers, scanners, refrigerators, ceiling fans, and washing machines. In many cases, equipment that exceeds ENERGY STAR’s efficiency requirements is available and should be considered. When ENERGY STAR compliant equipment is not available, the project owner should submit a notice of exception to the relevant high performance school administrators.

Documentation for Policy Prerequisite 5

Submit a copy of the signed resolution passed by the School Board.

Resources

Policy Prerequisite 6: Anti-Idling Measures

| Required |
|----------------|------------------|
| **PO P 6.** | Adopt a no idling policy that applies to all school buses used to transport the students of the school. The policy must include the following minimum provisions: |
| | • School bus drivers will shut off bus engines upon reaching destination, and buses will not idle for more than five minutes while waiting for passengers. This rule applies to all bus use, including daily route travel, field trips, and transportation to and from athletic events. School buses will not be restarted until they are ready to depart and there is a clear path to exit the pick-up area. |
| | • Prohibit idling of all vehicles for more than five minutes (including all passenger vehicles and delivery trucks) in the school zone AND post appropriate signage. |
| | • School bus companies and drivers will limit idling time during early morning warm-up to manufacturers’ recommendations – generally five minutes in all but the coldest weather and for pre-trip safety inspections. |
| | • Establish provisions for an indoor waiting space for drivers. |
| | • Evaluate and shorten bus routes whenever possible, particularly for older buses with the least effective emissions control. |
| | • All bus drivers will receive a copy of the school district’s No Idling Policy or equivalent educational materials at the beginning of every school year. |
| | • Exceptions to this policy are appropriate only to meet state regulations or when running an engine is necessary to operate required safety equipment or perform other functions that require engine-assisted power, e.g., waste-hauling vehicles, handicap accessible vehicles, etc. |

According to the Environmental Protection Agency (EPA), exposure to diesel exhaust, even at low levels, is a serious health hazard and can cause respiratory problems such as asthma and bronchitis. Diesel emissions are well-documented asthma triggers and may increase the severity of asthma attacks. Asthma is currently the number one cause of missed school days for American children, and asthma affects more than one in nine children in the Northeast. (Source: Asthma Regional Council Web site – see resources below)
Documentation for Policy Prerequisite 6

Submit a copy of signed resolution or signed school district policy including, at a minimum, the provisions outlined in this credit. Additional provisions may apply – see sample policy on Asthma Regional Council Web site for guidance:

http://www.asthmaregionalcouncil.org/about/BusToolkit.htm

Resources

http://www.asthmaregionalcouncil.org/about/BusToolkit.htm

http://www.asthmaregionalcouncil.org/about/documents/SchoolBusNoIdlingPolicy7.29.04.doc

Policy Prerequisite 7: Elimination of CFC- and HCFC-based Refrigerants

| Required | **PO P 7. New Construction (NC)** – Use no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems.
PO P 7. Renovations (R) – Install no CFC- or HCFC-based refrigerants in building Heating, Ventilating, Air Conditioning, & Refrigeration (HVAC&R) systems in the school. Replace any equipment that utilizes CFC- or HCFC-based refrigerants and is over ten years old. And implement a plan to phase-out the use of such refrigerants in all existing equipment within five years. |

Because chlorofluorocarbon-based refrigerants have been found to adversely affect atmospheric ozone levels, this prerequisite requires the use of alternative refrigerants in Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC&R) systems.

For renovation projects – In addition to installing no new equipment utilizing CFC or HCFC refrigerants, existing equipment that utilizes these refrigerants and is over ten years old must be replaced. In addition the school department must implement a plan to phase out the use of such refrigerants in existing equipment. The plan must schedule the phaseout of such refrigerants within five years.

Documentation for Policy Prerequisite 7

Submit specifications demonstrating the use of non-CFC/HCFC-based refrigerants in all HVAC and refrigeration systems to be installed, **and the replacement and/or phase-out plan for any existing equipment.**

Policy Prerequisite 8: Utilize the Facility as a Teaching Tool

| Required | **PO P 8.** Develop and implement a plan to utilize the facility as a teaching tool for environmental quality, energy efficiency, and renewable energy. The plan must include annual training of all staff in the educational and environmental benefits of the facility, and an informational kiosk or other display that presents the educational and environmental benefits associated with the CHPS school. |

A high performance school offers an excellent opportunity to serve as a teaching tool for students, staff, and the public. A plan that fulfills this requirement will include at least the following elements:

- At least one annual workshop for staff that covers the educational and environmental benefits of the facility
- A plan to incorporate education regarding the high performance aspects of the school in science and vocational curricula, as appropriate depending on grade level taught
- An informational kiosk, or other display, in a public area of the school that presents the educational and environmental benefits of the CHPS project

Documentation for Policy Prerequisite 8
Submit a detailed plan as outlined above, including schematic for the kiosk and curricula outline.

Resources
The National Energy Education Development Project is a non-profit organization that works with students, educators, businesses, government, and community leaders to design and deliver energy education programs, http://www.need.org/ Their catalog of materials may be downloaded at http://www.need.org/needpdf/Catalog.pdf

Policy and Operations Elective Credits

Policy Elective Credit 1: Purchase a Computerized Maintenance System

| 1 credit | **PO EC 1.** In addition to prerequisite P 4 above, the school district shall purchase and use a computerized maintenance management system (CMMS) in the new or renovated school. If the district already uses a CMMS, the system must be expanded to incorporate automated maintenance scheduling for the new or renovated school. |

Computerized maintenance management systems offer the opportunity to enhance maintenance practices through the automatic scheduling and tracking of maintenance procedures. Web-based services and stand-alone products are available.

Documentation for Policy Elective Credit 1
Submit a copy of a signed contract or receipt for the purchase of a CMMS.
Policy Elective Credit 2: Purchase Clean Energy

1 credit	**PO EC 2.1.** Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 10% of the school's projected annual electricity needs.
2 credits	**PO EC 2.2.** Commit for a period of two years to purchasing, at either the municipal or school district level, Renewable Energy Certificates (RECs) or clean renewable electricity for the equivalent of at least 25% of the school's projected annual electricity needs.
1 credit	**PO EC 2.3** Obtain an additional point if the Renewable Energy Certificates (RECs) are purchased from a local (within 200 miles) generator.

Purchase electricity for the school from a provider of clean renewable electricity or Renewable Energy Certificates (RECs) such that the equivalent of at least 10% of the school’s projected annual regulated electricity needs will be provided by renewable sources. Credits cannot be combined; the maximum credit is 2 credits.

Renewable energy generating facilities produce electricity that is used on-site, supplied to the appropriate regional electrical “grid,” or a combination of the two. Renewable energy providers also sell Renewable Energy Certificates (RECs) that serve as credits for power produced by certain renewable energy technologies. RECs are typically purchased by utilities, which must meet legal requirements to “produce” certain amounts of renewable power depending on state regulations. The purchase of newly issued RECs supports the distribution of electricity from renewable sources and encourages the construction of additional renewable generating facilities. RECs are available for both “new” renewable energy and for energy produced by older (pre 1997) generating stations. Choosing to pay a premium for “new” RECs will most likely encourage the development of additional renewable energy facilities.

Documentation for Policy Elective Credit 2

Submit a copy of signed resolution passed by the appropriate governing body (see sample resolution below). The resolution must show the number of kilowatt hours (kWh) for which clean renewable electricity or RECs will be purchased on an annual basis.

AND, appropriate documentation from the clean power or REC supplier indicating the number of kilowatt hours (kWh) for which clean power or RECs are being purchased.

The total annual kWh used for the calculation must be the same as that used for compliance with the energy efficiency sections of the Protocol.
Sample Resolution for Renewable Energy Credits

WHEREAS, the cost of conventional fuels, such as oil and natural gas is increasing, and
WHEREAS, in the last decade, Northeast has become increasingly dependent on natural gas, and
WHEREAS, fuel diversity is important for energy security reasons, and
WHEREAS, fossil fuels are limited in supply and will someday be exhausted, and
WHEREAS, fossil fuels generate pollutants when combusted, including greenhouse gases that can lead to global climate change, and
WHEREAS, renewable power is from clean, abundant energy sources, such as the sun and wind, and
WHEREAS, renewable power generates few, if any, pollutants.

NOW THEREFORE BE IT RESOLVED that the _________________ [insert name of school district, city or town] will make arrangements to purchase clean renewable electricity or Renewable Energy Certificates (RECs) for a period of two years covering at least _____ [25% or 50%] of the ____________________ [insert name of school] projected annual regulated electricity needs. The ________________[insert name of school] projected annual regulated electricity needs are _____kWh [insert number of kWh].

Resources

For more information on the Massachusetts Renewable Energy Portfolio Standard, see http://www.mass.gov/doer/rps/
For more information on the Clean Energy Choice program, see http://www.masstech.org/CleanEnergyOrg/index.htm.

Policy Elective Credit 3: Alternative Fueled Vehicles and Equipment

<table>
<thead>
<tr>
<th>1 credit</th>
<th>PO EC 3.1. Alternative Fuel Demonstration Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Establish an alternative fuel project that demonstrates the viability of alternative fuels to the school district, the community and the region. The project must meet the following criteria:</td>
</tr>
<tr>
<td></td>
<td>- Commit to using an alternative fuel such as B-20 diesel fuel, hybrid electric-diesel, or compressed natural gas in at least one school bus.</td>
</tr>
<tr>
<td></td>
<td>- Develop an outreach campaign that will publicize the demonstration program to the general public. Outreach programs should include media events, the publication of educational materials, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 credits</th>
<th>PO EC 3.2. Alternative Fueled Buses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At least 20% of the buses serving the school must use alternative fuel such as compressed natural gas or be clean technology buses with hybrid electric-diesel engines. This credit may also be achieved by committing to use B-20 diesel fuel in all the buses serving the school for a period of two years.</td>
</tr>
<tr>
<td></td>
<td>Note: If 20% of the buses serving a school does not equal a whole number, then round down to the nearest whole number. If the number is less than one, then round up to one.</td>
</tr>
</tbody>
</table>
The purpose of this credit is to promote clean alternatives to diesel fuel and gasoline for school bus fleets, buses, and engine-driven maintenance vehicles and equipment. The district must carefully consider the pros and cons of each type of fuel. B-20 bio-diesel is a mixture of 20% agriculturally derived oils and fossil fuel. It burns more cleanly than 100% diesel fuel, although it is known to exhaust elevated levels of nitrogen oxides. Compressed natural gas (CNG) is an efficient and clean fuel. However, CNG refueling stations can be quite expensive to construct, so this option would be more attractive to communities with existing CNG fuel stations. Diesel hybrid buses employ a mixture of battery power and diesel fuel power. The technology is available for city transit buses and is currently being studied for its applicability to school buses. Early results indicate that “plug-in” hybrid electric-diesel school buses, which charge at night, exhaust few emissions, and can reduce fuel costs over the life cycle of the bus. Buses owned by contracted transportation companies may be counted toward this credit if used to transport students to and from the project school.

Documentation for Policy Elective Credit 3

Alternative Fueled Buses — Submit a letter from the project owner that includes the following:

- A description of the type of alternative fueled buses to be used to serve the school
- The total number of buses that will serve the school
- The number of buses that will be operated on the alternative fuel
- A commitment to continue the alternative fuel program as described for a minimum of two years

To document that B-20 diesel fuel will be used in all the buses serving the school, provide a copy of a two-year contract with a fuel supply company or transportation company (or a one-year contract with the option to renew for another year) stating that fuel supply for buses used on the daily route for collecting students will be B-20 diesel. If entering into a contract at the time of program certification is not possible, submit a memorandum of understanding with the fuel supply or transportation company that clearly outlines the intention to use B-20 diesel in the buses that will serve the completed school.

If the bus or buses have not yet been purchased, provide product literature on the type of bus to be purchased and a letter from the project owner certifying that money has been dedicated to the purchase. For contracted school bus services, provide a copy of the contract with the transportation company indicating that 20% of the buses serving the school will use alternative fuel.

Alternative Fueled Maintenance Vehicles — Submit bid specifications and cost estimates for all lawnmowers, tractors, and maintenance trucks to be purchased for this school project. This credit is achieved when 50% of the combined purchase cost goes toward purchasing alternatively fueled maintenance vehicles and equipment.
Policy Elective Credit 4: Implement a Carbon Footprinting Program

<table>
<thead>
<tr>
<th>1 credit</th>
<th>PO EC 4. Carbon Footprinting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implement a carbon footprinting program that allows students and teachers to calculate the carbon footprint of school & municipal buildings as well as community businesses and households.</td>
</tr>
</tbody>
</table>

Many students take an active interest in environmental issues and seek out ways to make an individual difference involving environmentally related actions. Carbon footprinting provides an opportunity for students and staff to learn about the effects of CO² emissions on climate change, and to measure the CO² contributions of their own activities as well as those of their family, the school they attend, etc.

To earn this credit, a recognized carbon footprinting methodology must be utilized to establish a program that encourages students and faculty to calculate personal carbon footprints, and this program must be incorporated in science curricula.

The carbon footprinting methodology and tools utilized will vary depending on the age of the students involved. The program should include a carbon footprinting tool that can be used to calculate individual and household footprints. However, the program must also include classroom curricula that discusses the factors contributing to carbon impacts and methodologies to reduce carbon footprints.

Documentation for Policy Elective Credit 4

Submit a plan for a carbon footprinting program as described above, including classroom curricula that incorporates the program.

Resources

http://coolclimate.berkeley.edu/ – Carbon footprinting methodology and online tool developed by the Berkeley Institute of the Environment

http://www.nature.org/initiatives/climatechange/calculator/ – Carbon footprint information and a simple online tool used to produce rough carbon footprint estimates

http://www.epa.gov/climatechange/emissions/ind_calculator2.html – The EPA’s climate change information that includes a simple carbon footprint calculator to be used for rough estimates.

Policy Elective Credit 5: Implement a Zero-Net Energy Plan

<table>
<thead>
<tr>
<th>2 credits</th>
<th>PO EC 5. Implement a Zero-Net Energy Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Utilizing DOE’s Zero Net Energy Commercial Building Initiative or other program template adopt a plan for the school to achieve zero net energy status by the year 2030.</td>
</tr>
</tbody>
</table>
A zero net energy school facility is designed to be optimally efficient and, over the course of a year, generates energy on-site, using clean renewable resources, in a quantity equal to or greater than the total amount of energy consumed on-site.

The NE-CHPS Protocol includes many requirements and credits addressing energy efficiency and the adoption of renewable energy technologies. However, additional credit may be obtained by adopting a plan to continuously improve building performance with a goal of obtaining zero net energy status by the year 2030.

To obtain this credit the school district must adopt a plan that includes at least the following elements:

- Optimized Building Orientation – Newly constructed buildings must be oriented and configured to maximize daylighting, passive solar exposure, natural ventilation, site shading, and other passive climatic responsive features.

- Superior Energy Efficiency Performance – Obtain the NE-CHPS Elective Energy Efficiency credit requirement EE EC 1 – NC (A or B): Demonstrate superior energy performance beyond prerequisite EE P1, by adopting a minimum of 7 of the 14 Enhance Performance Strategies detailed in the Advanced Buildings Core Performance Guide (New Buildings Institute). Or: utilizing the Total Building Approach outlined in ASHRAE standard 90.1, demonstrate that the renovated building(s) will use 20% less energy than the same building(s) built to ASHRAE standard 90.1 2007. (See Elective Credit EE EC 1 – NC for details)

- Solar Ready Roofs – All newly constructed roofs must be solar ready. Solar ready roofs meeting this criteria are engineered to accept the weight and wind loads incurred by the installation of solar thermal and photovoltaic panels, include an identified optimal location for the installation of solar panels, and provide an electrical conduit to the roof area to accept wiring for photovoltaic panels. Applicants may follow the Massachusetts Division of Capital Asset Management (DCAM) and Department of Energy Resource (DOER) requirements for solar ready roofs, or may submit engineering specifications and drawings for a future solar project.

- Minimum On-site Renewable Energy Generation – All projects qualifying for this credit must show an initial commitment to renewable energy systems by installing, at a minimum, a demonstration size renewable energy system. System may be solar, wind, biomass, or other on-site renewable energy system.

- The adoption of a process that provides for the periodic review and modification of the energy efficiency of the facility and the generation of on-site renewable energy generation so that by 2030 all new construction and major renovation will result in a zero net energy building (i.e., 100% of on-site energy demand will be met using renewable energy systems). The initial review must occur no later than five years after facility occupancy and must be repeated on at least a five-year schedule.

- Advanced metering must be installed in all new buildings or in buildings that undergo major renovations. The metering system must allow for the tracking, measurement, and easy retrieval of energy and water consumption data on no less than a monthly basis. Building level metering is required for all energy use, including electricity, natural gas, fuel oil, steam, chilled water, and/or renewable power, as appropriate, as well as for
water consumption and wastewater. This metering shall be enabled to report electronically either through the EMS system or through another means.

- Commissioning and recommissioning – All projects must meet the requirements of Energy Efficiency Elective Credit 3 (EE EC 3), which requires enhanced building commissioning performed by an independent third-party commissioning agent as part of the design and construction process. In addition, these projects must undergo recommissioning after five years of occupancy and every five years thereafter to assure that the facility is achieving optimal efficiency and that the project is on track to meet the zero–net energy goal.

Documentation
Submit a copy of the Zero-Net Energy Plan adopted by the school district.

Resources
The U.S. DOE’s Net-Zero Energy Commercial Building Initiative,
http://www1.eere.energy.gov/buildings/commercial_initiative/

Massachusetts Zero Net Energy Buildings Taskforce report,

Massachusetts Solar Ready Roofs Protocol – (too be available Fall of 2009 or early 2010)

V. Indoor Environmental Quality

A quality indoor environment is crucial to the health of building occupants and the maintenance of a high level of student and teacher performance. Indoor air quality is the most obvious component of indoor environmental quality, but lighting and views of the outdoors also play a role. Proper indoor environmental quality reduces absenteeism and avoids the potential for long- and short-term health problems. Achieving excellent indoor environmental quality starts during construction and is maintained with careful long-term planning. Proper building siting, daylighting, proper ventilation, thermal comfort, and the protection of building materials from moisture all contribute to indoor environmental quality. Implementing all the prerequisites in this section will provide a foundation for providing a healthy and pleasant educational environment.

Summary Tables

<table>
<thead>
<tr>
<th>Indoor Environmental Quality Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Required</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Required</td>
</tr>
</tbody>
</table>
Required

IEQ P 5. New Construction (NC)- For active entryways that incorporate a vestibule, provide a three-part walk-off system that includes a drop-through mat to capture dirt, particulates, and moisture before they enter the building. Avoid drain pans and traps in the vestibule to prevent a build up of moisture during summer months. At all other active entrances, provide a two-part walk-off system that incorporates grills, grates, etc. to remove dirt and snow, and provide walk-off mats inside the entranceway. The recommended length of interior walk-off mats is 15 feet. Provide, at a minimum, an individual mat for classroom doors that exit directly to the outdoors.

IEQ P 5. Renovations (R)- For renovations where a three-part walk-off system is impractical due to building design and construction, a two-part system that allows the capture of dirt, particulates, and moisture at the entrances is acceptable.

IEQ P 6. Prevent water accumulation by designing surface grades to slope away from buildings and building foundations in order to drain away water, snowmelt, and HVAC condensate to prevent the accumulation of water. Rain leaders and downspouts must be directed to filtration structures, storage, or rain gardens, or to daylight provided that surface drainage moves water away from buildings. Evaporative drip pans for HVAC condensate removal are prohibited.

IEQ P 7. New Construction (NC)- Design and install irrigation systems so that they do not spray water on buildings.

IEQ P 7. Renovations (R)- Adjust and/or redesign irrigation systems so that they do not spray water on buildings.

IEQ P 8. During the construction or renovation process, meet or exceed the following minimum requirements to prevent the growth of mold and bacteria:

- Keep building materials dry – wood, porous insulation, paper, and fabric, should be kept dry to prevent the growth of mold and bacteria. Cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials.
- Replace any water-damaged materials, or dry within 24 hours, due to the possibility of mold and bacterial growth. Materials that are damp or wet for more than 24 hours may need to be discarded.
- Immediately remove any materials showing signs of mold and mildew, including any with moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.
- Require that moisture sensitive materials be delivered dry and protected from the elements.
- Allow for time in the construction schedule for materials to dry before they are enclosed.

IEQ P 9. If the building or a portion of the building is to be occupied during the construction or renovation process, meet or exceed the Recommended Design Approaches of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) *IAQ Guideline for Occupied Buildings Under Construction*, 1995, chapter 3.

IEQ P 10. Following construction or renovations, replace all HVAC filtration media immediately prior to occupancy.

IEQ P 11. Ensure that permanently installed filtration media have a Minimum Efficiency Reporting Value (MERV) of at least 10 except for unit ventilator systems, which shall have a MERV of at least 7.

IEQ P 12. Specify only electric ignitions for the following types of newly installed gas-fired equipment: water heaters, cooking stoves/ovens, air handling units, boilers. Modify any retained gas-fired equipment of the above types with electronic ignitions.
Required

IEQ P 13	Locate/relocate outside-air intake openings a minimum of 25 feet from any hazard or noxious contaminants such as vents, chimneys, plumbing vents, exhaust fans, cooling towers, streets, alleys, parking lots, and loading docks. When the location of an intake opening within 10 feet of a contaminant source is unavoidable, such opening shall be located a minimum of 2 feet below the contaminant source, or other means of avoiding airflow contamination shall be employed. This prerequisite is based on the BOCA 1993 Mechanical Code Section M-308.1.
IEQ P 14	Do not install internally insulated ductwork unless it is double-walled ductwork or includes duct liners that meet ASTM standards C1071 and C1104 for surface erosion and water vapor sorption.
IEQ P 15	Prohibit fossil fuel powered mobile machinery from being used inside the building.
IEQ P 16	Utilizing the services of a professional acoustical consultant, develop an acoustics strategy to assure that all classrooms achieve acoustic performance levels consistent with best practices. The strategy should utilize the process for evaluating room acoustics outlined in ASHRAE Handbook – Fundamentals 2005 and should follow best practice sound attenuation strategies to reduce both low and high frequency noise, as well as reduce reverberation time. Or; Ensure that all classrooms meet the standards of ANSI 12.60-2002, the requirements of which include:
	- <35 dB background noise and maximum reverberation time of 0.6 seconds for areas ≤10,000 ft²
	- <35 dB background noise and maximum reverberation time of 0.7 seconds for areas >10,000 ft² and ≤20,000 ft²
	- <40 dB background noise for areas >20,000 ft²
IEQ P 17	Comply with ASHRAE Standard 55-2004 for thermal comfort standards during the heating season, within established ranges per climate zone.
IEQ P 18	Adopt or develop an Integrated Pest Management program designed to exclude undesirable pests from the school buildings.
IEQ P 19	Minimize mercury exposure by eliminating mercury containing thermostats and other equipment; installing only low-mercury lamps; and labeling any other mercury containing products. In addition, adopt a policy that all fluorescent lamps are recycled.
IEQ P 20	Renovations (R) - If the renovated school utilizes unit ventilators, designate that best practices, including annual maintenance and the use of MERV 7 filters be followed.

Indoor Environmental Quality Elective Credits

<p>| 1 credit | IEQ EC 1 | Where chemical use occurs, including housekeeping areas, chemical mixing areas, copying/print rooms, photo labs, science labs, and vocational spaces, use deck-to-deck partitions with dedicated exhaust at a rate of at least 0.50 cubic feet per minute per square foot with adequate make-up air. No air recirculation is permitted, and these spaces must have negative air pressure, which is defined as an outside exhaust at a rate of at least 0.50 cubic feet per minute per square foot, maintaining a negative pressure of at least 5 Pa (0.02 inches of water gauge) to a minimum of 1 Pa (0.004 inches of water) when the doors are closed. In photo-lab areas, specify table vents to draw chemical vapors away from the breathing zone of darkroom users. |
| 1 credit | IEQ EC 2 | Install ducted HVAC air returns to avoid the dust and microbial growth issues. The use of ceiling plenum return vents is not acceptable as part of an HVAC system design. |</p>
<table>
<thead>
<tr>
<th>Credit</th>
<th>IEQ EC 3. Design the HVAC system with particle arrestance filtration rated at Minimum Efficiency Reporting Value (MERV) of 13 in all mechanical ventilation systems, installing filters immediately prior to occupancy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>IEQ EC 4. Ninety percent (90%) of all classrooms shall have a minimum of one operable window per classroom that is reasonably accessible.</td>
</tr>
<tr>
<td>1 credit</td>
<td>IEQ EC 5. Install high intensity fluorescent lighting fixtures instead of HID fixtures in the gymnasium and other high ceiling areas.</td>
</tr>
<tr>
<td>1 credit</td>
<td>IEQ EC 6. Supply temporary construction ventilation. Continuously ventilate during installation of materials that emit Volatile Organic Compounds (VOCs) and after installation of those materials for at least 72 hours or until emissions dissipate. Ventilate directly to outside areas; do not ventilate to other enclosed spaces that are occupied by students, staff, or contractors. If continuous ventilation is not possible using open windows and temporary fans, then the building’s HVAC system may be utilized provided that MERV 8 filtration media are installed at each return air grill as determined by ASHRAE 52.2-2004.</td>
</tr>
</tbody>
</table>
| 1 credit | IEQ EC 7. During construction, seal HVAC supply and return openings to protect them from dust infiltration during such activities as drywall installation and floor sanding. If installing a new duct system, follow SMACNA guidelines “Duct Cleanliness for New Construction Guidelines” according to advanced levels of cleanliness. Of specific importance are the following:
 - Specify that ductwork be sealed during transport.
 - Store ductwork in clean, dry conditions and keep sealed.
 - Wipe down internal surfaces of ductwork immediately prior to installation.
 - Seal open ends of completed and “in-progress” ductwork.
 - During installation protect ductwork with surface wrapping. |
| 2 credits | IEQ EC 8. HEPA Vacuuming – Vacuum carpeted and soft surfaces with a high-efficiency particulate arrestor (HEPA) vacuum prior to re-occupancy. For phased, occupied renovations, HEPA vacuum the carpet daily in occupied areas. |
| 2 credits | IEQ EC 9. Prior to flushout, filters must be replaced with at least Minimum Efficiency Reporting Value (MERV) 10 filters and replaced again after flushout with a minimum of MERV 10 filters. For unit ventilator systems, a minimum of MERV 7 filters must be installed and then replaced with MERV 7 filters after flushout.
AND
Perform one of two flushout options:
Option 1 – The entire building shall be flushed out continuously (24 hours/day) with outside air for at least 10 days prior to receipt of certificate of occupancy.
OR
Option 2 – Flushing of each space may not begin until all major finish materials have been installed on floors, walls, and ceilings. This includes all casework. At that time, each space may be flushed out separately and occupied once 3,500 ft³ of outdoor air per ft² of floor area of the space has been delivered. The space may then be occupied provided that it is ventilated at a rate of 0.30 cfm/ft² of outside air or the design minimum outside air rate, whichever is greater, a minimum of 3 hours prior to occupancy and during occupancy, until the total of 14,000 ft³/ft² of outside air has been delivered to the space. |
NOTE: Option 2 is recommended if flush-out dates coincide with time periods when relative humidity levels are typically high (e.g., 70% or greater during hot, humid weather). Water vapor can warp wood and cause mold growth problems on building materials.

2 credits

| IEQ EC 10. Renovations (R) | Classroom Daylighting | Provide low-glare, uniformly distributed, daylighting for 75% of the total critical task areas of classrooms. |

Indoor Environmental Quality Prerequisites

IEQ Prerequisite 1: Access to Views

Required

| IEQ P 1 | Provide direct line of sight to view glazing in 70% of classrooms and administration areas. Qualifying spaces shall have view glazing equal to or greater than 7% of the floor area of that space. View glazing shall be clear and only include window area above 2.5 ft. and below 7.5 ft. from the floor. Install adjustable blinds to control glare. |

Access to views has proven to be extremely important in educational and work environments. A human connection to the natural rhythms of the outdoor environment is important to both mental and physical health.

In order to meet this prerequisite, 70% of classroom and office space must have significant views to the outdoor environment. Qualifying classrooms and offices shall have clear windows that have a viewing area that is equal to or greater than 7% of the floor area of the space. View glazing shall be clear and only include window area above 2.5 ft. and below 7.5 ft. from the floor.

For the purposes of this credit, the following rooms are included:

- General classrooms
- Art rooms
- Music rooms
- Science rooms
- Computer rooms
- Special needs, remedial, and collaborative space
- Administration spaces

Exceptions: Photo labs, video production rooms, gymnasiums, auditoriums, and other rooms requiring limited illumination. School buildings that share at least two sides with other buildings are exempted from this requirement.
Documentation for IEQ Prerequisite 1

1. Submit an “Access to Views” spreadsheet or table that includes the following information:

2. The area in square feet of each classroom and administrative space. Identical spaces may be combined.

3. The area in square feet of the clear glazing installed between 2.5 feet and 7.5 feet from the floor surface of each of the listed spaces.

4. Submit floor plan and elevation drawings of each floor with spaces labeled to match their names as input into the table.

IEQ Prerequisite 2: Classroom Daylighting

| Required | IEQ P 2, New Construction (NC)- Provide low-glare, uniformly distributed daylighting for 75% of the total critical task areas of classrooms.
| IEQ P 2, Renovations (R)- Provide low-glare, uniformly distributed, daylighting for 50% of the total critical task areas of classrooms. |

All daylighting designs must meet the following requirements:

- The teaching surfaces, or the work plane, must be protected from direct sunlight, from vertical glazing, during normal school hours. Light shelves, blinds, and other shading devices may be utilized to meet this requirement. Areas located within 4 feet of exterior walls may be excluded from this glare elimination requirement.
- Skylights and roof monitors shall also meet the above criteria unless they incorporate diffusing devices.
- The daylighting system must be designed to replace a minimum of 25% of the total electrical illumination needed for the classroom areas.
- Whenever possible, the project should be oriented to allow for northern- and southern-exposure classroom windows. East- and west-facing windows are less desirable due to morning and afternoon glare problems.

To earn this credit, 75% (50% for renovation projects) of the classroom critical task area collectively must be designed for daylighting and such daylighting must replace a minimum of 25% (15% renovation projects) of the total electrical illumination needs for the classroom areas. Critical task area is the square footage of each classroom where teaching and learning surfaces could be placed (excludes closets, cabinets, shelving, etc.). Teaching and learning surfaces are considered to be 30 inches above the floor.

Properly designed daylighting is the best way to illuminate classrooms. Several recent studies have shown that student performance improves dramatically under daylit conditions. However, poorly designed daylighting doesn’t provide the same benefits, and student performance may actually deteriorate to levels below that of the performance under artificially illuminated spaces. There is also growing evidence that daylighting positively affects circadian rhythms, playing an important role in regulating sleep patterns.
Daylighting in classrooms should be uniformly distributed and should not exceed a ratio of 8:1 of maximum footcandles to minimum footcandles. There should be limited direct-beam sunlight penetration and teachers should have control of daylight intensity and glare. It is extremely important that daylighting strategies be carefully considered. The design of daylighting systems should be entrusted to a lighting designer or architect with daylighting experience. A variety of daylighting guides and resources are listed in the resource section below.

Documentation for IEQ Prerequisite 2

Submit a narrative description and design drawings detailing the daylighting design for the school. Demonstrate that at least 75% (50% for renovation projects) of the total classroom critical task area will meet the above listed requirements and that the electric lighting in these spaces will be controlled (on-off or dimming) by automatic daylight harvesting controls.

Demonstrate that, as much as possible, the classroom orientation provides for northern- and southern-exposure windows.

In addition, provide results from one of the two following options:

Option 1 – Computer Simulation

Provide a synopsis of a computer simulation that shows that 75% (50% for renovation projects) of the critical task areas in the classrooms achieve low-glare, uniformly distributed daylighting. If a “one point in time” simulation is used, it should be modeled based on a sunny day, on the equinox, at noon. Daylit surfaces are to be 30 inches above the floor.

Option 2 – Physical Modeling

Create a physical model that contains a representative sample of the classrooms in the school. Provide a report of the modeling effort that demonstrates compliance and explains the methodology used for the measurement of daylight and the interpretation of modeling results.

For the purposes of this credit, classrooms include:

- General classrooms
- Art rooms
- Music rooms
- Science rooms
- Special needs, remedial, and collaborative space

Resources

LEED Reference Guide, Indoor Environmental Quality, Credit 8: Daylighting

Lighting Research Center, http://www.lrc.rpi.edu/researchAreas/daylighting.asp

HESCHONG MAHONE GROUP, INC., Daylighting Studies, http://www.h-m-g.com/
IEQ Lighting Quality (Electric Lighting) Category

Purpose: Promote improved visual performance by providing premium quality electric lighting.

IEQ Prerequisite 3: Install Low-Glare Lighting Systems in Classrooms

| Required | **IEQ P 3.** Install an electric lighting system in all classroom areas to enhance occupants’ visual performance with pendant- or ceiling-mounted high performance lighting fixtures. The lighting fixtures must incorporate high performance T8 (HPT8, as defined by CEE, the Consortium for Energy Efficiency) or T5 technology with lamp efficacy ratings of a minimum of 85 mean lumens per watt and color rendering index (CRI) ratings of 80 or higher. All lighting fixtures must include glare control features. |

Classrooms require high quality electric lighting when daylighting is not available or is insufficient. High quality electric lighting provides adequate light for the task, while improving the rendering of colors and reducing glare.

In order to provide high quality lighting, the lighting fixtures, lamps, and ballasts, and the lighting design layouts must be carefully considered.

T8 Lamps & Ballasts – Modern T8 (1” diameter) lamps paired with electronic ballasts, provide high quality lighting combined with excellent energy efficiency. Additionally these systems maintain their light output better over time than do the standard T12 (1 ¼” diameter) lamps they have replaced. High Performance T8 (HPT8, as defined by CEE, the Consortium for Energy Efficiency) lamp and ballast systems provide enhanced efficiency when compared with other T8 systems. Their cost is only slightly higher than standard T8 systems, and they have become readily available through normal distribution chains.

T5 Lamps & Ballasts – T5 (5/8” diameter) lamps are also excellent choices for classroom lighting. Like most T8 systems, they are paired with electronic ballasts. It is often assumed that because T8 lamps are more efficient than T12 lamps, that T5 lamps are more efficient than T8 lamps. This is not accurate, as many T8 lamps produce more light per watt (efficacy) than do T5 lamps. However, the thin profile of T5 lamps makes them ideal for use in fixtures where optical control is important. For this reason, many high performance lighting fixtures incorporate T5 lamps. Because they produce a lot of light for their size, T5 lamps produce a significant amount of glare and should only by used in fixtures that hide the lamp from direct view and optically control glare.

Systems that utilize standard output and high output, T5 lamps are eligible for meeting this prerequisite, but only when used in fixtures that hide the lamp from direct view and incorporate glare control strategies.

Fixture Types – Fixture styles that can be used to provide high quality classroom lighting and may be used to qualify for this prerequisite, include:
Pendant mounted indirect or direct-indirect fixtures – Fixtures must have a tested overall efficiency of at least 75% and provide no more than 40% downlight.

Recessed or surface mounted indirect or direct-indirect fixtures – Fixtures must have a tested overall efficiency of at least 65% and shield lamps from direct view.

Recessed advanced optics fixtures – This class of fixture is relatively new to the marketplace. Advanced optical features are used to distribute the light evenly and control glare. Tested overall efficiency must be at least 75%. Examples of this fixture style are the Lithonia RT5, Metalux Accord, and LedaLite Pure FX.

Lighting Layouts – Lighting layouts should provide even light throughout the classroom although it is sometimes desirable to provide higher lighting levels at the teaching station. Lighting power density (LPD) levels should be no higher than 1.2 watts per square foot. The minimum illumination levels established for space types by the Illuminating Engineering Society of North America should be met.

Documentation for IEQ Prerequisite 3

1. Submit a lighting schedule for all lighting fixtures, including lamps and ballast information.

2. Submit plans showing the lighting layouts for the following spaces:

 - General classrooms
 - Science rooms
 - Computer rooms
 - Special needs, remedial, and collaborative space

Resources

Advanced Lighting Guidelines, New Buildings Institute, http://www.newbuildings.org/lighting.htm

IEQ Indoor Air Quality Category

Purpose: Achieve good indoor air quality to protect student and staff health and improve performance and attendance.

IEQ Prerequisite 4: Meet ASHRAE Standard 62.1-2004

Supplying fresh ventilated air to classroom areas is critical to the protection of good indoor air quality. Ensure that the ventilation system’s outdoor air capacity can meet standards in all modes of operation.
Documentation for IEQ Prerequisite 4
Submit a letter signed by a licensed professional engineer (PE) certifying that the standards of ASHRAE Standard 62.1-2004 will be met on the project.

Resources

IEQ Prerequisite 5: Provide Walk-Off System

| Required | IEQ P 5, New Construction (NC) | For active entryways that incorporate a vestibule, provide a three-part walk-off system that includes a drop-through mat to capture dirt, particulates, and moisture before they enter the building. Avoid drain pans and traps in the vestibule to prevent a build up of moisture during summer months. At all other active entrances, provide a two-part walk-off system that incorporates grills, grates, etc. to remove dirt and snow, and provide walk-off mats inside the entranceway. The recommended length of interior walk-off mats is 15 feet. Provide, at a minimum, an individual mat for classroom doors that exit directly to the outdoors. |
| IEQ P 5, Renovations (R) | For renovations where a three-part walk-off system is impractical due to building design and construction, a two-part system that allows the capture of dirt, particulates, and moisture at the entrances is acceptable. |

Particles tracked into the school are one of the chief sources of contamination of carpets and floors. Research on school carpeting in particular shows that it can be a reservoir of pesticides, heavy metals, and dust tracked in on students’ shoes.

The best way to keep the school free of dust, dirt, and contaminants is to prevent these unwanted items from entering the building in the first place. It is especially important to protect young school children since they are more likely to sit and play on classroom floors and therefore be more exposed to contaminants.

“Active” entrances are those points where students and staff members enter and exit the building from parking areas, vehicle drop off areas, and recreational areas.

Documentation for IEQ Prerequisite 5
1. Submit specifications for permanently installed entryway walk-off systems and walk-off mats.
2. Submit photographs showing location of grates, grills, and walk-off mats at all high volume entrances.

IEQ Prerequisite 6: Drainage to Prevent Water Accumulation

| Required | IEQ P 6 | Prevent water accumulation by designing surface grades to slope away from buildings and building foundations in order to drain away water, snowmelt, and HVAC condensate to prevent the accumulation of water. Rain leaders and downspouts must be directed to filtration structures, storage, or rain gardens, or to daylight provided that surface drainage moves water away from buildings. Evaporative drip pans for HVAC condensate removal are prohibited. |
Due to health risks that can be caused by mold and microbial growth, all surface grades, drainage systems, and HVAC condensate must be designed to prevent the accumulation of water under, in, or near buildings. Condensate systems that rely on gravity drainage are strongly preferred to systems that use pumps to move condensate due to the maintenance issues and energy costs associated with pump systems.

Documentation for IEQ Prerequisite 6

1. Submit site plan showing grading plan.
2. Submit plan of condensate system including details of the drain traps and gravity drainage system.
3. If installing unit ventilator systems with air conditioning equipment, provide specifications demonstrating that evaporation trays are not being used.

IEQ Prerequisite 7: Prevent Irrigation System Water Spray on Buildings

| Required | IEQ P 7, New Construction (NC) - Design and install irrigation systems so that they do not spray on buildings.
| | IEQ P 7, Renovations (R) - Adjust and/or redesign irrigation systems so that they do not spray water on buildings. |

Irrigation systems that spray water on buildings often cause structural damage and mold growth. Do not install irrigation systems in locations where they can spray directly on buildings. For renovation projects, redesign/relocate irrigation systems to eliminate water spray on buildings.

Documentation for IEQ Prerequisite 7

Submit plan of irrigation system showing that sprinkler ranges do not intersect with buildings.

IEQ Prerequisite 8: Prevent Mold Problems During Construction

<table>
<thead>
<tr>
<th>Required</th>
<th>IEQ P 8. During the construction or renovation process, meet or exceed the following minimum requirements to prevent the growth of mold and bacteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Keep building materials dry – wood, porous insulation, paper, and fabric, should be kept dry to prevent the growth of mold and bacteria. Cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials.</td>
</tr>
<tr>
<td></td>
<td>- Replace any water-damaged materials, or dry within 24 hours, due to the possibility of mold and bacterial growth. Materials that are damp or wet for more than 24 hours may need to be discarded.</td>
</tr>
<tr>
<td></td>
<td>- Immediately remove any materials showing signs of mold and mildew, including any with moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.</td>
</tr>
<tr>
<td></td>
<td>- Require that moisture sensitive materials be delivered dry and protected from the elements.</td>
</tr>
<tr>
<td></td>
<td>- Allow for time in the construction schedule for materials to dry before they are enclosed.</td>
</tr>
</tbody>
</table>
Construction activities affect indoor air quality long after the building is occupied. Being careful to protect building materials from moisture and removing water-damaged materials are important practices in the prevention of mold in new buildings.

Plan for keeping moisture sensitive materials dry by having them delivered dry and wrapped in plastic and providing for weather-tight storage on the construction site.

Documentation for IEQ Prerequisite 8

1. Submit a copy of the bid specification section that mandates the protection of building materials from water damage.

2. Submit photographs of the construction site illustrating materials protection.

IEQ Prerequisite 9: Use IAQ Best Practices During Construction

| Required | **IEQ P 9.** If the building or a portion of the building is to be occupied during the construction or renovation process, meet or exceed the Recommended Design Approaches of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) *IAQ Guideline for Occupied Buildings Under Construction*, 1995, chapter 3. |

Applicants shall implement containment procedures for dusts, gases, fumes, and other pollutants created during renovation/construction as part of any planned construction of, addition to, or renovation of a school building. Such containment procedures shall be consistent with the most current edition of the *IAQ Guidelines for Occupied Buildings Under Construction* published by the Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA). All bids received for school construction or renovations shall include the cost of planning and execution of containment of construction/renovation pollutants consistent with the SMACNA guidelines. For occupied renovations, the plan shall include a complaint procedure and a system (bulletin, backpack letters, Web site) for communicating information about procedures, protective measures, and construction schedules from the construction team to the building occupants.

Documentation for IEQ Prerequisite 9

Submit a Construction Indoor Air Quality Management plan that will address SMACNA “control measures” for IAQ such as HVAC system protection and equipment that emits exhaust. The plan should also address the incorporation of low VOC products, depressurization of work areas, improved housekeeping, scheduling of construction activity to lower impacts of IAQ on workers and potential building occupants, and the method of communication between construction team and building occupants or vice versa, if it is an occupied renovation.

Resources

Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA), http://www.smacna.org/
IEQ Prerequisite 10: Replace HVAC Filters Prior to Occupancy

Required

IEQ P 10. Following construction or renovations, replace all HVAC filtration media immediately prior to occupancy.

Dust and other contaminants during construction and final cleanup severely tax filtering systems. All filters must be replaced prior to occupancy of the building.

Documentation for IEQ Prerequisite 10

Submit a copy of the bid specification section that requires the replacement of filters prior to occupancy.

IEQ Prerequisite 11: Install HVAC MERV 10 Filters

Required

IEQ P 11. Ensure that permanently installed filtration media have a Minimum Efficiency Reporting Value (MERV) of at least 10 except for unit ventilator systems, which shall have a MERV of at least 7.

Documentation for IEQ Prerequisite 11

Specify replacement of filters with MERV 10 and, in unit ventilator systems, MERV 7. This documentation is unnecessary if IEQ Credit 3.3 for MERV 13 filters is fulfilled.

IEQ Prerequisite 12: Install Electric Ignitions

Required

IEQ P 12. Specify only electric ignitions for the following types of newly installed gas-fired equipment: water heaters, cooking stoves/ovens, air handling units, boilers. Modify any retained gas-fired equipment of the above types with electronic ignitions.

Under certain conditions, the accumulation of carbon monoxide from pilot lights can cause dangerous air quality conditions for staff and students. Therefore, electric ignitions are required for the above listed equipment.

Documentation for IEQ Prerequisite 12

Submit specifications for all gas-fired equipment.

IEQ Prerequisite 13: Properly Locate Air Intakes

Required

IEQ P 13. Locate/ relocate outside-air intake openings a minimum of 25 feet from any hazard or noxious contaminants such as vents, chimneys, plumbing vents, exhaust fans, cooling towers, streets, alleys, parking lots, and loading docks. When the location of an intake opening within 10 feet of a contaminant source is unavoidable, such opening shall be located a minimum of 2 feet below the contaminant source, or other means of avoiding airflow contamination shall be employed.

This prerequisite is based on the BOCA 1993 Mechanical Code Section M-308.1.
Locating air intakes away from sources of potential air pollution will ensure that indoor air quality is not compromised by diesel fumes or ventilation, kitchen, or HVAC system exhausts. Locate air intakes at least 2 feet above grade and away from areas of potential snow buildup and away from plantings. Be particularly careful to locate air intakes away from areas where school buses and other vehicles may be idling. Consider prevailing winds and both current and future traffic and development patterns and consult the local board of health to locate nearby emission sources.

Documentation for IEQ Prerequisite 13

Provide drawings showing all air intake openings. Clearly identify hazardous and noxious contaminant sources on the drawings and bubble each air intake with a 50 ft. diameter circle (25 ft. radius) on the drawings.

Where intake openings front on a street or public way, measure the horizontal distance from the centerline of the street or public way to the air intake.

If an air intake is within 25 ft. of vents, chimneys, plumbing vents, exhaust fans, cooling towers, streets, alleys, parking lots, and loading docks, then show that it is at least 2 feet below the contaminant source and 10 feet away horizontally from the nearest edge of the air intake to the nearest edge of the contaminant source. Indicate the horizontal and vertical distances from the contaminant source in the drawings.

Resources

International Code Council, Building Officials and Code Administrators (BOCA),

IEQ Prerequisite 14: Avoid Installing Internally Insulated Ductwork

| Required | **IEQ P 14** Do not install internally insulated ductwork unless it is double-walled ductwork or includes duct liners that meet ASTM standards C1071 and C1104 for surface erosion and water vapor sorption. |

Duct insulation should be located on the outside of ductwork. Duct insulation found on the inside of ductwork has been known to deteriorate over time, leading to the distribution of particles into occupant area.

Documentation for IEQ Prerequisite 14

Submit the specifications for the project ductwork, including details of duct insulation and duct liners. If insulated ductwork has been specified for sound attenuation, explain where it will be used and how IAQ will be protected.

Resources

IEQ Prerequisite 15: Do Not Use Fossil Fuel Powered Machinery within the Building

Required IEQ P 15. Prohibit fossil fuel powered mobile machinery from being used inside the building.

Prohibit mobile equipment inside the building that burns fossil fuels. This is to prevent accumulation of exhaust from equipment such as polishers, burnishers, material lifts, etc. Equipment such as gas stoves, chemistry equipment, and vocational equipment are not included in this requirement.

Documentation for IEQ Prerequisite 15
Submit a letter signed by the school superintendent stating that no indoor mobile fossil fuel burning equipment will be used in the new or renovated facility.

IEQ Prerequisite 16: Design Classrooms for High Levels of Acoustical Performance

Required IEQ P 16. Utilizing the services of a professional acoustical consultant, develop an acoustics strategy to assure that all classrooms achieve acoustic performance levels consistent with best practices. The strategy should utilize the process for evaluating room acoustics outlined in ASHRAE Handbook – Fundamentals 2005 and should follow best practice sound attenuation strategies to reduce both low and high frequency noise, as well as reduce reverberation time.

Or;
Ensure that all classrooms meet the standards of ANSI 12.60-2002, the requirements of which include:
- <35 dB background noise and maximum reverberation time of 0.6 seconds for areas ≤10,000 ft²
- <35 dB background noise and maximum reverberation time of 0.7 seconds for areas >10,000 ft² and ≤20,000 ft²
- <40 dB background noise for areas >20,000 ft²

Student learning suffers in acoustically poor environments. Excess noise from exterior sources, loud HVAC systems, or other nearby rooms can make it difficult, and sometimes impossible, for students and teachers to communicate.

Poor acoustics affect more children than just those with permanent hearing impairments. Children with learning disabilities, language impairments, or for whom English is a second language, and children with ear infections are also adversely affected by poor acoustics. In addition, children in general (and especially younger ones in particular) have not fully developed their language and auditory skills, making quality acoustics very important for learning.

School officials and designers are encouraged to move beyond the prerequisite and achieve background noise levels of NC30 (Noise Criteria) for all classrooms (approximately equivalent to 35 dBA) and sound isolation standards recommended by ANSI (the American National Standards Institute).

It may not be possible to reach NC30 with unit ventilator systems. Consider HVAC options that do not require unit ventilators. If you do opt for unit ventilators, however, it is important to select quieter models and/or those that can operate at low speeds.
Important aspects of classroom acoustical design include isolation from exterior noise (wind loads, traffic, and other loud outdoor activities), elimination of interior noise (from HVAC systems, foot traffic, and other classrooms), and the use of appropriate wall assembly, window systems, and interior surface materials to minimize sound propagation and reduce reverberation times in the classrooms.

The most common sources of interior mechanical noise are the air-conditioning and air-handling systems, including ducts, fans, compressors, condensers, and dampers. The selection, location, and isolation of this equipment should be reviewed to minimize its impact on sound-sensitive spaces within school facilities.

For purposes of this prerequisite, classrooms are defined as:

- General classrooms
- Art rooms
- Music rooms
- Science rooms
- Computer rooms
- Special needs, remedial, and collaborative space

The diagram below is a schematic representation of ANSI’s noise isolation requirements. Please consult the full ANSI standard for other details.
Noise Isolation (STC) Requirements

Documentation for IEQ Prerequisite 16

Submit a report from a qualified professional acoustical consultant verifying that classrooms have been designed to meet ANSI S12.60-2002 requirements, and/or obtain superior acoustical performance by following best practice as outlined by the Acoustical Society of America and ASHRAE Handbook – Fundamentals 2005.

Resources

American National Standards Institute, http://www.ansi.org/

IEQ Prerequisite 17: Provide for Thermal Comfort During the Heating Season

| Required | IEQ P 17. Comply with ASHRAE Standard 55-2004 for thermal comfort standards during the heating season, within established ranges per climate zone. |

Although this prerequisite does not require humidification and/or dehumidification systems, there are design choices such as direction of air supply and air supply velocity, which can affect the humidity levels experienced by occupants. When designing the layout of the HVAC system, humidity impacts should be considered.

Documentation for IEQ Prerequisite 17

Submit a letter signed by a licensed professional engineer (PE) certifying that the heating season comfort requirements of ASHRAE Standard 55-2004 will be met and outlining the design features relating to the standard.

Note: Compliance with ASHRAE Standard 55-2004 is also required for energy efficiency. Documentation for this requirement may address comfort issues only.

Resources

IEQ Prerequisite 18: Adopt an Integrated Pest Management Program

| Required | IEQ P 18. Adopt or develop an Integrated Pest Management program designed to exclude undesirable pests from the school buildings. |

Integrated pest management (IPM) includes a set of techniques that are used to exclude pests from buildings and to destroy the habitat of pests by limiting their access to food, water, and free movement without dependence upon chemicals that are harmful to human health. Regular monitoring and record keeping is used to determine when treatments are needed to keep pest numbers low enough to prevent damage. Chemical controls are used only when necessary and in the least toxic formulations that are effective.
As discussed elsewhere in the Protocol, asthma is one of the most common chronic childhood ailments and is associated with frequent school absences among children. Insect and rodent allergens are known triggers for asthma, and pest infestation affects a range of other human health issues. In addition pest infestation can be damaging to building structure and systems.

Research demonstrates that the use of insecticides and rodenticides helps to limit infestations, but does not eliminate them. Over time, repeated application of pesticides may lead to resistance among targeted species, requiring greater amounts, or the use of more toxic materials to achieve the same effect.

A qualifying IPM program must include, at a minimum, the following measures:

- For all exterior walls, foundations, attics, roofs, utility chases, and interior partitions and ceilings in food storage, preparation and disposal areas, and penetrations:
 - Block all openings in the enclosure larger than 1/4 inch by 1/4 inch with concrete or mesh reinforced caulk or copper or stainless mesh or screen over openings that must allow air flow.
 - Caulk all cracks larger than 1/16th inch, including all plumbing and electrical penetrations.
- Keep all shrubbery a minimum of 3 feet from the building structure.
- Utilize dumpsters and other rubbish containers that seal tightly and locate them as far away from the building as practicably possible.
- Do not allow debris to collect near doors and other building openings.
- Design building facades so that pigeons cannot roost.
- Maintain a schedule for the cleaning and degreasing of stoves, refrigerators, cabinets, floors, and walls in kitchens, bathrooms, teacher lounges, etc.
- Minimize the use of hazardous pesticides.
- Maintain a schedule and record of treatment.
- The adoption of the IPM methods detailed in the EPA’s *IPM for Schools: A How-to Manual* is recommended. Appendix B of the manual provides a guide for the development of an IPM program. The manual may be downloaded free of charge from the following link: http://www.epa.gov/pesticides/ipm/schoolipm/index.html

Documentation for IEQ Prerequisite 18

1. Submit construction specifications that meet the above listed requirements for the sealing of penetrations, the design of building facades, and the location of shrubbery.

2. Submit an IPM plan or documentation that the school administration has adopted the EPA’s *IPM for Schools: A How-to Manual* as the IPM plan, or another equivalent plan, for the school.
IEQ Prerequisite 19: Minimize Mercury Exposure

According to the United States Environmental Protection Agency (http://www.epa.gov/mercury/about.htm):

"Health effects of mercury. Mercury exposure at high levels can harm the brain, heart, kidneys, lungs, and immune system of people of all ages. Research shows that most people’s fish consumption does not cause a health concern. However, it has been demonstrated that high levels of methylmercury in the bloodstream of unborn babies and young children may harm the developing nervous system, making the child less able to think and learn.

Ecological effects of mercury. Birds and mammals that eat fish are more exposed to mercury than other animals in water ecosystems. Similarly, predators that eat fish-eating animals may be highly exposed. At high levels of exposure, methylmercury’s harmful effects on these animals include death, reduced reproduction, slower growth and development, and abnormal behavior."

Non-electronic thermostats, batteries, and fluorescent lamps are the most common products, containing significant amounts of mercury, found in schools. In order to meet the requirements of this prerequisite, no mercury containing thermostats can be installed in the school, low-mercury lamps must be specified, and there must be a recycling program for batteries and fluorescent lamps. For a list of all known mercury containing products, consult: http://www.epa.gov/waste/hazard/tsd/mercury/con-prod.htm#industry

Documentation for IEQ Prerequisite 19

1. Submit documentation that no mercury containing thermostats are installed in the facility.

2. Submit a purchasing policy stating that only low-mercury content lamps (linear fluorescent lamps that contain 3.5 to 4 milligrams of mercury, according to the EPA) will be purchased. Standard linear fluorescent lamps typically contain 8 to 14 milligrams of mercury. As an example; low mercury 4’ T8 lamps that contain less than 4 mg of mercury and are typically identified with green painted end caps.

3. Submit a hazardous material recycling plan for the school that includes the recycling of batteries and fluorescent lamps. The fluorescent lamp recycling plan must follow the guidelines set by the U.S. ERA (see "Resources") and/or the regulations established by the
state in which the facility is operated. This recycling plan may be part of an overall recycling plan developed for the school.

Resources

United States EPA:

- http://www.epa.gov/waste/hazard/tsd/mercury/con-prod.htm#industry

Other Resources:

- http://www.lamprecycle.org/

IEQ Prerequisite 20R: Renovations Only – Follow Best Practices for Any Installed Unit Ventilators

| Required | IEQ P 20. Renovations (R)- If the renovated school utilizes unit ventilators, designate that best practices, including annual maintenance and the use of MERV 7 filters be followed. |

Herman Nelson invented the unit ventilator (UV) in 1917, and they are still in common use in classrooms today. The first UVs provided heat and ventilation, while many current UVs are also designed to provide air conditioning.

There are many indoor environmental quality issues associated with UVs, including:

- **Fresh Air Delivery** – Theoretically, an advantage of UVs is the delivery of outside air. However, UVs often have design and maintainability issues that cause fresh air delivery to become inconsistent. In addition, staff often blocks off fresh air delivery in older UVs in response to cold air complaints.

- **Short Circuiting of Supply Air and/or Poor Air Distribution** – The short-circuiting of conditioned air between the discharge and the return is a common complaint, made worse when books or other items are placed over the louvers.

- **Classroom Noise** – ANSI Standard S12.60 recommends that classroom equipment noise levels be kept below 35 dB in order to not interfere with student hearing. This level is likely impossible to achieve with UVs. The proper use of acoustical materials such as carpeting, curtains, and acoustical ceilings will help alleviate this problem. Additionally, the ability of the unit to operate at lower fan speeds will help reduce noise levels for part of the time.

- **Inefficient Air Filtration** – ASHRAE Standard 52.2 recommends a minimum filtration of MERV 6, and this requirement calls for MERV 7 filtration. Older UVs typically utilize filters with a rating of MERV 2. The added static pressure drop associated with a higher filter rating may significantly affect airflow, especially in older UVs.

- **Difficult Maintenance** – Maintenance of UVs is often neglected, partly because they are difficult to work on. The interior components are crowded into a small case and access usually means lying on the floor.
In order to comply with this prerequisite, the following steps must be taken:

- All UVs in the facilities being renovated must be assessed for air delivery, noise, and air filtration.
- All poorly or non-functioning fans, dampers, controls, etc must be replaced; or the entire UV must be replaced.
- The acoustics plan developed to meet IEQ P16 must include a plan to utilize acoustical absorbing materials (carpeting, drapes, ceiling tiles, etc) to help attenuate the noise generated by UVs.
- Air filters with a minimum MERV rating of 7 must be installed in each UV. This may require the upgrade of UV fans.
- An annual maintenance plan must be developed for the UVs.

Documentation for IEQ Prerequisite 20R

1. Submit a summary report regarding the testing of the UVs to be retained in the renovated school.
2. Submit purchase orders for the purchase of MERV 7 or greater filters and UV replacement parts or units.
3. Submit an annual maintenance plan for the UVs that includes filter cleaning/replacement and performance evaluation.

Indoor Environmental Quality Elective Credits

IEQ Elective Credit 1: Install Dedicated Exhaust for Pollutant Source Control

| 1 credit | IEQ EC 1. Where chemical use occurs, including housekeeping areas, chemical mixing areas, copying/print rooms, photo labs, science labs, and vocational spaces, use deck-to-deck partitions with dedicated exhaust at a rate of at least 0.50 cubic feet per minute per square foot with adequate make-up air. No air recirculation is permitted, and these spaces must have negative air pressure, which is defined as an outside exhaust at a rate of at least 0.50 cubic feet per minute per square foot, maintaining a negative pressure of at least 5 Pa (0.02 inches of water gauge) to a minimum of 1 Pa (0.004 inches of water) when the doors are closed. In photo-lab areas, specify table vents to draw chemical vapors away from the breathing zone of darkroom users. |

Physically isolate activities associated with chemical contaminants from other locations in the building and provide dedicated systems to contain and remove chemical pollutants from source emitters at source locations. Eliminate or isolate high hazard areas and design all housekeeping chemical storage and mixing areas (central storage facilities and janitors closets) to allow for secure product storage. Design copy/fax/printer/printing rooms with structural deck-to-deck partitions and dedicated exhaust ventilation systems.
Northeast Collaborative for High Performance Schools Protocol

IEQ Elective Credit 1

1. Submit specifications for specialty exhaust ventilation equipment (e.g., table vents) and floor plans.

2. Submit a letter signed by a licensed professional engineer (PE) explaining how the spaces specified in IEQ Credit 1 are ventilated to maintain a 1 - 5 Pa negative pressure and exhaust rate of 0.50 cfm/ft2.

IEQ Elective Credit 2: Install Ducted Air Returns

| 1 credit | **IEQ EC 2.** Install ducted HVAC air returns to avoid the dust and microbial growth issues. The use of ceiling plenum return vents is not acceptable as part of an HVAC system design. |

Plenum returns are easily contaminated with dust and microbial growth. Ducted returns help prevent such problems and reduce maintenance and repairs.

Documentation for IEQ Elective Credit 2

Submit drawings and specifications for HVAC system documenting the installation of ducted air returns.

IEQ Elective Credit 3: Install Premium HVAC Filtration

| 1 credit | **IEQ EC 3.** Design the HVAC system with particle arrestance filtration rated at Minimum Efficiency Reporting Value (MERV) of 13 in all mechanical ventilation systems, installing filters immediately prior to occupancy. |

Filters rated at MERV 13 will ensure very good quality ventilation air by blocking minute particles and allergens.

The pressure drop may be greater with MERV 13 filters versus filters with lower MERV ratings, and therefore more energy is needed to draw air through these filters. There is often a trade off between incremental indoor air quality improvements and energy efficiency that design teams should bear in mind. This credit may be especially desirable in environments where outdoor air quality is a serious concern (e.g., close proximity to industrial activity, high vehicle traffic thoroughfares, or certain agricultural activities).

Note: MERV 13 filters do not fit into unit ventilators. Therefore, schools with unit ventilator systems cannot qualify for this credit.

Documentation for IEQ Elective Credit 3

Submit specifications for MERV 13 filters in all HVAC systems.
IEQ Elective Credit 4: Provide Operable Windows

1 credit **IEQ EC 4.** Ninety percent (90%) of all classrooms shall have a minimum of one operable window per classroom that is reasonably accessible.

Operable windows are important for personal comfort and have been shown to improve student performance. Provide at least one operable window, reachable without a ladder, in each classroom.

Document **ation for IEQ Elective Credit 4**

Supply window specifications and floor plans highlighting operable windows in each classroom.

IEQ Elective Credit 5: Install High Intensity Fluorescent Lighting Systems in Gymnasiums and Other Locations with High Ceilings

1 credit **IEQ EC 5.** Install high intensity fluorescent lighting fixtures instead of HID fixtures in the gymnasium and other high ceiling areas.

For many years, the standard choice for school gymnasiums, field houses, and other multi-use areas with ceilings over 16 feet high has been High Intensity Discharge (HID) lighting; typically metal halide or pulse-start metal halide. Although the technology is relatively efficient, long warm-up times mean that the lighting is typically turned on for the day. High intensity fluorescent lighting can be turned on and off as needed, or it can be controlled by occupancy sensors. Additionally, the fluorescent fixtures offer higher quality light with better color stability and less ballast noise.

Document **ation for IEQ Elective Credit 5**

1. Submit plans showing the lighting layouts for the gymnasium and other applicable areas.
2. Submit a specification (cut) sheet for the fixtures being installed.

IEQ Elective Credit 6: Construction Management – Provide Ventilation

1 credit **IEQ EC 6.** Supply temporary construction ventilation. Continuously ventilate during installation of materials that emit Volatile Organic Compounds (VOCs) and after installation of those materials for at least 72 hours or until emissions dissipate. Ventilate directly to outside areas; do not ventilate to other enclosed spaces that are occupied by students, staff, or contractors.

If continuous ventilation is not possible using open windows and temporary fans, then the building’s HVAC system may be utilized provided that MERV 8 filtration media are installed at each return air grill as determined by ASHRAE 52.2-2004.

This construction practice will improve indoor air quality by minimizing the amount of indoor pollutants that are distributed and retained by the surface materials and ventilation systems during construction.
This credit is designed to protect the health of building occupants during and immediately following construction. It is not intended to replace OSHA requirements protecting the health and safety of construction workers.

Documentation for IEQ Elective Credit 6

Submit construction specifications showing that temporary ventilation will take place in accordance with the requirements of this credit.

IEQ Elective Credit 7: Construction Management – Protect Ductwork from Contamination

<table>
<thead>
<tr>
<th>1 credit</th>
<th>IEQ EC 7. During construction, seal HVAC supply and return openings to protect them from dust infiltration during such activities as drywall installation and floor sanding.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If installing a new duct system, follow SMACNA guidelines “Duct Cleanliness for New Construction Guidelines” according to advanced levels of cleanliness. Of specific importance are the following:</td>
</tr>
<tr>
<td></td>
<td>- Specify that ductwork be sealed during transport.</td>
</tr>
<tr>
<td></td>
<td>- Store ductwork in clean, dry conditions and keep sealed.</td>
</tr>
<tr>
<td></td>
<td>- Wipe down internal surfaces of ductwork immediately prior to installation.</td>
</tr>
<tr>
<td></td>
<td>- Seal open ends of completed and “in-progress” ductwork.</td>
</tr>
<tr>
<td></td>
<td>- During installation protect ductwork with surface wrapping.</td>
</tr>
</tbody>
</table>

This construction practice will improve indoor air quality by minimizing the amount of indoor pollutants that are distributed and retained by the surface materials and ventilation systems during construction.

Documentation for IEQ Elective Credit 7

Submit construction specifications for dust protection, referring to SMACNA Duct Cleanliness Guidelines Advanced Levels. Include specifications for removal (internal wipe-down) of oil film from ductwork.

IEQ Elective Credit 8: Construction Management – Provide for HEPA Vacuuming

| 2 credits | **IEQ EC 8.** HEPA Vacuuming – Vacuum carpeted and soft surfaces with a high-efficiency particulate arrestor (HEPA) vacuum prior to re-occupancy. For phased, occupied renovations, HEPA vacuum the carpet daily in occupied areas. |

energy & resource solutions
This construction practice will improve indoor air quality by minimizing the amount of indoor pollutants that are distributed and retained by the surface materials and ventilation systems during construction. Additionally, materials such as carpet and textiles should be installed after dusty work like the sawing and sanding are complete. If some sawing and sanding is done after the textiles are installed it should done in containment and the textiles should be protected with sealed drop cloths.

Documentation for IEQ Elective Credit 8

Submit construction specifications for HEPA vacuuming of carpeted floors prior to full building occupancy. For phased, occupied renovations, obtain letter from Superintendent stating that carpeting in occupied areas of the school will be HEPA vacuumed daily.

IEQ Elective Credit 9: Construction Management – Perform Building Flushout

| 2 credits | **IEQ EC 9.** Prior to flushout, filters must be replaced with at least Minimum Efficiency Reporting Value (MERV) 10 filters and replaced again after flushout with a minimum of MERV 10 filters. For unit ventilator systems, a minimum of MERV 7 filters must be installed and then replaced with MERV 7 filters after flushout. AND Perform one of two flushout options: Option 1 – The entire building shall be flushed out continuously (24 hours/day) with outside air for at least 10 days prior to receipt of certificate of occupancy. OR Option 2 – Flushing of each space may not begin until all major finish materials have been installed on floors, walls, and ceilings. This includes all casework. At that time, each space may be flushed out separately and occupied once 3,500 ft\(^3\) of outdoor air per ft\(^2\) of floor area of the space has been delivered. The space may then be occupied provided that it is ventilated at a rate of 0.30 cfm/ft\(^2\) of outside air or the design minimum outside air rate, whichever is greater, a minimum of 3 hours prior to occupancy and during occupancy, until the total of 14,000 ft\(^3\)/ft\(^2\) of outside air has been delivered to the space.

NOTE: Option 2 is recommended if flush-out dates coincide with time periods when relative humidity levels are typically high (e.g., 70% or greater during hot, humid weather). Water vapor can warp wood and cause mold growth problems on building materials.

Building flushout removes odors and volatile organic compounds (VOCs) that accumulate during the construction process.

Use of outside air will prevent particles from continuing to recirculate throughout the building. Do not “bake out” the building by increasing the temperature of the space.
Documentation for IEQ Elective Credit 9
Submit construction specifications calling for installation of MERV 10 filtration media prior to building flushout and post flushout. MERV 7 filters are required for unit ventilator systems both prior and following building flushout.

AND

For Option 1 – A copy of the build-out schedule indicating when the 10 days of outdoor air flushout would begin.

For Option 2 – Submit calculations from the HVAC engineer showing:

1. The settings needed to provide 3500 ft3/ft2 of outside air to each space in the school
2. The amount of time the ventilation system needs to run for each space to reach the minimum threshold of 3500 ft3/ft2
3. The settings for delivering outside air at a rate of 0.30 cfm/ft2 of outside air or the design minimum outside air rate, whichever is greater
4. The amount of time the ventilation system needs to run for each space to reach the minimum threshold of 14,000 ft3/ft2

IEQ Elective Credit 10R: Renovations: Provide Low-Glare Daylighting for Classrooms

| 2 credits | **IEQ EC 10. Renovations (R)** - Classroom Daylighting – Provide low-glare, uniformly distributed, daylighting for 75% of the total critical task areas of classrooms. |

For this credit follow the guidelines established for IEQ P2 (R), but increase the daylit area from 50% to 75% of critical classroom areas.

Documentation
Supply the same documentation as for IEQ P2 (R) demonstrating compliance with the requirements of this Credit.
VI. Energy Efficiency

Purpose: To reduce environmental impacts and operational costs associated with consuming energy.

Summary Tables

Energy Efficiency Prerequisites

| Required | **EE P 1 (A or B). New Construction (NC) – Energy Efficiency Standard:** (A) Verify that the new school will use significantly less energy than schools built to current standard practice by designing to the standards established for the Advanced Buildings Core Performance (New Buildings Institute) for the following building components: building envelope, lighting, HVAC, fenestrations. In addition, automatic lighting controls must be installed in all classrooms and offices, and energy recovery ventilation must be employed for classrooms and other areas of high occupant density. (B) As an alternative, the Total Building Approach outlined in ASHRAE standard 90.1 may be used to demonstrate that the constructed building(s) will use no more energy than the same building(s) built to the Core Performance criteria or will use 25% less energy than the same building(s) built to ASHRAE standard 90.1 2007.

EE P 1. Renovations (R) – Energy Efficiency Master Plan: Working with appropriate energy efficiency programs, evaluate the overall energy performance of the buildings, identifying energy efficiency opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 15%, or to the level of the same building(s) built to ASHRAE standard 90.1 2007. Portions of the school undergoing “gut” renovations must meet the above EE P 1 for new construction (NC). |
| Required | **EE P 2.** Employ air sealing best practices to control air leakage, including the scheduled maintenance of air sealing systems (calking, foams, gaskets, etc.) |
| Required | **EE P 3.** Employ best practice HVAC design techniques to prevent the over-sizing of equipment, improve system performance, and meet ASHRAE Standard 55. |
| Required | **EE P 4. New Construction (NC)-** Commission or re-commission all energy using systems.

EE P 4. Renovations (R)- Commission all newly installed HVAC, lighting, building management systems and retro-commission all retained systems that have not been commissioned within the past three years.

System to be commissioned:
- Lighting controls (daylight, occupancy, light switching).
- HVAC systems (such as hot water systems, chilled water systems, central air systems, ventilation systems).
- Domestic hot water systems
- Energy management systems |
| Required | **EE P 5.** Provide effective and complete training and documentation on the operation and maintenance of the building systems identified in the commissioning report. Training programs for school maintenance staff, administrators, teachers, and other staff must be developed and completed. Training is an essential step to protect indoor air quality and maintain superior energy performance. |
| Required | **EE P 6.** Participate in energy efficiency incentive and technical assistance programs that are available through applicable utility and governmental programs. |
Energy Efficiency Elective Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4 credits</td>
<td>EE EC 1. New Construction (NC) (A or B)</td>
<td>(A) Follow the design process strategies (section 1) and meet all the Core Performance requirements (section 2) within the New Buildings Institute's Advanced Buildings Core Performance Guide. In addition, comply with all of the relevant "acceptance criteria" listed in Core Performance appendix A. Or; (B) utilizing the Total Building Approach outlined in ASHRAE standard 90.1, demonstrate that the renovated building(s) will use 30% less energy than the same building(s) built to ASHRAE standard 90.1 2007.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 2.</td>
<td>Incorporate daylighting throughout the building and control at least 40% of the connected lighting load with automatic daylighting controls and/or hybrid occupancy/daylight controls.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 3.</td>
<td>Perform enhanced building commissioning employing a third party commissioning agent throughout the design and construction or renovation process.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 4.</td>
<td>Design 90% of permanent classrooms without air conditioning or minimize air conditioning loads in classrooms by installing low energy use comfort systems. Qualifying systems could include dehumidification, hot gas bypass systems, energy recovery ventilation, or other innovative approaches.</td>
</tr>
<tr>
<td>1 credit</td>
<td>EE EC 5.</td>
<td>Install VAV system with variable speed drives on appropriate fans and motors. Control air volume in response to indoor air quality needs.</td>
</tr>
</tbody>
</table>
| 2 credits | EE EC 6. | Install an energy management system (EMS) to control, monitor and trend the energy consumed throughout the school by the following systems:
- HVAC (heating, cooling, fans)
- Domestic/process hot water system |
| 1 credit | EE EC 7. | In addition to Credit 6, install a submetering system for lighting loads and plug loads, integrating the data collected from the submetering systems with the energy management system. |
| 1 credit | EE EC 8. | Install a "cool roof" to reduce the "heat island" effect and reduce overall energy consumption in schools that are air conditioned or to avoid the installation of air conditioning. |
| 2 credits | EE EC 9. | Install a vegetative roof to reduce the "heat island" effect, to reduce heating and/or cooling loads, and to assist in the handling of rainwater. |
| 1 credit | EE EC 10. | Following the guidelines established by the International Dark-Sky Association’s Dark Campus Initiative, adopt a policy that keeps all interior and exterior lighting off after all daily activities. |

Energy-efficient schools cost less to operate, conserving valuable energy resources, and reduce environmental pollution. Each state in the Northeast has energy efficiency codes that govern the minimum energy performance requirements for new buildings and renovations. These codes represent the worst performing buildings that can legally be built. Schools can easily be built, or renovated, to outperform these codes by considerable degrees.

High performance schools incorporate design features and systems that operate with minimal energy usage while providing superior performance. The buildings are well-insulated and resist uncontrolled infiltration/exfiltration. In addition, heating, ventilation, and lighting systems provide premium efficiency and improved comfort levels.

Energy modeling is an effective tool for achieving energy savings and is a critical part of an integrated design approach. Various combinations of building systems can be modeled using...
specialized software to show performance calculations for different systems and design features. The most effective energy modeling is an interactive process whereby different combinations of measures, such as daylighting, HVAC systems controls, lighting systems and controls, and energy recovery equipment are modeled to determine the best performance and lifecycle cost.

Choosing the right contractors and effective construction management will assure that the design features get properly implemented as intended. Project owners should seek out contractors that have a working knowledge of advanced building techniques and premium efficiency systems.

Commissioning, maintenance, and training are critical to the performance of the school and its systems and are key to maintaining energy efficiency. Commissioning involves a rigorous quality assurance program that ensures the building and its systems are built and operated as designed and that the school district receives the proper training and documentation needed to operate and maintain the building. No building can perform optimally without adequate maintenance. Training is critically important for maintenance staff to thoroughly understand how to maintain and operate the building systems. When staff turnover occurs, appropriate documentation must be on hand in order to train new team members.

Energy Prerequisite 1 for New Construction: Design a School That Performs Significantly Better Than Schools Built to Current Standard Practice

There are two acceptable methods for meeting this requirement:

Option A – Meet the “required” energy efficiency criteria of the Advanced Buildings Core Performance, a prescriptive program developed by the New Buildings Institute designed to provide predictable energy savings in newly constructed buildings.

Option B – Using a building simulation software tool and the Total Building Performance Approach outlined in ASHRAE Standard 90.1, demonstrate that the constructed building(s) will use no more energy than the same building(s) built to the Core Performance criteria or will use 25% less energy than the same building(s) built to ASHRAE standard 90.1 2007.

Because the New Buildings Institute’s Core Performance offers a prescriptive approach with integrated Web-based design assistance resources it is highly recommended that design teams and administrators utilize Core Performance as the methodology for meeting this prerequisite.

Energy Efficiency Prerequisite 1 Option A: Meet the “Required” Criteria of Core Performance

| Required | **EE P 1A – New Construction (NC).** Follow the design process strategies (section 1) and meet all the Core Performance requirements (section 2) within the New Buildings Institute’s Advanced Buildings Core Performance Guide. In addition, comply with all of the relevant “acceptance criteria” listed in Core Performance appendix A. |

The Advanced Buildings Core Performance is a set of building performance criteria that addresses many aspects of high performance buildings. Core Performance was developed by the New Buildings Institute (see “Resources”) to provide guidelines for the construction of individual high performance buildings and to serve as criteria for inclusion in high performance building programs such as Northeast-CHPS.
Core Performance was designed so that buildings built to the prescriptive criteria would outperform ASHRAE standard 90.1 2004 by 25%–30%. Buildings designed to these guidelines, will be considered, by default, to meet the energy efficiency requirements of Northeast-CHPS.

The Core Performance requirements include:
1. Energy Code Compliance
2. Air Barrier Performance
3. Minimum IAQ Performance
4. Below Grade Exterior Insulation
5. Opaque Envelope Performance
6. Fenestration Performance
7. Lighting Controls
8. Light Power Density
9. Mechanical Equipment Efficiency Requirements
10. Dedicated Mechanical Systems
11. Demand Control Ventilation
12. Domestic Water Heating Efficiency
13. Fundamental Economizer Performance

Additional Requirements – In addition to the Core Performance requirements automatic lighting controls must be installed in all classrooms and offices. At a minimum these controls must keep lights off during unoccupied time periods, but may also incorporate daylight sensing for dimming or on/off control. And energy recovery ventilation must be employed for classrooms and other areas of high occupant density.

Documentation for Energy Prerequisite 1A

Following the guidelines established in appendix A of Core Performance, submit documentation detailing the energy performance features of the building that demonstrate compliance with the guidelines.

Energy Efficiency Prerequisite 1 Option B for New Construction: Demonstrate That the Design Outperforms the Prescriptive Criteria of the ASHRAE 90.1 2007 by at Least 25%.

Required Alternate

EE P 1B – New Construction (NC). Using a building simulation software tool and the Total Building Performance Approach outlined in ASHRAE Standard 90.1, demonstrate that the constructed building(s) will use no more energy than the same building(s) built to the Core Performance criteria or will use 25% less energy than the same building(s) built to ASHRAE standard 90.1 2007.

As an alternative to the prescriptive approach, all ASHRAE 90.1 based codes offer the option of using a methodology that compares the annual energy usage of the proposed building with that of a similar building (baseline building) of the same type and size that meets the prescriptive requirements of the code. This is typically referred to as a “total building performance,” “energy
budget,” or “systems analysis” approach. In order to utilize this approach, the building is modeled using a simulation tool that predicts the annual energy performance of the building on an hourly basis. This approach is time consuming and is typically used to demonstrate compliance for buildings with unusual and/or innovative design features.

Acceptable energy modeling software programs include: DOE-2, Visual DOE, PowerDOE, Energy Plus, and E-Quest.

Documentation for Energy Prerequisite 1B – NC

Submit a narrative describing the energy performance features of the building being modeled. In addition, provide a full report detailing the results generated by the simulation tool for both the proposed building and the baseline building. If building modeling is used for code compliance, the energy code compliance documentation may be submitted.

Documentation should include:

1. Energy cost assumptions – Conversion factors to be used for electricity are: 3,412 Btu/kWh for site Btus and 10,000 Btu/kWh for source Btus

2. Facility and site description – Narrative describing the type of construction, hours of operation, and size and configuration of building. Also describe the mechanical system, lighting system and equipment loads, domestic hot water system, and any renewable energy systems

3. Narrative summarizing the analysis methodology, baseline design, and results of energy modeling

4. Table summarizing and comparing the differences between "as designed" case and the baseline case

5. Table summarizing the annual energy consumption for the design case and the base case (see template below)

<table>
<thead>
<tr>
<th>Item</th>
<th>Annual Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity</td>
</tr>
<tr>
<td></td>
<td>KWh</td>
</tr>
<tr>
<td>Design case</td>
<td></td>
</tr>
<tr>
<td>Base case</td>
<td></td>
</tr>
<tr>
<td>Savings</td>
<td></td>
</tr>
<tr>
<td>% Savings</td>
<td></td>
</tr>
</tbody>
</table>
6. Table summarizing cost savings (see template below). Use actual retail utility rate structures and schedules.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Units</th>
<th>Baseline Building</th>
<th>As Designed Building</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity consumption</td>
<td>KWh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity consumption/s.f.</td>
<td>kWh/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity cost</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity cost/s.f.</td>
<td>$/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas, oil or other fuel consumption</td>
<td>Therms, gallons, other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas, oil or other fuel consumption/s.f.</td>
<td>Therms, gallons, other/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas, oil or other fuel cost</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas, oil or other fuel cost/s.f.</td>
<td>$/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total site energy consumption</td>
<td>MMBtu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total site energy consumption/s.f.</td>
<td>MMBtu/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total site energy cost</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total site energy cost/s.f.</td>
<td>$/s.f.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. An electronic version of all input and output data from the school building energy model must be submitted with the application for project certification.

8. Paper copies of each of the following energy modeling reports for both the base case and the as-designed case (These should also be made available to the school’s facilities personnel as well):

- **Building Energy Consumption per End Use (BEPU)** – This report shows annual building energy use according to energy type (electricity, natural gas, etc) and energy end use (lights, space heating, space cooling, fans, etc). The energy use should be shown in the actual units of consumption, such as kWh for electricity, therms for gas, etc. The DOE report that contains this information is called “BEPU.”

- **Building Energy Consumption per End Use (BEPS)** – This report is very similar to the BEPU report described above. The difference is that the values in this report are all converted into the same units (MBtu), allowing a direct comparison of end-use intensities.
Energy Cost Summary (ES-D or ES-E) – This report summarizes the yearly energy consumption and cost for all utility rates that are defined for/applicable to the project (electric rate, gas rate, etc).

Summary of Spaces Occurring in the Project (LV-B) – This report provides a list of all the zones occurring in the model along with the assigned lighting wattage, number of people, equipment wattage, infiltration amount, square footage, and volume.

Building Peak Load Components (LS-C) – This report provides a breakdown of the building cooling and heating peak loads according to the source of the loads (walls, roof, windows, occupants, light, equipment, infiltration, etc). This report does not include the loads due to ventilation air.

Equipment Loads and Energy Use for Central Plant Components (PSC) – This report would be required only for projects that include central plant equipment such as boiler(s) or chiller(s). For each central plant component this report provides annual heating and/or cooling load, the electrical and fuel consumption, and performance information in a bin format, including hours of operation at different part loads, and the total annual hours of operation.

Important: Conversion factors for electricity are: 3,412 Btu/kWh for site Btus and 10,000 Btu/kWh for source Btus.

Resources

ASHRAE Standard 90.1 and Energy Codes

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is an organization with the main goal of "advancing the arts and sciences of heating, ventilation, air conditioning, and refrigeration for the public’s benefit through research, standards writing, continuing education, and publications." One of ASHRAE’s principal activities is the publishing of standards that establish accepted practices and uniform methods of equipment rating for the HVAC industry.

ASHRAE Standard 90.1 provides minimum requirements for the design of energy efficient buildings. The standard was designed to be used as the basis for energy efficiency codes for the design and construction of new buildings and for major renovations. The first edition of ASHRAE Standard 90.1 was published in 1975. The standard is now updated every three years.

Standard 90.1 includes minimum efficiency provisions for design and installation in the areas of building envelope, HVAC, and electrical/lighting. Individual states may adopt 90.1 by reference or may develop a modified version of the standard for use as an energy efficiency code. In addition, 90.1 is the basis for the International Energy Conservation Code (IECC).

States in the Northeast have all adopted ASHRAE 90.1 2001 or 2004 by reference, or have developed a modified version of the two.

For information on ASHRAE and ASHRAE Standard 90.1, visit www.ashrae.org or call them at 1-800-527-4723.

For the current status of state energy efficiency codes, please visit http://bcap-energy.org/node/5
Energy Efficiency Prerequisite 1 for Renovations: Implement a Master Energy Efficiency Plan

| Required | EE P 1. Renovations (R) – Energy Efficiency Master Plan: Working with appropriate energy efficiency programs, evaluate the overall energy performance of the buildings, identifying energy efficiency opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 15%, or to the level of the same building(s) built to ASHRAE standard 90.1 2007. Portions of the school undergoing “gut” renovations must meet the above EE P 1 for new construction (NC). |

When renovating buildings, unless performing a “gut” or complete renovation, it is typically impractical to meet all of the requirements of Core Performance. However, renovating buildings provides a unique opportunity to upgrade the efficiency of the buildings while performing basic renovations and other building improvements.

In order to meet the requirements of this prerequisite, an Energy Efficiency Master Plan must be developed that will improve overall building energy performance by a minimum of 15% and/or raise the energy performance to a level equal to that of ASHRAE standard 90.1 2004.

At a minimum, the Master Plan must address:

- Fenestration performance
- Lighting controls
- Light power density
- Mechanical equipment efficiency requirements
- Domestic water heating efficiency
- Fundamental economizer performance if air conditioning is installed
School systems should work with local and state-wide energy efficiency programs to identify and address all cost-effective energy efficiency opportunities.

Documentation for Energy Prerequisite 1 for Renovations

Submit an Energy Efficiency Master plan detailing energy efficiency opportunities and proposed projects to improve the energy efficiency of the renovated building(s) by the required levels.

Resources

ENERGY STAR – a federal-government-sponsored program helping businesses and individuals protect the environment through superior energy efficiency, http://www.energystar.gov

Cape Light Compact, http://www.capelightcompact.org/

Energy Efficiency Prerequisite 2: Install Air Barrier and Employ Air Sealing Practices to Control Air Leakage

| Required | **EE P 2** | Employ air sealing best practices to control air leakage, including the scheduled maintenance of air sealing systems (calking, foams, gaskets, etc.) |

Core Performance incorporates criteria for air sealing of the building envelope. If utilizing one of the alternative methods for complying with EE Prerequisite 1, the following air sealing criteria, adopted from Core Performance and the Massachusetts Building Code, must be followed:
1. **(New Construction only) Installation of continuous air barrier** - The building envelope shall be designed and constructed with a continuous air barrier to control air leakage into or out of the conditioned space. The air barrier shall have the following characteristics:

- It must be continuous, with all joints made airtight.
- It shall have an air permeability not to exceed 0.004 cfm/ft² under a pressure differential of 0.3 in. water.
- It shall be capable of withstanding positive and negative combined design wind, fan, and stack pressures on the envelope without damage or displacement and shall transfer the load to the structure. It shall not displace adjacent materials under full load.
- It shall be durable and/or maintainable.
- The air barrier shall be joined in an airtight and flexible manner to the air barrier material of adjacent systems, allowing for the relative movement of systems due to thermal and moisture variations and creep. Connection shall be made between:
 - Foundation and walls
 - Walls and windows or doors
 - Different wall systems
 - Wall and roof
 - Wall and roof over unconditioned space
 - Walls, floor, and roof across construction, control, and expansion joints
 - Walls, floors, and roof to utility, pipe, and duct penetrations

2. **(New Construction only) Air barrier penetrations** - All penetrations of the air barrier and paths of air infiltration and exfiltration shall be made airtight.

3. **Fenestration and doors** - Air leakage for fenestration and doors shall be determined in accordance with ASTM E 283 or NFRC 400. Air leakage shall be determined by an independent laboratory accredited by a nationally recognized accreditation organization and shall be certified by the manufacturer. Air leakage shall not exceed 1.0 cfm/ft² for glazed swinging entrance doors and for revolving doors and 0.4 cfm/ft² for all other products under a pressure differential of 0.3 inches of water.

4. **Sealing of recessed lighting fixtures** - When installed in the building envelope, recessed lighting fixtures shall meet one of the following requirements:

- Type IC rated, manufactured with no penetrations between the inside of the recessed fixture and ceiling cavity and sealed or gasketed to prevent air leakage into the unconditioned space.
- Type IC rated, in accordance with ASTM E 283 no more than 2.0 cfm air movement from the conditioned space to the ceiling cavity. The lighting fixture shall be tested at 75 Pa or 1.57 lbs./ft² pressure difference and shall be labeled.
5. **Sealing of envelope gaps and cavities** - All gaps and cavities between rough framing and door and window heads, jambs, and sills shall be made airtight, filled with insulation, and covered with a vapor barrier meeting the criteria for vapor barriers.

Blower Door Testing – Although not a requirement, blower door testing can be very useful in determining the relative airtightness of buildings. It is most effectively used on residential and small commercial buildings. Large, open, facilities are difficult to test using blower doors. For information on blower door testing, visit the following DOE Web site:

http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11190

Documentation for Energy Prerequisite 2

Submit plan details and specifications for air sealing demonstrating compliance with the above listed criteria.

Resources

The Air Barrier Association of America provides a wealth of information concerning the techniques and materials involved in properly installing continuous air barriers, http://www.airbarrier.org

Energy Efficiency Prerequisite 3: Employ Best Practice HVAC Design Techniques

<table>
<thead>
<tr>
<th>Required</th>
<th>EE P 3. Employ best practice HVAC design techniques to prevent the over-sizing of equipment, improve system performance, and meet ASHRAE Standard 55.</th>
</tr>
</thead>
</table>

Heating and cooling systems are often oversized due to “safety” factors included in the design practice. For optimum energy performance, HVAC systems should be sized to accurately meet the load of the building. "Rules of thumb" will not provide accurate system sizing.

When sizing the heating and cooling systems, perform load calculations using interior load assumptions that are consistent with sustainable design practices. This includes using the actual interior lighting loads as designed, accounting for the actual glazing characteristics, providing credit for displaced loads if displacement or underfloor systems are used and base miscellaneous loads on field-verified measurements or field-based research rather than typical owner programming assumptions. Where not feasible, document the non-standard load assumptions for owner concurrence.

When sizing the fan and air distribution systems, document fan-sizing calculations with zone-by-zone load calculations. Perform calculations to determine critical path supply duct pressure loss. Compare fitting selections for oval duct where feasible to lower leakage and reduce pressure loss. Separate all fittings in medium and high–pressure ductwork by several duct diameters to reduce system effects wherever feasible. Where possible, provide automatic dampers on exhaust in lieu of barometric dampers to reduce fan power and increase barometric relief.
Perform a second set of calculations using part-load conditions (maximum likely load and/or standard operating conditions). This includes using benchmark data, average daytime temperatures and non-peak solar gain, and other assumptions to define part-load conditions for the heating and cooling system. Include diversity factors for interior loads and other factors that will allow proper assessment of part-load operation.

Describe the system operation at these conditions and describe features of the design that will facilitate efficient operation at these part-load conditions. Document how the system will deliver ventilation air, maintain comfort in accordance with ASHRAE Standard 55, and operate in an energy efficient manner.

Documentation for Energy Prerequisite 3

Submit documentation that shows the methodology for calculating peak load and partial load conditions.

Resources

ASHRAE standard 55, http://www.ashrae.org

Energy Efficiency Prerequisite 4: Commission All Energy Using Systems of the Building

| Required | EE P 4. New Construction (NC)- Commission or re-commission all energy using systems.
EE P 4. Renovations (R)- Commission all newly installed HVAC, lighting, building management systems and retro-commission all retained systems that have not been commissioned within the past three years. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems to be commissioned:</td>
<td></td>
</tr>
<tr>
<td>● Lighting controls (daylight, occupancy, light switching).</td>
<td></td>
</tr>
<tr>
<td>● HVAC systems (such as hot water systems, chilled water systems, central air systems, ventilation systems).</td>
<td></td>
</tr>
<tr>
<td>● Domestic hot water systems</td>
<td></td>
</tr>
<tr>
<td>● Energy management systems</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Verify that fundamental building elements and systems are designed, installed, and calibrated to operate as intended and provide for the ongoing accountability and optimization of building energy performance over time.

High performance buildings are healthy, efficient, environmentally sensitive structures whose performance can be significantly affected if the building has not been constructed or cannot be operated according to the designers’ specifications. Commissioning is a rigorous quality assurance program administered by a knowledgeable third party that ensures the building performs as expected.
The following commissioning procedures are required:

1. **Engage a commissioning agent** - The commissioning agent (CA) directs the commissioning process and should be engaged as early in the design process as possible. The commissioning services must be performed by an independent third party, or performed under separate contract with a member of the design team. The agent may be hired by an entity other than the owner, such as the architect, engineering team, or construction manager, but must report simultaneously to the owner and the holder of the contract.

2. **Develop design intent and basis of design documentation** - The architect and the design engineer are the most appropriate people to create this document, which should list the owner’s requirements and design intent for each of the systems or features to be commissioned. The CA must review this document and a copy shall be provided to the owner.

3. **Include commissioning requirements in the construction documents** - All commissioning requirements must be integrated into the construction documents to clearly specify the responsibilities and tasks to be performed. Of particular importance are the delineation of the contractors’ responsibilities regarding documentation, functional performance testing, occupant and operator training, and the creation of the operations and maintenance manuals.

4. **Develop a commissioning plan** - The commissioning plan includes a list of all equipment and systems to be commissioned, delineation of roles for each of the primary commissioning participants, and details on the scope, timeline, and deliverables throughout the commissioning process.

5. **Perform verification** - Verify installation, functional performance, training, and operations and maintenance documentation for each commissioned system and feature. This is the heart of the commissioning process.

6. **Complete a commissioning report** - The report must show that the building’s systems have met the design intent and specifications, have been properly installed, are performing as expected, and that proper O&M documentation and training have been provided. The report should include a compilation of all commissioning documentation described in this credit, including complete functional testing results and forms and should note any items that have not been resolved at the time of the report is issued.

7. **Develop a system and energy management manual** - This manual is intended to improve and enhance the documentation of system intent and operation and to help the building owner continue to operate the building systems as efficiently and effectively as possible throughout the life of the facility. The manual should cover the operations and maintenance of all HVAC and lighting systems, and the facility staff should be trained in the use of the manual.

Documentation for Energy Prerequisite 4

Submit a commissioning report that documents the above required procedures.
Energy Efficiency Prerequisite 5: Train Building Operators in the Operations and Maintenance of All Energy Using Systems and Maintain Systems Documentation

| Required | EE P 5 | Provide effective and complete training and documentation on the operation and maintenance of the building systems identified in the commissioning report. Training programs for school maintenance staff, administrators, teachers, and other staff must be developed and completed. Training is an essential step to protect indoor air quality and maintain superior energy performance. Maintenance and record keeping must meet the requirements stated below. |

The following requirements help ensure that the intended operational procedures of the energy using systems are well-documented and provided to the appropriate facility staff. Additionally, the training of facility staff will assure that the critical importance of proper operations and maintenance is understood and that design goals are met. These requirements are often included in the contract with the third-party building commissioning agent.

1. **Compile operations & maintenance manual** - Provide maintenance and facility staff with detailed operations and maintenance information for all equipment and products in use in the school.

2. **Create a short, classroom “user’s guide”** - Provide an explanation for teachers and administrative staff on how to operate their room lighting and HVAC systems.

3. **Conduct operations & maintenance training** - Provide a short introduction for all school staff and then feature a special hands-on workshop for facility and maintenance personnel. Training shall include the interaction of the equipment operating together as a system.

4. **Ensure that maintenance and record keeping on building occupancy shall include:**
 - Annual inspections of the HVAC system. Problems found during these inspections shall be corrected within a reasonable time. Air conditioning systems shall be inspected twice each year – before the cooling season and again after the cooling season.
 - Inspections and maintenance of the HVAC system documented in writing. The facilities manager (or individual responsible for oversight of facilities maintenance and operation) shall record the name of the individual(s) inspecting and/or maintaining the system, the date of the inspection and/or maintenance, and the specific findings and actions taken. The facilities manager shall ensure that such records are retained for at least five years.
 - Calibrations of all sensors that are part of the HVAC system on a routine basis including CO₂ sensors for CO₂ demand controlled ventilation. Sensors shall be calibrated by experts such as controls contractors.

Documentation for Energy Prerequisite 5
Submit documents detailing the following:

- The training plan for the maintenance staff
- The plan for a “users” workshop for teachers and other staff members
- A description of the operations and maintenance manuals for maintenance staff including the identification of the personnel who will maintain the documents
A schedule for the periodic testing of HVAC systems and the testing/calibration of HVAC and lighting controls

Energy Efficiency Prerequisite 6: Participate in Utility and Governmental Energy Efficiency Incentive and Technical Assistance Programs

| Required | **EE P 6.** Participate in energy efficiency incentive and technical assistance programs that are available through applicable utility and governmental programs. |

Virtually every utility customer in the Northeast region is eligible to participate in at least one, and typically several, energy efficiency programs. The programs offer either technical assistance or incentives for efficient equipment and practices. Many programs offer both technical assistance and financial incentives for the installation of efficient equipment and the incorporation of efficient design practices.

In addition to utility and state government operated programs, the Federal Government offers a tax credit program that will allow the designers of energy efficient buildings to apply for a tax credit to help offset the costs of the design and construction of efficient buildings.

Participation in these programs not only leads to possible financial incentives, but often provides valuable information regarding best practices in the local area and local expert design and consultation services. School administrators should contact their electric and gas utility companies as well as their state energy office for specific program information.

Documentation for Energy Prerequisite 6

Submit copies of utility and/or governmental program documents that demonstrate participation in available energy efficiency programs.

Resources

- Cape Light Compact, http://www.capelightcompact.org/
Energy Efficiency Elective Credits

Energy Efficiency Elective Credit 1: Demonstrate Superior Energy Performance

Integrate the design of all significant building systems including HVAC, lighting, and building envelope to reduce source energy of the proposed design below what is required by the prerequisites of Northeast-CHPS.

<table>
<thead>
<tr>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4</td>
<td>EE EC 1. New Construction (NC) (A or B) - (A) Demonstrate superior energy performance beyond prerequisite EE P1 by adopting a minimum of 7 of the 14 Enhance Performance Strategies detailed in the Advanced Buildings Core Performance Guide (New Buildings Institute). Or; (B) utilizing the Total Building Approach outlined in ASHRAE standard 90.1, demonstrate that the renovated building(s) will use 30% less energy than the same building(s) built to ASHRAE standard 90.1 2007. EE EC 1. Renovations (R) - Demonstrate superior energy performance beyond prerequisite EE P1. Evaluate the overall energy performance of the buildings, identifying energy efficiency opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 25%.</td>
</tr>
</tbody>
</table>

The credits offered for EE EC 1 are in addition to the Energy Efficiency Prerequisites listed in this section. However, documenting compliance with this section may also serve as the documentation for meeting the requirements for prerequisite EP 1.

New Construction Option 1 – In addition to documenting compliance with the Advanced Buildings Core Performance Requirements (section 2 of the Core Performance Guide), comply with at least 7 of the 14 Enhanced Performance Strategies outlined in section 3 of the Guide.

- 2 Credits – Comply with 7 of the 14 Core Performance Enhanced Performance Strategies
- 3 Credits – Comply with 9 of the 14 Core Performance Enhanced Performance Strategies
- 4 Credits – Comply with 11 of the 14 Core Performance Enhanced Performance Strategies

New Construction Option 2 – Utilizing the Total Building Approach outlined in ASHRAE standard 90.1, demonstrate that the facility will use at least 30% less energy than the same building(s) built to ASHRAE standard 90.1 2007

- 2 Credits – Demonstrate that the facility will use at least 30% less energy than the same building(s) built to ASHRAE standard 90.1 2007
- 3 Credits – Demonstrate that the facility will use at least 40% less energy than the same building(s) built to ASHRAE standard 90.1 2007
- 4 Credits – Demonstrate that the facility will use at least 50% less energy than the same building(s) built to ASHRAE standard 90.1 2007

Renovations – Demonstrate superior energy performance beyond prerequisite EE P1 R. Evaluate the overall energy performance of the buildings, identifying energy efficiency
opportunities. Produce and implement an Energy Efficiency Master Plan that will improve the energy performance of the building by a minimum of 25%.

- **2 Credits** – Demonstrate that the renovated facility will use at least 25% less energy than the existing facility
- **3 Credits** – Demonstrate that the renovated facility will use at least 35% less energy than the existing facility
- **4 Credits** – Demonstrate that the renovated facility will use at least 45% less energy than the existing facility

Calculations for this credit should be made using the same methodologies approved for compliance with Energy Efficiency Prerequisite 1 (EE P 1).

Documentation for Energy Elective Credit 1

The same methodologies and documentation (prescriptive or building modeling) required for Energy Efficiency Prerequisite 1 (EE P 1) must be used to document eligibility for this credit.

Energy Efficiency Elective Credit 2: Incorporate Daylighting and Control At Least 40% of the Connected Lighting Load with Automatic Daylighting Controls and/or Hybrid Occupancy/Daylight Controls

| 1 credit | **EE EC 2.** Incorporate daylighting throughout the building and control at least 40% of the connected lighting load with automatic daylighting controls and/or hybrid occupancy/daylight controls. |

Daylighting improves the indoor environmental quality, improving teacher and student performance. For these reasons, daylighting requirements are included in the IEQ section of this Protocol.

Daylighting also offers opportunities for energy savings. Where significant daylighting is available, automatic daylight harvesting controls should be used to turn the lights off or dim the lights when sufficient natural light is available. Classrooms, offices, gymnasiums, cafeterias, libraries, lobbies, and corridors are all areas that can benefit from automatic daylight harvesting systems. Classrooms and offices will also have occupancy controls to meet the relevant energy code and the prerequisites of Northeast-CHPS. Hybrid sensors that control the lighting for both occupancy and daylight are available, as are integrated systems that use both individual occupancy and daylight sensors. It is critically important that these systems be properly adjusted during the building commissioning process.

Documentation for Energy Elective Credit 2

Submit a narrative description of the daylighting system detailing the areas that are to be daylit and the control system being installed. Provide a lighting controls schedule and electrical/lighting plans illustrating the control systems and the lighting fixtures that they will control.
Energy Efficiency Elective Credit 3: Perform Enhanced Building Commissioning

1 credit **EE EC 3.** Perform enhanced building commissioning employing a third party commissioning agent throughout the design and construction or renovation process.

Note: Meeting and documenting the requirements of this credit also serves as the documentation for complying with the building commissioning prerequisite, EE P3.

This credit expands the role of the CA to include review of the design, construction documents, and submittals beyond the tasks required by Prerequisite EE P 4.1. In addition, the CA must develop and provide a system and energy management manual to help school staff understand the equipment and operating procedures. The commissioning services must be performed by an independent entity – one that is separate from both the design firm and the contractors. For continuity in the commissioning process, it is recommended that the same agent be selected to perform all commissioning related tasks.

In order to qualify for this credit, the following tasks must be performed and documented in the commissioning report.

1. **Conduct a focused review of the design prior to the construction documents phase** - This review early in the design process should be focused on an assessment of how well the design meets the owner’s design intent. Assessment should be made as to how the design meets the functionality, utility performance, maintainability, sustainability, cost, and indoor environmental quality requirements outlined in the design intent.

2. **Conduct a focused review of the construction documents** - This review should be conducted prior to issuing the construction documents for bid. This review should answer these questions:

 - Does the design meet the owner’s design intent?
 - Does the design allow for proper maintenance access?
 - Do the construction documents clearly detail the construction requirements?
 - Do the construction documents clearly define the commissioning requirements?

3. **Conduct a selective review of contractor submittals of equipment to be commissioned** - Contractor submittals for the systems and equipment included in the commissioning scope shall be reviewed by the CA in conjunction with the designer’s review. The review shall focus on the ability of the submitted product to meet the owner’s requirements and review comments shall be provided to the owner and the design team.

4. **Develop a system and energy management manual** - This manual is intended to improve and enhance the documentation of system intent and operation and to help the building owner continue to operate the building systems as efficiently and effectively as possible throughout the life of the facility. The manual should cover the operations and maintenance of all HVAC and lighting systems, and the facility staff should be trained in the use of the manual.
5. **Conduct a near-warranty end, or post-occupancy, review** - This review is intended to bring the design, construction, commissioning and O&M staff together to solicit the O&M staff comments, suggestions, and areas of concern regarding the systems in their first year of operation. Any warranty items should be identified and a plan for resolution developed.

Documentation for Energy Elective Credit 3

Submit a copy of a signed commissioning services contract documenting that the commissioning agent will:

- Conduct a focused review of the design prior to the construction documents phase
- Conduct a focused review of the construction documents when close to completion
- Conduct a selective review of contractor submittals of commissioned equipment
- Develop a system and energy management manual
- Conduct a near-warranty end, or post-occupancy, review.

Resources

Energy Efficiency Elective Credit 4: Minimize Air Conditioning

| 1 credit | **EE EC 4.** Design 90% of permanent classrooms without air conditioning or minimize air conditioning loads in classrooms by installing low energy use comfort systems. Qualifying systems could include dehumidification, hot gas bypass systems, energy recovery ventilation, or other innovative approaches. |

For this credit, classrooms are defined as:

- General classrooms
- Art rooms
- Music rooms
- Science rooms
- Special needs, remedial, and collaborative space
Documentation for Energy Elective Credit 4
Submit HVAC drawings and a narrative describing the approach and operational sequence of the proposed system.

Energy Efficiency Elective Credit 5: Install Variable Air Volume (VAV) System with Variable Speed Drives

| 1 credit | EE EC 5. Install VAV system with variable speed drives on appropriate fans and motors. Control air volume in response to indoor air quality needs. |

School buildings require abundant amounts of fresh air in order to maintain indoor air quality. If the air volume is not carefully controlled, energy will be wasted needlessly conditioning excess fresh air.

To qualify for this credit, a VAV system must be installed that responds to indoor air quality through the use of CO₂ sensors or other air quality monitoring systems. Fans 5 hp and greater associated with this system are to be controlled by variable speed drives that respond to the air quality and thermal comfort needs. Additionally, pumps associated with the HVAC system are to use variable speed drives to regulate flow.

“Displacement” ventilation systems that are responsive to indoor air quality demands may also be submitted for this credit.

Systems that simply monitor temperature are not eligible for this credit.

Documentation for Energy Elective Credit 5
Submit HVAC design document complete with pump, fan, and controls schedules, along with a “sequence of operations” document.

Resources

Energy Efficiency Elective Credit 6: Install Energy Management System

<table>
<thead>
<tr>
<th>2 credits</th>
<th>EE EC 6. Install an energy management system (EMS) to control, monitor and trend the energy consumed throughout the school by the following systems:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• HVAC (heating, cooling, fans)</td>
</tr>
<tr>
<td></td>
<td>• Domestic/process hot water systems</td>
</tr>
</tbody>
</table>

While energy management systems (EMS) are typically installed with new HVAC and heating systems, care must be taken to specify and install an appropriate system for the school. The best EMS is often the simplest system that still addresses the school's energy management needs. Increased complexity does not always mean increased value.
With the installation of an EMS, proper training of maintenance staff is absolutely critical. The district must be prepared to budget for training both existing staff and new staff hired when those knowledgeable about the EMS leave employment.

Monitoring capabilities of the EMS should allow for comparison between various types of building loads throughout all spaces of the school. This information can be used to manage and optimize energy use.

The EMS should comprise, at a minimum, the following:

1. Sensors – provided as follows:
 - Sensors to monitor and trend (create trend logs) controlled variables at the operator interface. Control variables may include air and/or water flow, temperature, pressure, CO₂, and pump or fan speed.
 - Sensors to trend outdoor air temperature.
 - Sensors to monitor and trend equipment status for all equipment with motors greater than 1/2 hp.
 - Indication and trending of damper and valve commanded position.
 - Sensors to monitor building electrical, natural gas, and heating oil demand and consumption.
 - Sensors to monitor indoor and outdoor CO₂.
 - Relevant multiplexed data from microprocessors located in chillers, boilers, humidifiers, VAV box controllers, variable speed drives, and other HVAC equipment with multiplexing capabilities may be used in lieu of specifying separate sensors.
 - Wells and other ports shall be specified for the installation of calibration devices to facilitate calibration of sensors.

Exceptions:
 - Unit heaters, cabinet heaters, radiation and convectors located in vestibules, storage rooms, janitor closets, and other unoccupied areas.
 - Natural gas and heating oil demand sensors are not required on buildings less than 50,000ft².

2. Points matrix – A points matrix including all hardwired input and output devices connected to the automation system, all set points, upper and lower control limits.

3. Trend capabilities – Trend requirements including a trend point list and preprogrammed sample of point (performed by controls contractor), sample rate, storage interval, upload interval, custom trend abilities, alarms, and automated trend data review and notification (automated diagnostics).
4. System architecture – A system architecture capable of allowing sampling of these points to facilitate building commissioning and diagnostics without significantly affecting system performance.

5. Data storage – A data storage system with adequate capacity to record trend data for use by building operators. Data export requirements must facilitate user-friendly data access and manipulation.

6. Operator interface – An operator interface designed for remote/Web access, monitoring requirements, trend-log reporting, and diagnosing building problems through a user-friendly interface. This includes providing a visual (non-text based) operations and reporting interface to facilitate rapid system assessment that utilizes color coding, diagrams of floor plans, and graphing capabilities.

Documentation for Energy Elective Credit 6

1. Submit design specifications that demonstrate compliance with the above listed requirements.

2. Submit a training plan that includes the names of those who will be trained on the EMS, those who will do the training, and plans for continued training in case of staff turnover.

3. Submit a list of personnel who have completed initial EMS training.

4. Submit a plan for the collection of trend-logging data.

5. Submit a plan explaining how the data collected from the system will be used for improving the efficiency and maintenance of the HVAC and hot water systems.

Energy Efficiency Elective Credit 7: Install Submetering System

| 1 credit | **EE EC 7.** In addition to Credit 6, install a submetering system for lighting loads and plug loads, integrating the data collected from the submetering systems with the energy management system. |

Submeter the lighting and plug loads allowing those loads to be monitored and controlled by the energy management system. Develop a plan for using the submetered data to expand the ability of the energy management system to improve energy efficiency.

Documentation for Energy Elective Credit 7

Submit the specifications for the submetering systems including the points that will be picked up by the EMS. Submit a plan explaining how the EMS will be used to reduce the energy usage of the lighting and plug loads. The documentation may be included as part of the documentation required for Credit 6 (above).
Energy Efficiency Elective Credit 8: Install a “Cool Roof”

| 1 credit | **EE EC 8.** Install a “cool roof” to reduce the “heat island” effect and reduce overall energy consumption in schools that are air conditioned or to avoid the installation of air conditioning. |

Cool roofs can significantly reduce school cooling loads helping to prevent the installation of air conditioning or reduce air conditioning loads. In addition, in urban areas they help reduce urban heat island effects by reflecting the sun’s energy.

To meet this credit, select a roofing material for at least 75% of the roof area that has the required Solar Reflectance Index (SRI) depending on roof slope:

- Flat or Low-Sloped Roof <=2:12 Pitch: SRI greater or equal to 78
- Steep-Sloped Roof >2:12 Pitch: SRI greater or equal to 29

Solar Reflectance Index (SRI) is a value that incorporates both solar reflectance and thermal emittance in a single value. SRI quantifies how hot a surface would get relative to standard black (SRI = 0) and standard white surfaces (SRI = 100). Solar Reflectance SRI testing according to ASTM C1549-02, ASTM E903 or ASTM E1918 are acceptable.

Cool roofs may not be appropriate for all projects. For example, dark roofs may assist with heating loads under some conditions and can also assist in melting ice from roofs. Local conditions, school usage patterns, and project design should all be considered in selecting roofing materials.

Documentation for Energy Elective Credit 8
Submit roofing product specifications demonstrating that the above requirements are being met.

References

LEED New Construction & Major Renovation Reference Guide, Version 2.2, Site Credit 7: Landscape and Exterior Design to Reduce Heat Islands

US EPA ENERGY STAR program reflected roof products can be found at: www.energystar.gov/index.cfm?c=roof_prods.pr_roof_products.

US EPA Heat Island resources and strategies can be found at: www.epa.gov/heatisland/.

Energy Efficiency Elective Credit 9: Install a Vegetative Roof

| 2 credits | **EE EC 9.** Install a vegetative roof to reduce the “heat island” effect, to reduce heating and/or cooling loads, and to assist in the handling of rainwater. |

Install a vegetated roof that has at least five inches of lightweight substrate (soil mix) located over a suitable membrane. Develop a user and maintenance guide for the vegetated roof.

Documentation for Energy Elective Credit 9

Submit vegetative roof specifications, plans detailing the installation, and a copy of the user and maintenance guide.

References

US EPA Heat Island resources and strategies can be found at: www.epa.gov/heatisland/.

Energy Efficiency Elective Credit 10: Reduce or Eliminate Nighttime Security Lighting

| 1 credit | EE EC 10 | Following the guidelines established by the International Dark-Sky Association’s Dark Campus Initiative, adopt a policy that keeps all interior and exterior lighting off after all daily activities. |

Several recent studies have concluded that after hours interior and exterior site lighting do little, if anything, to prevent vandalism. While it is very important to provide security lighting during and immediately following sanctioned events, significant savings can be realized by reducing or eliminating night time security lighting.

To qualify for this credit, follow the guidelines established by the International Dark-Sky Association’s Dark Campus Initiative and adopt a policy that keeps all interior and exterior lighting off after all daily activities.

Documentation for Energy Elective Credit 10

Submit a dark campus policy document and provide schematic details for automatic lighting controls that will keep interior and exterior lighting off during inactive night time hours.

References

VII. On-Site Renewable Energy

Purpose: To promote the use of renewable energy technologies as a local generation source.

Summary Table

<table>
<thead>
<tr>
<th>On-Site Renewable Energy Elective Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 credits RE EC 1 (A or B), (A) Install on-site solar thermal energy system to meet 1% of the total building energy consumption, or 10% of the domestic hot water heating consumption. Or (B) install on-site solar thermal energy system to meet at least 2% of the total building energy consumption or 20% of the domestic hot water heating consumption.</td>
</tr>
<tr>
<td>1-4 credits RE EC 2 (A, B, C, or D), (A) Install on-site photovoltaic system to meet 1% of the school's energy loads, or produce a minimum of 2 kW of electricity. Or, (B) install on-site photovoltaic system to meet 3% of the school's energy loads. Or, (C) install on-site photovoltaic system to meet 5% of the school's energy loads. Or, (D) install on-site photovoltaic system to meet 10% of the school's energy loads.</td>
</tr>
<tr>
<td>1-4 credits RE EC 3 (A, B, C, or D), (A) Install on-site wind energy system to meet 1% of the school's energy loads, or produce a minimum of 2 kW of electricity. Or, (B) install on-site wind energy system to meet 3% of the school's energy loads. Or, (C) install on-site wind energy system to meet 5% of the school's energy loads. Or, (D) install on-site wind energy system to meet 10% of the school's energy loads.</td>
</tr>
<tr>
<td>2-3 credits RE EC 4 (A or B), (A) Install on-site biomass energy system to meet 10% of the school's total energy load or 75% of the heating load. Or, (B) Install on-site biomass energy system to meet 20% of the school's total energy load or 100% of the heating load.</td>
</tr>
<tr>
<td>1-5 credits RE EC 5, Install on-site renewable energy system other than the types listed for credits RE EC 1-4.</td>
</tr>
<tr>
<td>1 credit RE EC 6, Install a performance monitoring system that monitors installed on-site renewable energy systems and displays the results on a Web site accessible by the public.</td>
</tr>
<tr>
<td>1 credit RE EC 7, Design and construct a renewable energy educational display at the facility that demonstrates the potential that on-site renewable energy systems could contribute to the school and school district.</td>
</tr>
</tbody>
</table>

On-site alternative energy has many benefits. Alternative energy sources such as photovoltaics, solar thermal, and wind turbines use the sun and wind instead of non-renewable, polluting sources, such as coal, oil, or natural gas. Producing energy on-site also eliminates the environmental impacts of transmission losses associated with remote sources and transportation emissions associated with fuel delivery. On-site sources can be very effective components of school curricula, educating students on a wide variety of energy and science issues. And, on-site alternative energy production has the added advantage of increasing fuel diversity. Utilizing indigenous resources such as woody biomass, biogas, wind, and solar energy is increasingly important as the Northeast is rapidly becoming dependent upon natural gas.

School Energy Use Distribution – “Cold and Humid” Climate Zone

Renewable Energy Elective Credits

Renewable Energy Elective Credit 1: Install Renewable Solar Thermal Energy System

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>RE EC 1A. Install on-site solar thermal energy system to meet 1% of the total building energy consumption, or 10% of the domestic hot water heating consumption.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>2 credits</td>
<td>RE EC 1B. Install on-site solar thermal energy system to meet at least 2% of the total building energy consumption or 20% of the domestic hot water heating consumption.</td>
</tr>
</tbody>
</table>

With the popularity of photovoltaic solar systems, it is often forgotten that solar thermal systems often offer the best investment in solar energy. Meeting a portion of the building’s space heating, domestic water heating, or both loads combined is possible with a variety of system types and configurations. Systems dedicated to domestic water heating needs are often a good choice, as there is a demand for hot water year round, whereas space-heating needs are encountered for only a portion of the school year.

Documentation for Renewable Energy Elective Credit 1

1. Submit design specifications detailing all aspects of the system being installed.

2. Using the same calculations or calculation methodology used for the energy efficiency requirements of Northeast-CHPS, demonstrate that the installed system will supply the required percentage of the load according to the credit being sought.

3. Submit a plan for providing student and community education associated with the renewable energy project.

The solar water heating system at Providence Career and Technical Academy provides 40% of the school’s domestic hot water.

Images courtesy of NEEP

| 1 credit | RE EC 2A. Install on-site photovoltaic system to either meet 1% of the school’s energy loads, or produce a minimum of 2 kW of electricity. |

OR

| 2 credits | RE EC 2B. Install on-site photovoltaic system to meet 3% of the school’s energy loads. |

OR

| 3 credits | RE EC 2C. Install on-site photovoltaic system to meet 5% of the school’s energy loads. |

OR

| 4 credits | RE EC 2D. Install on-site photovoltaic system to meet 10% of the school’s energy loads. |

Photovoltaic systems collect solar energy and directly convert it to electricity. The electricity generated is direct current (DC) and is either used to power DC devices or, more commonly, is converted (inverted) to alternating current (AC) to be used on-site for AC devices and/or supplied to the local electrical grid. Building- and ground-mounted systems are available.

Net Metering – Most electric utilities throughout the region maintain net metering programs for qualifying renewable energy systems. Under net metering, the output of such a system is either consumed immediately by the loads active within the building or sent to the grid, spinning the electric meter backwards and effectively avoiding purchases of electricity from the utility at its retail rates. This is particularly helpful for wind and photovoltaic systems, which have variable and intermittent outputs.

Documentation for Renewable Energy Elective Credit 2

1. Submit design specifications detailing all aspects of the system being installed.

2. Using the same calculations or calculation methodology used for the energy efficiency requirements of Northeast-CHPS, demonstrate that the installed system will supply the required percentage of the load according to the credit being sought.

3. Submit a plan for providing student and community education associated with the renewable energy project.

4. Submit a net metering agreement with the electrical supplier. If net metering is not to be used, submit a plan for the effective use of the generated electricity.

Renewable Energy Elective Credit 3: Install Renewable Wind Energy System

| 1 credit | RE EC 3A. Install on-site wind energy system to either meet 1% of the school’s energy loads, or produce a minimum of 2 kW of electricity. |
OR

2 credits **RE EC 3B.** Install on-site wind energy system to meet 3% of the school’s energy loads.

OR

3 credits **RE EC 3C.** Install on-site wind energy system to meet 5% of the school’s energy loads.

OR

4 credits **RE EC 3D.** Install on-site wind energy system to meet 10% of the school’s energy loads.

Wind energy has been rapidly gaining in popularity and many European countries now meet significant portions of their electrical needs with wind generators. Today’s slow rpm generators have solved many of the maintenance concerns and have greatly reduced the negative effects on bird life.

The siting of wind generators is a long-term process, so planning must begin early. It is not unusual for the available wind to be monitored for a two-year period before selecting a site. Additionally, community aesthetic concerns often come into play when siting wind turbines.

Like photovoltaic systems, the energy generated may be used exclusively on-site or may be net metered. Please see the photovoltaic section (RE EC 2) for a discussion of net metering.

Documentation for Renewable Elective Credit 3

1. Submit design specifications detailing all aspects of the system being installed.

2. Using the same calculations or calculation methodology used for the energy efficiency requirements of Northeast-CHPS, demonstrate that the installed system will supply the required percentage of the load according to the credit being sought.

3. Submit a plan for providing student and community education associated with the renewable energy project.

4. Submit a net-metering agreement with the electrical supplier. If net metering is not to be used, submit a plan for the effective use of the generated electricity.

Renewable Energy Elective Credit 4: Install Renewable Biomass Energy System

2 credits **RE EC 4A.** Install on-site biomass energy system to meet 10% of the school’s total energy load or 75% of the heating load.

OR

3 credits **RE EC 4B.** Install on-site biomass energy system to meet 20% of the school’s energy load or 100% of the heating load.
Qualifying biomass energy systems utilize locally available renewable biomass fuels to supply heat and/or generate electricity. Waste wood products and/or wood products from sustainable practices are eligible fuel sources for qualifying systems. Depending on the project’s location, a variety of state, federal, and local regulations must be met, therefore planning for biomass systems must start early.

Documentation for Renewable Elective Credit 4

1. Submit design specifications detailing all aspects of the system being installed.

2. Using the same calculations or calculation methodology used for the energy efficiency requirements of Northeast-CHPS, demonstrate that the installed system will supply the required percentage of the load according to the credit being sought.

3. Submit a plan for providing student and community education associated with the renewable energy project.

4. If the system will generate electricity, submit a net-metering agreement with the electrical supplier. If net metering is not to be used, submit a plan for the effective use of the generated electricity.

Renewable Energy Elective Credit 5: Install Unlisted Renewable Energy System

| *1-5 credits | **RE EC 5.** Install on-site renewable energy systems other than the types listed for credits RE EC 1-4. |

Besides the systems listed above in this section, there are other possible alternatives for on-site renewable energy production. Systems that may be eligible for credit include, but are not limited to:

- Micro-hydroelectric
- Biogas
- Biodiesel
- Landfill gas

*This credit is available on a “custom” basis. The amount of the credit and the documentation required will be determined by the administrators of Northeast-CHPS.

Documentation for Renewable Elective Credit 5

Early in the design process, submit a plan for the construction and operation of the proposed renewable energy system. Further documentation will be determined following the initial submission.

Resources

Renewable Energy Elective Credit 6: Install a Performance Monitoring System

| 1 credit | RE EC 6 | Install a performance monitoring system that monitors installed on-site renewable energy systems and displays the results on a Web site accessible by the public. |

For any of the on-site renewable energy systems installed under Renewable Energy Credits 1-5, install a performance monitoring system that monitors and records system performance over time. Include a protocol for uploading performance information to a Web site allowing open access to the information.

Documentation for Renewable Elective Credit 6

Provide specifications for a performance monitoring system and a protocol for the automatic or scheduled uploading of performance data to an open access project Web site.

Resources

Renewable energy system manufacturers typically supply or recommend monitoring equipment.

Renewable Energy Elective Credit 7: Install a Renewable Energy Educational Display

| 1 credit | RE EC 7 | Design and construct a renewable energy educational display at the facility that demonstrates the potential that on-site renewable energy systems could contribute to the school and school district. |

For any of the on-site renewable energy systems installed under Renewable Energy Credits 1-5, or for potential future projects, design and construct a renewable energy educational display. This is an ideal project for students to be involved in and this credit can be earned in addition to meeting the prerequisite for utilizing the school as a teaching tool.

Documentation for Renewable Elective Credit 7

Submit plans for an educational display, including technologies presented, display location, and participating staff and students.

Resources

VIII. Water Efficiency

Purpose: To promote the efficient and responsible use of water resources.

Summary Tables

Water Efficiency Prerequisites

| Required | WE P 1. Employ strategies that, in aggregate, reduce potable water use by 20% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements. |

Water Efficiency Elective Credits

2 credit	WE EC 1. Refrain from installing permanent potable water irrigation systems for watering non-playing-field landscaped areas AND specify drought resistant plants or grasses in these areas so that irrigation is not needed at all.
1–2 credits	WE EC 2 (A or B). (A) Reduce potable water consumption for irrigation of athletic fields with the use of appropriate soils and drought tolerant grasses. Specify that organic content of soils be between 3% and 7% of total soil content and that grasses be a mixture that performs well in the northeastern United States with little or no irrigation. Utilize high-efficiency irrigation technologies, soil moisture meters/rainfall sensors, and/or captured rainwater. Or, (B) eliminate potable water consumption for irrigation of playing fields with the use of water conservative/climate tolerant plantings, soil moisture meters/rainfall sensors, and/or captured rainwater.
1 credit	WE EC 3. Create an irrigation commissioning plan followed by installation review during construction, performance testing after installation, and documentation for ongoing operations and maintenance.
2 credits	WE EC 4. Install a rainwater collection and storage system to be used to convey sewage and/or to irrigate the playing fields when no potable water is to be used.
1 credit	WE EC 5. Reduce water usage for sewage (blackwater) conveyance by a minimum of 40% through the utilization of water efficient fixtures and/or rainwater catchment systems.
2 credits	WE EC 6. Employ strategies that, in aggregate, reduce potable water use by 30% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements.

Water Efficiency Prerequisite 1: Reduce Total Interior Water Usage

| Required | WE P 1. Employ strategies that, in aggregate, reduce potable water use by 20% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements. |
This prerequisite involves reductions in total water use; therefore all water uses are included in the calculations. To quantify water use reductions, use spreadsheets in the Application Template showing baseline and design water uses. List each water-using appliance or fixture, amount of daily uses, number of occupants, and total water use. Below is a water-efficient design for the school shown in the previous example.

Develop a water-use baseline including all water-consuming fixtures, equipment, and seasonal conditions according to methodology outlined below. Specify water-conserving plumbing fixtures that exceed the Energy Policy Act (EPAct) of 1992’s fixture requirements in combination with ultra high efficiency or dry fixture and control technologies. Specify high water efficiency equipment (e.g., dishwashers, faucets, cooling towers, etc.).

Table 1 – Design Indoor Water Consumption Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily Uses</th>
<th>Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-flow toilet (male)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Waterless urinal (male)</td>
<td>0.0 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Low-flow toilet (female)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>2400</td>
</tr>
<tr>
<td>Bathroom sink</td>
<td>0.5 gal/min</td>
<td>0.17 min</td>
<td>1000</td>
<td>3</td>
<td>255</td>
</tr>
<tr>
<td>Low-flow shower</td>
<td>1.8 gal/min</td>
<td>5 min</td>
<td>100</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td>Low-flow kitchen sink</td>
<td>1.8 gal/min</td>
<td>45 min</td>
<td>2</td>
<td>2</td>
<td>324</td>
</tr>
<tr>
<td>Efficient clothes washer</td>
<td>20 gal/load</td>
<td>1 load</td>
<td>-</td>
<td>10</td>
<td>200</td>
</tr>
</tbody>
</table>

Total Daily Volume	4879
Number of School Days	180
Subtotal	878,220
Minus Collected Rainwater	(396,000)
Design Total Annual Volume	482,220

For the baseline calculation, create a similar spreadsheet but change only the type of fixture and its associated design details. The baseline calculation for this example would therefore be:

Table 2 – Baseline Indoor Water Consumption Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily Uses</th>
<th>Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional toilet (male)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Conventional urinal (male)</td>
<td>1.0 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Conventional toilet (female)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>2400</td>
</tr>
<tr>
<td>Bathroom sink</td>
<td>0.5 gal/min</td>
<td>0.5 min</td>
<td>1000</td>
<td>3</td>
<td>750</td>
</tr>
<tr>
<td>Conventional shower</td>
<td>2.5 gal/min</td>
<td>5 min</td>
<td>100</td>
<td>1</td>
<td>1250</td>
</tr>
<tr>
<td>Kitchen sink</td>
<td>2.5 gal/min</td>
<td>45 min</td>
<td>2</td>
<td>2</td>
<td>450</td>
</tr>
<tr>
<td>Clothes washer</td>
<td>40 gal/load</td>
<td>1 load</td>
<td>-</td>
<td>10</td>
<td>400</td>
</tr>
</tbody>
</table>

Total Daily Volume	7,050
Number of School Days	180
Baseline Total Annual Volume	1,269,000

Comparing the two spreadsheets, the water-efficient fixtures reduced potable water use by:

\[
\text{% Savings} = 1 - \left(\frac{\text{Design Total Annual Volume}}{\text{Baseline Total Annual Volume}} \right) \\
= 1 - \left(\frac{482,220}{1,269,000} \right) = 0.62 = 62\%
\]

Therefore, this design would qualify because overall potable water use has been reduced by over 20%.
Documentation for Water Efficiency Prerequisite 1

1. Perform calculations as outlined above using the Application Template.

2. Submit specification section on plumbing fixtures. Be sure that the flow rates calculated in the template actually match the fixtures that have been specified in the bid documents.

3. Submit complete plumbing fixture schedule

Resources

Water Efficiency Elective Credits

Water Efficiency Elective Credit 1: Eliminate Irrigation for Non-Playing-Field Landscaping

| 2 credits | **WE EC 1.** Refrain from installing permanent potable water irrigation systems for watering non-playing-field landscaped areas and specify drought resistant plants or grasses in these areas so that irrigation is not needed at all. |

Significant amounts of potable water are currently used to irrigate landscaping and playing fields. Although the Northeast region receives an average of several inches of rainfall per month, expanding development increases the demand for potable water. As more and more water is withdrawn, aquifers and rivers can be stressed to the point of creating water shortages and ecological changes to rivers and streams. Summer dry spells cause the most stress to underground and surface waters as water is withdrawn for irrigation and other outdoor activities but is not replaced by rainfall.

The use of potable water for irrigation can be minimized or eliminated by specifying drought resistive plants and grasses, collecting and using rainwater for irrigation, and/or using highly water-efficient irrigation systems. When specifying water conservative plants, determine soil composition and ensure that existing soils will support the plants to be specified. Consider all operating and maintenance costs of any irrigation equipment specified. If irrigation is necessary, make arrangements to irrigate during morning hours to maximize irrigation benefits and minimize evaporation.

The use of well water, ground water, or surface water (ponds, streams) cannot be used as a measure to obtain reductions under this credit.

Documentation for Water Efficiency Elective Credit 1

Submit a letter from a landscape architect certifying that permanent irrigation systems have not been specified for non-playing-field areas AND that only water conservative plants and grasses have been specified for these areas. The letter must clearly state that no irrigation, manual or otherwise, will be needed in these areas after plants are established. The species of water conservative plants and grasses must also be specified.
Water Efficiency Elective Credit 2: Reduce or Eliminate Irrigation for Athletic Fields

| 1 credits | **WE EC 2A.** Reduce potable water consumption for irrigation of athletic fields with the use of appropriate soils and drought tolerant grasses. Specify that organic content of soils be between 3% and 7% of total soil content and that grasses be a mixture that performs well in the northeastern United States with little or no irrigation. Utilize high-efficiency irrigation technologies, soil moisture meters/rainfall sensors, and/or captured rainwater. |

OR

| 2 credits | **WE EC 2B.** Eliminate potable water consumption for irrigation of playing fields with the use of water conservative/climate tolerant plantings, soil moisture meters/rainfall sensors, and/or captured rainwater. |

The best types of soil for playing fields are 3% to 7% organic content and fall into the following U.S. Department of Agriculture soil categories:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Watering Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loamy sand</td>
<td>1” per week</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>1” per week</td>
</tr>
<tr>
<td>Loam</td>
<td>1” per week</td>
</tr>
</tbody>
</table>

Use of well water, ground water, or surface water (ponds, streams) is not allowed to obtain reductions under this credit.

Documentation for Water Efficiency Elective Credit 2

WE EC 2A: Submit a narrative from a qualified landscape architect detailing a landscaping plan that meets the above listed criteria.

WE EC 2B: Submit a plan for the athletic playing fields illustrating that no potable water systems will be utilized for irrigation.

If the project includes installing artificial turf, check with the appropriate state environmental department to determine whether there may be additional groundwater recharge requirements for the site. If the turf sheds too much rainwater, it may be considered impermeable and thus the project may be required to add or expand a groundwater recharge system on the site.

Resources

Water Efficiency Elective Credit 3: Create an Irrigation Commissioning Plan

1 credit
WE EC 3. Create an irrigation commissioning plan followed by installation review during construction, performance testing after installation, and documentation for ongoing operations and maintenance.

An irrigation commissioning plan will help to assure that the irrigation system operates properly supplying water efficiently to only the intended areas. The commissioning plan should also specify maintenance strategies to keep the system working efficiently in the future.

Documentation for Water Efficiency Elective Credit 3

Submit an irrigation commissioning plan that has been prepared for the bid specifications, including the following:

- Identification of who will perform the commissioning tasks
- Review of irrigation system installation during construction, with record of deficiencies found and corrected
- Acceptance testing of all components (pipes, connectors, heads, back-flow prevention devices, sensors, timers, etc.)
- Performance testing and documentation of results (as compared to specified performance) at least once during the first year of installation
- Creation and distribution of site-specific documentation for ongoing operation and maintenance information including recommended irrigation schedule and maintenance schedule

Water Efficiency Elective Credit 4: Install a Rainwater Collection and Water Storage System

2 credits
WE EC 4. Install a rainwater collection and storage system to be used to convey sewage and/or to irrigate the playing fields when no potable water is to be used.

This credit may be taken in addition to Credit **WE EC 2**, which mandates reductions in the amount of potable water used for the irrigation of playing fields and/or Credit **WE EC 5**, which mandates reductions in potable water used for sewage conveyance.

In order to reduce water demand for sewage conveyance and irrigation, some schools opt to use rainwater catchment systems with cisterns or underground storage tanks. These supplementary systems can significantly decrease water demand by drawing on stored water instead of municipal water supplies or drinking water wells.
A rainwater catchment system should be designed with a water storage capacity for sewage conveyance and/or irrigation in typical years under average conditions. In other words, oversizing water storage to meet drought conditions may be costly and could increase maintenance requirements. On the other hand, undersizing storage may simply result in a system that is too small to significantly offset potable water consumption. Rainwater collection and storage systems should be designed to avoid mold growth, bacteria accumulation, and stagnation.

The underground storage tanks and cisterns could at times run dry during drought conditions. Therefore, it is acceptable for tanks and cisterns to connect to wells or municipal water supplies.

Documentation for Water Efficiency Elective Credit 4

Submit a plan for the installation of a rainwater collection system that meets the above requirements. Depending on the credits being applied for, sizing calculations must support the use of rainwater collection for 50% or 100% of playing field irrigation needs and/or 50% of the sewage conveyance needs during an average year.

Resources

The Irrigation Association, http://www.irrigation.org/

Local water utility staff, water efficient landscape consultants, certified irrigation designers, Master Gardeners are also good resources for helping achieve this credit.

Indoor Water Systems

The growing value of potable water underscores the importance of lowering demand. Efficient water consumption naturally reduces the amount of water pumped from the ground or transported from reservoirs to cities and towns. In addition, water efficiency reduces the cost and amount of sewage needing treatment after use. Because water-efficient devices can vary in quality and performance, specify only durable, high performance fixtures.

A maximum of three credits can be earned with the Indoor Systems credits. The following credit promotes well-designed, water efficient systems that reduce the amount of potable water used for sewage conveyance. Two additional credits may be obtained by reducing the overall amount of potable water used in the schools.
Water Efficiency Elective Credit 5: Reduce Water Used for Sewage Conveyance

1 credit **WE EC 5.** Reduce water usage for sewage (blackwater) conveyance by a minimum of 40% through the utilization of water efficient fixtures and/or rainwater catchment systems.

Use water-efficient fixtures and/or site-collected water to reduce the amount of potable water used for sewage conveyance. Only those sources that produce blackwater, such as toilets and urinals, are included in this calculation. Rainwater is suitable for flushing toilets and urinals, which typically produce the largest amounts of wastewater in a school.

To quantify water use reductions, use the following spreadsheets as templates to determine baseline and design water consumption. List each fixture that produces blackwater, the amount of daily uses, number of occupants, and total water use. A water-efficient design for a 1,000-student school is shown in table 3. The example assumes the use of low-flow toilets and waterless urinals, all using non-potable water.

Table 3 – Design Sewage Conveyance Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily Uses</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilets (male)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Waterless urinals (male)</td>
<td>0.0 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Toilets (female)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>2400</td>
</tr>
<tr>
<td>Total Daily Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3200</td>
</tr>
</tbody>
</table>

Number of School Days | 180
Design Total Annual Volume | 576,000
Minus Collected Rainwater | (396,000)
Total Potable Water Used for Sewage Conveyance | 180,000

Calculate Daily Water Use per fixture using the following equation:

\[
\text{Daily Water Use} = (\text{Flow-rate}) \times (\text{Duration}) \times (\text{Occupants}) \times (\text{Daily Uses})
\]

Sum Daily Water Volumes for each fixture to find Total Daily Volume.

Multiply the Total Daily Volume by the number of school days for Total Annual Volume.

Subtract the amount of reclaimed water used to find Total Potable Water Used for Sewage Conveyance.

For baseline indoor water consumption calculations, use a similar spreadsheet in the Application Template, but change only the type of fixture and its associated design details. For baseline calculations, assume flow rates outlined by the Energy Policy Act of 1992’s fixture performance requirements (see tables 4 and 5 below).

Table 4 – EPAct Fixture Performance Requirements

| Fixture | EPAct Requirement
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilets</td>
<td>1.6 gallons/flush</td>
</tr>
<tr>
<td>Urinals</td>
<td>1.0 gallons/flush</td>
</tr>
<tr>
<td>Showerheads</td>
<td>2.5 gallons/minute</td>
</tr>
<tr>
<td>Faucets (non-lavatory)</td>
<td>2.5 gallons/minute</td>
</tr>
<tr>
<td>Lavatory faucets</td>
<td>0.5 gallons/minute or 0.25 gallons/cycle – Massachusetts State Plumbing Code*</td>
</tr>
<tr>
<td>Replacement aerators</td>
<td>2.5 gallons/minute</td>
</tr>
<tr>
<td>Metering faucets</td>
<td>0.25 gallons/cycle</td>
</tr>
</tbody>
</table>

For lavatory faucets in public buildings, Massachusetts code supersedes EPAct fixture performance requirements.
Table 5 – Baseline Sewage Conveyance Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Flow-rate</th>
<th>Duration</th>
<th>Occupants</th>
<th>Daily uses</th>
<th>Water use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional toilet (male)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Conventional urinal (male)</td>
<td>1.0 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Conventional toilet (female)</td>
<td>1.6 gal/flush</td>
<td>1 flush</td>
<td>500</td>
<td>3</td>
<td>2400</td>
</tr>
</tbody>
</table>

Total Daily Volume	4200
Number of School Days	180
Baseline Total Annual Volume	756,000

Comparing the two spreadsheets, the water-efficient fixtures reduced potable water use for sewage conveyance by:

\[\text{% Savings} = 1 - \left(\frac{\text{Design Total Annual Volume}}{\text{Baseline Total Annual Volume}} \right) = 1 - \left(\frac{180,000}{756,000} \right) = 0.76 = 76\% \]

Therefore, this design would earn one point because potable water used for sewage conveyance has been reduced by 76% through using reclaimed water in the toilets and urinals. Note that the low-flow fixtures by themselves were not enough to earn this credit.

Documentation for Water Efficiency Elective Credit 5

1. Perform calculations as outlined above using the Application Template.
2. Submit specification section for blackwater fixtures and highlight the gallons per flush.

Resources

Water Efficiency Elective Credit 6: Reduce Total Interior Water Usage by a Minimum of 30%

2 credits

WE EC 6. Employ strategies that, in aggregate, reduce potable water use by 30% beyond the baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992’s fixture performance requirements.

This credit awards reductions in total water use that go beyond the reductions required for Water Efficiency Prerequisite 1. Follow the same procedure as specified in the prerequisite to demonstrate compliance with this credit.

Documentation for Water Efficiency Elective Credit 6

Provide the same documentation as required for Water Efficiency Prerequisite 1.

Resources

IX. Materials Selection and Specification

Purpose: To encourage the use of healthy materials and material practices that have a low impact upon the environment.

Summary Tables

Materials Prerequisites

Required	**M P 1.** For all newly installed materials, and/or materials to be refinished, specify materials that have been tested and certified for low emissions of volatile organic compounds (VOCs).
Required	**M P 2.** Provide an easily accessible area serving the entire school that is dedicated to the separation, collection, and storage of materials for recycling, including — at a minimum — paper (white ledger and mixed), cardboard, glass, plastics, and metals.
Required	**M P 3.** Recycle, reuse, and/or salvage at least 50% (by weight) of non-hazardous construction and demolition waste, not including land clearing and associated debris.

Materials Elective Credits

1 credit	**M EC 1.** Reuse large portions of existing structures during renovation or redevelopment projects. Maintain at least 50% of existing building structure and shell (exterior skin and framing, excluding window assemblies). Hazardous materials that are remediated as part of the project scope and elements requiring replacement due to unsound material condition shall be excluded from the calculation of the percent maintained.
1 credit	**M EC 2.** Maintain 50% of the non-structural interior elements (walls, floor coverings, and ceiling systems).
1-2 credits	**M EC 3 (A or B).** (A) Specify salvaged or refurbished materials for 0.5% of building materials. Or, (B) specify salvaged or refurbished materials for 1% of building materials.
1-2 credits	**M EC 4 (A or B).** (A) Achieve a minimum recycled content rate of at least 5% by using a recycled-content calculation that rewards products that exceed 20% recycled-content material. Or, (B) achieve a minimum recycled content rate of 10% by using a weighted average recycled-content calculation that rewards products that exceed 20% recycled-content material.
1 credit	**M EC 5.** Specify rapidly renewable building materials for 0.5% of total building materials installed during renovations.
1 credit	**M EC 6.** Specify that a minimum of 50% of the wood-based materials used for construction are certified in accordance with the Forest Stewardship Council (FSC), the American Forest and Paper Association’s Sustainable Forestry Initiative (SFI), or the American Tree Farm Certification guidelines for wood building components. This includes all wooden framing, flooring, casework, and finishes.
1-2 credits	**M EC 7 (A or B).** (A) Specify a minimum of 20% of building materials that are manufactured regionally within a radius of 500 miles. Or, (B) specify a minimum of 40% of building materials that are manufactured regionally within a radius of 500 miles.
Materials Selection and Specification Prerequisites

Materials Prerequisite 1: Specify Low Emission Materials

| Required | M P 1. For all newly installed materials, and/or materials to be refinished, specify materials that have been tested and certified for low emissions of volatile organic compounds (VOCs). |

The selection of materials for the construction and furnishing of a school can have a major impact on indoor air quality. Many common indoor building and surfacing materials contain a variety of potentially carcinogenic and/or toxic chemicals. These chemicals are released into the air and can cause a variety of health problems, from minor irritation to major health problems. Recent studies have implicated volatile organic compounds (VOCs) as significant risk factors for asthma. Exposure to VOCs emitting from sources such as cigarette smoke, cleaning agents, solvents, furnishings, paint, flooring products, building materials, and personal hygiene products may increase the risk of asthma and other ailments. This is especially important in schools because children are typically more sensitive to indoor air pollutants than adults.

To meet this prerequisite, the following materials must be certified:

- 50% of adhesives and sealants
- All acoustic ceiling tiles and acoustic wall panels
- All carpet systems
- All interior paint
- All wall coverings (do not use vinyl wall paper)
- All solid and composite wood flooring
- All insulation installed interior to the building vapor barrier
- All resilient flooring

Low VOC products must be certified by one of the programs listed below or be listed by the California CHPS program:

- Scientific Certification Systems
- Indoor Advantage – Gold
- Floor Score
- Carpet and Rug Institute
- Green Label Plus
Documentation for Materials Prerequisite 1
Submit a document providing specifications for the interior products covered by the above categories. Include in the document:

1. Product brand name and manufacturer identifying product number.
2. Identification that the product is certified by one of the qualifying programs.
3. If the product is not listed, provide product specifications demonstrating compliance with the standards for the appropriate certifying program.

Resources
GREENGUARD Environmental Institute, http://www.greenguard.org/
Green Seal, http://www.greenseal.org/
EPA, http://yosemite1.epa.gov/oppt/eppstand2.nsf/Pages/Homepage.html/

Materials Prerequisite 2: Storage and Collection of Recyclables

| Required | M P 2. Provide an easily accessible area serving the entire school that is dedicated to the separation, collection, and storage of materials for recycling, including – at a minimum – paper (white ledger and mixed), cardboard, glass, plastics, and metals. |

The recycling of many common materials is promoted throughout the Northeast with a variety of recycling programs and services. Typical recyclables include aluminum cans, steel cans, newspaper, white paper, corrugated cardboard, single polymer plastics, and glass bottles. In order to qualify for this credit, school administrators must designate areas in the school where these materials can be handled and sorted.

Early in the building occupancy programming, be sure to reserve space for recycling functions and show areas dedicated to the collection of recycled materials on space utilization plans. Consider the question of how recyclable materials will be collected and removed from classrooms and teachers’ lounges. When recycling bins are used, they should be able to accommodate a 75% diversion rate (from normal wastebasket contents) and be easily accessible to custodial staff and recycling collection workers. Consider bin designs that allow for easy cleaning to avoid health issues.

Recycling at Profile School, NH. Image courtesy of NEEP.
Documents for Materials Prerequisite 2

1. Submit plans showing recycling collection area and storage bins and/or dumpsters.

2. Submit a description of how recyclable materials will be removed from classrooms, teachers’ lounges etc. and how directions for separating recyclable materials will be communicated to teachers, students, and custodians.

Resources

Technical assistance is available from the Northeast Resource Recovery association, http://www.recyclewithus.org/ and the following state contacts:

Connecticut Department of Environmental Protection, http://www.dep.state.ct.us/wst/recycle/ctrecycles.htm

Maine State Planning Office Waste Management and Recycling Program, http://www.state.me.us/spo/recycle/

Massachusetts Department of Environmental Protection, http://www.mass.gov/dep/recycle/recycle.htm

Materials Prerequisite 3: Site Waste Management

Required **M P 3.** Recycle, reuse, and/or salvage at least 50% (by weight) of non-hazardous construction and demolition waste, not including land clearing and associated debris.

This prerequisite encourages the diversion of construction and demolition waste produced from construction and renovation projects from landfills to beneficial uses. This eases the burdens on landfills and increases the market for these materials. The prerequisite requires that a reasonable percentage (75%) of non-hazardous construction and demolition wastes be diverted.

Waste Management Plans

Successful salvage, recycling, and diversion of construction and demolition materials are usually the result of a well-thought-out waste management plan and on-site training for contractors and subcontractors. Develop and specify a waste management plan that identifies:
1. The diversion percentage goals for C&D wastes

2. Deconstruction, salvage, and recycling/reuse strategies and processes, e.g., scheduling of different stages of deconstruction to best remove recyclable or salvageable materials intact

3. Methods of on-site communication directing the contractors and subcontractors about what, how, when, and where to recycle

4. Licensed haulers and processors of recyclables

5. Documents needed to show waste diversion – e.g., weight tickets for all wastes removed from the site including recycled and salvaged materials. If items are removed and no weight tickets are generated, be sure to document the materials and date, estimate the weight and volume of the materials, and add them into the overall total for waste and/or salvaged/recycled material removed from the site

6. A method for collecting all recycling and waste data and organizing for an audit of the achieved recycling rates on the project

Compliance calculations for this credit must be based on weight. Many recycling and landfill facilities weigh incoming materials. Shipments that cannot be weighed can be estimated based on their volume and density.

Note: DO NOT include materials classified as hazardous wastes in these calculations.

Documentation for Materials Prerequisite 3

1. Submit a copy of the waste management plan developed according to the above criteria.

2. Submit a copy of a contract(s) with contractor(s) who will execute the plan.

Resources

Connecticut: Department of Environmental Protection, http://dep.state.ct.us/wst/recycle/candd.htm.

Massachusetts Department of Environmental Protection, Bureau of Waste Prevention, C&D Waste Prevention, http://www.mass.gov/dep/recycle/cdhome.htm

Materials Selection and Specification Elective Credits

Materials Elective Credit 1: Building Reuse

| 1 credit | M EC 1. Reuse large portions of existing structures during renovation or redevelopment projects. Maintain at least 50% of existing building structure and shell (exterior skin and framing, excluding window assemblies). Hazardous materials that are remediated as part of the project scope and elements requiring replacement due to unsound material condition shall be excluded from the calculation of the percent maintained. |

Reusing buildings can save significant money and resources, while greatly reducing the amount of construction waste. When materials are re-used, the environmental benefits start with resource savings and extend down through the entire lifecycle of the material: less energy is spent extracting, processing, and shipping the materials to the site. Depending on the amount of the building re-used, school districts can significantly reduce their construction and material costs. However, the building envelope will significantly affect many important high performance areas, such as space programming, energy performance, opportunities for daylighting, and indoor air quality. In addition, care must be taken to ensure that any environmental hazards such as toxins, lead, and asbestos have been identified and their removal addressed. Develop a list of benefits and tradeoffs and make the decision based upon the overall, integrated design tradeoffs.

The percentage of reused structural materials (foundation, slab on grade, beams, floor and roof decks, etc) and shell materials (roof and exterior walls) should be estimated in square feet. Average together the structural and shell reuse percentages. The average will be used to determine the overall reuse percentage for the building.

\[
Building\ Reuse(\%) = \frac{1}{2} \left(\frac{Reused\ Structural\ Elements\ (ft^3) \ + \ Reused\ Shell\ Elements\ (ft^2)}{Total\ Structural\ Elements\ (ft^3) \ + \ Total\ Shell\ Elements\ (ft^2)} \right) \times 100
\]

Documentation for Materials Elective Credit 1

1. Submit demolition plans.

2. Submit calculations using the above scoring template to determine amount of reused structural and shell elements.
Resources

Materials Elective Credit 2: Reuse Interior Building Elements

| 1 credit | **M EC 2.** Maintain 50% of the non-structural interior elements (walls, floor coverings, and ceiling systems). |

Percentage of reused, non-shell building portions will be calculated as the total area (ft²) of reused walls, floor covering, and ceiling systems, divided by the existing total area (ft²) of walls, floor covering, and ceiling systems.

\[
\text{Internal Building Reuse(\%)} = \frac{\text{Reused Nonstructural Elements (ft}^2\text{)}}{\text{Total Nonstructural Elements (ft}^2\text{)}} \times 100
\]

Documentation for Materials Elective Credit 2

1. Submit demolition plans.
2. Submit floor plans showing existing elements.
3. Submit calculations using the above scoring template to determine amount of reused non-structural interior elements.

Resources

In this picture of Merrimack Valley High School, NH, you can see (l-r) the old building envelope under construction and the new exterior. Image courtesy of Banwell Architects.
Materials Elective Credit 3: Resource Reuse

1 credit **M EC 3A.** Specify salvaged or refurbished materials for 0.5% of building materials.

OR

2 credits **M EC 3B.** Specify salvaged or refurbished materials for 1% of building materials.

Re-used materials or products are salvaged from a previous use or application and then used in a new use or application with only superficial modification, finishing, or repair. Commonly salvaged building materials include wood flooring/paneling/cabinets, doors and frames, mantels, ironwork and decorative lighting fixtures, brick, masonry, heavy timbers, and on-site concrete used as aggregate. Ensure that the salvaged materials, especially structural elements, comply with all applicable codes.

\[
SalvageRate(\%) = \frac{SalvagedMaterialCost(\$)}{TotalMaterialCost(\$)} \times 100
\]

Exclude all labor costs, all mechanical and electrical material costs, and project overhead and fees. If the cost of the salvaged or refurbished material is below market value, use replacement cost to estimate the material value; otherwise use actual cost to the project.

Documentation for Materials Elective Credit 3

1. Submit specifications for salvaged material OR copies of receipts for salvaged material.

2. Submit calculations following the above formula.

Resources

Materials Elective Credit 4: Include Recycled Content In Construction Materials

1 credit **M EC 4A.** Achieve a minimum recycled content rate of 5% by using a weighted average recycled-content calculation that rewards products that exceed 20% recycled-content material.

OR

2 credits **M EC 4B.** Achieve a minimum recycled content rate of 10% by using a weighted average recycled-content calculation that rewards products that exceed 20% recycled-content material.

The number and variety of products using recycled-content materials expands every year. Using these materials closes the recycling loop by creating markets for materials collected through recycling programs across the country. It also reduces the use of virgin materials and landfill waste. Recycled-content alternatives exist for all major building materials and surfaces. Recycled...
content is either a post-consumer (collected from end users) or secondary material. Secondary material (also known as post-industrial or pre-consumer) is collected from manufacturers and industry.

The objective of this credit is to maximize post-consumer recycled content; therefore post-industrial recycled content is discounted 50% for the calculations.

Exception: Structural steel may not be counted toward the recycled content of your building materials. However, the cost of steel may be removed from the project’s total materials costs for the calculations.

The weighted average calculation methodology outlined below rewards materials that contain at least 20% post-consumer material by weighting them more heavily.

1. Sum the Material Cost for all products used in the school to find the Total Project Material Cost.
 The material cost is the construction cost of a material excluding all labor and equipment costs, mechanical, plumbing, and electrical materials costs, project overhead, and fees.

2. Identify each material that contains at least 20% post-consumer recycled content and calculate the weighted value of the post-consumer recycled content.

3. Weighted Value = Material Cost x Post-consumer Recycled Content Percentage

4. Identify each material that contains at least 20% post-industrial recycled content and calculate the weighted value of the post-industrial recycled content, discounting the total by 50%.

5. Weighted Value = (Material Cost x Post-consumer Recycled Content Percentage) x 50%

6. Sum these values to obtain the Total Recycled Content Value for the project.

7. Calculate the total recycled content as a percentage of total project material cost.

8. Recycled Content (%) = (Total Recycled Content Material Cost) / Total Project Material Cost) x 100

 Earn 1 credit if the total Recycled Content = 5%.
 Earn 2 credits if the total Recycled Content = 10%.

Documentation for Materials Elective Credit 4

1. Submit specifications for each recycled material.

2. Submit calculations following the above listed formulas.

3. Submit purchase orders for each listed material.

Resources

EPA’s Comprehensive Procurement Guideline (CPG) Program, http://www.epa.gov/cpg
Materials Elective Credit 5: Specify Rapidly Renewable Materials

1 credit | **M EC 5.** Specify rapidly renewable building materials for 0.5% of total building materials installed during renovations.

Rapidly renewable resources are those materials that substantially replenish themselves faster than traditional resources of the same type. Additionally these materials do not result in significant biodiversity loss, increased erosion, or air quality impacts and are sustainably managed. Products in this category include but are not limited to linoleum, bamboo products, wheat grass cabinetry, oriented strand board, and other wood products made from fast-growing poplar and Monterey pine trees.

To earn this credit, determine the percentage of total building materials from rapidly renewable sources.

\[
\text{Rapidly Renewable Material Portion (\%)} = \frac{\text{Rapidly Renewable Material Cost (\$)}}{\text{Total Material Cost (\$)}} \times 100
\]

Exclude all labor costs, all mechanical and electrical material costs, and all project overhead and fees from the calculation.

Documentation for Materials Elective Credit 5

1. Submit specifications for each rapidly renewable material.

2. Using the above template, submit calculations.

Resources

Materials Elective Credit 6: Utilize Certified Wood

1 credit | **M EC 6.** Specify that a minimum of 50% of the wood-based materials used for construction are certified in accordance with the Forest Stewardship Council (FSC), the American Forest and Paper Association’s Sustainable Forestry Initiative (SFI), or the American Tree Farm Certification guidelines for wood building components. This includes all wooden framing, flooring, casework, and finishes.

Comply with the FSC, SFI, or American Tree Farm Certification Program guidelines for wood building components and incorporate them into the material selection for the project. Wood products that qualify under a State Tree Farm program may be counted toward this credit if the chain of custody is documented.
To earn this credit, determine the percentage of total new wood based products that are FSC/SFI certified. Exclude all labor costs, all mechanical and electrical material costs, and all project overhead and fees.

Documentation for Materials Elective Credit 6

1. Submit specifications for each certified wood material

2. If applicable, submit documentation of tree farm registration and the chain of custody of products from tree farms.

3. Submit calculations using the above template.

Resources

Materials Elective Credit 7: Utilize Locally Produced Materials

<table>
<thead>
<tr>
<th>1 credit</th>
<th>M EC 7A. Specify a minimum of 20% of building materials that are manufactured regionally within a radius of 500 miles.</th>
</tr>
</thead>
</table>

OR

<table>
<thead>
<tr>
<th>2 credits</th>
<th>M EC 7B. Specify a minimum of 40% of building materials that are manufactured regionally within a radius of 500 miles.</th>
</tr>
</thead>
</table>

The use of locally manufactured materials not only aids the local economy, but also reduces the environmental impacts from the transportation of goods.

Calculation: To earn this credit, determine the percentage of products that are locally manufactured. Exclude all labor costs, all mechanical and electrical material costs, and all project overhead and fees. Note: Lighting fixtures are to be included in the locally produced materials calculation.

\[
Local\ Portion(\%) = 100 \times \frac{Local\ Products\ Cost(\$)}{Total\ Products\ Cost(\$)}
\]
Documentation for Materials Elective Credit 7

1. Submit a table or spreadsheet detailing all local materials and the location of manufacture. The location of manufacture refers to the final assembly of components into the building product that is furnished and installed by tradesmen.

2. Submit a calculation based on the above template.

Resources

X. Site Selection and Layout

Purpose: To choose sites that protect students and staff from outdoor pollution and minimally impact the environment. Channel development to centrally located areas with existing infrastructure to protect greenfields, minimize transportation requirements, and preserve habitat and natural resources.

Summary Tables

Site Prerequisites

<table>
<thead>
<tr>
<th>Required</th>
<th>SP 1. Comply with the basic goals of responsible school site selection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>SP 2. Whenever possible site school away from sources of excessive noise, such as airport flight paths, major highways, or frequent industrial or agricultural equipment use.</td>
</tr>
<tr>
<td>Required</td>
<td>SP 3. Prepare and execute a Stormwater Pollution Prevention Plan addressing erosion and sediment control that complies with the National Pollution Discharge Elimination System Construction General Permit issued by the U.S. Environmental Protection Agency.</td>
</tr>
<tr>
<td>Required</td>
<td>SP 4. Sustainable Site and Building Layout. Implement three measures from a list of ten best practice site strategies. (See SP 4 in “Site Selection and Layout Prerequisites” section.)</td>
</tr>
</tbody>
</table>

Site Elective Credits

<table>
<thead>
<tr>
<th>1 credit</th>
<th>SE 1. Do not temporarily or permanently modify land, which prior to acquisition for the project was public parkland, conservation land, or land acquired for water supply protection unless land of equal or greater value as parkland is accepted in trade or purchased by the public landowner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 credit</td>
<td>SE 2. Do not develop buildings on land whose elevation is lower than the elevation of the 100-year floodplain as defined by FEMA and as shown on the FEMA Flood Insurance Rate Map (FIRM) for the site.</td>
</tr>
<tr>
<td>1 credit</td>
<td>SE 3. Do not develop school sites that are within 50 ft of any wetland. Site development includes the school facilities, playing fields and parking lots and construction operations that are not related to wetlands improvement. Exception: Drainage outfall structures may be located within the 50 ft. buffer zone.</td>
</tr>
<tr>
<td>1 credit</td>
<td>SE 4 (A or B). (A) In urban areas, do not build on sites that have not been previously developed, or sites that have been restored to agricultural, forestry, or park use. (B) In rural areas, do not build on sites that currently support agricultural, forestry, or recreational uses.</td>
</tr>
<tr>
<td>1 credit</td>
<td>SE 5. Reduced footprint. Increase the Floor Area Ratio (FAR) of the school, or addition to be at least 1.4 to reduce the development footprint and preserve open space. The FAR is the quotient of the building’s total square footage divided by the square footage of its footprint.</td>
</tr>
<tr>
<td>1 credit</td>
<td>SE 6. Utilizing the guidelines established by the National Center for Safe Routes to Schools, provide sidewalks or walkways that extend at least to the end of the school zone and bike lanes that connect to residential areas at least 1/4 mile from the school entrance at the public way and into the school zone itself. And, provide suitable means for securing bicycles for 5% or more of building occupants (students and staff). For elementary schools, count only students in the 4th grade and above as building occupants.</td>
</tr>
<tr>
<td>1 credit</td>
<td>SE 7. Implement a stormwater management plan that results in a 25% decrease in the peak runoff rate for the 2-year, 24-hour storm from existing to developed conditions AND design a stormwater system that results in a 25% decrease in runoff volume for the 100-year, 24-hour storm from existing to developed conditions.</td>
</tr>
</tbody>
</table>
1 credit **SE 8.** Reduce “heat island” effect – Provide shade (within five years) on at least 30% of non-roof, impervious surfaces on the site, including parking lots, walkways, plazas, etc.

OR use light-colored / high-albedo materials (reflectance of at least 0.3) for 30% of the site’s non-roof, impervious surfaces

OR use a combination of shading and high-albedo materials for 30% of the site’s non-roof surfaces.

1 credit **SE 9.** Minimize light pollution from outdoor lighting by minimizing the amount of lighting and carefully selecting fixtures.

1 credit **SE 10.** Enhanced Sustainable Site Design. Adopt a minimum of three additional measures from the measures listed in Site Prerequisite 5.

Innovation

1-3 credits **IEC 1.** The Innovation credits offer an opportunity to earn credits for practices that are not listed in the Protocol, but which enhance the performance attributes of the completed project. These credits can also be garnered to reward efforts that significantly exceed the existing credit parameters.

Site Selection and Layout Prerequisites

Site Prerequisite 1: Comply with Basic School Site Selection Goals

Required **SP 1.** Comply with the basic goals of responsible school site selection.

Note: As with other sections of the Protocol, this section is not meant to repeat or replace any state or federal regulations. It is assumed that all relevant regulations will be followed.

The site on which a proposed school is to be built shall conform to the following requirements:

- The site selected must meet the educational and health needs of the students and staff and minimize any possible adverse educational, environmental, social, or economical impacts upon the community. Such adverse impacts include, but need not be limited to the following: the need to provide new sewers, roads, transportation facilities, water supply, water connections, and other utilities to the site; existence of soil conditions that will cause site development costs to be greatly increased; curtailment of the approved educational program.

- The site shall be so located as to serve efficiently and safely the school population it is intended to serve and shall be of sufficient size to accommodate the building and planned future additions, outdoor educational programs, needed parking areas, bus turnarounds, and delivery areas.

- The site shall be reasonably free from olfactory, auditory, visual, and noxious pollution, or should be capable of being made so prior to commencement of construction.
The site shall be located away from hazardous industrial, agricultural, or natural pollution sources.

When possible, site shall be located away from major roadways to minimize asthma and other health problems, as well as noise pollution.

Site away from nearby facilities that might reasonably be anticipated to emit hazardous air emissions or to handle hazardous or acutely hazardous materials, substances, or waste and determine that they will not adversely affect student, staff, or teacher health.

Site the project with a minimum separation of 100 feet from 50-133kV power lines, 150 feet from 220-230kV power lines, 250 feet from 500-550kV power lines, and 1500 feet from railroad tracks, hazardous pipelines, and major highways.

Proximity to other facilities such as libraries, museums, parks, natural resources, nature study areas, and business, which would enhance the proposed educational program shall be carefully studied and strongly encouraged.

Protecting student health is the most important issue during site selection. These requirements are intended to eliminate sites containing pollutants known to be hazardous to student and staff health. A variety of factors, from hazardous materials in the soil to airborne pollutants from nearby sources, are included in the site review process.

Documentation for Site Prerequisite 1
Submit a brief narrative explaining how the site meets the requirements of items #1-5.

Resources
EPA, http://www.epa.gov/iaq/radon/

Site Prerequisite 2: Avoid Noise Pollution

Required S P 2. Whenever possible site school away from sources of excessive noise, such as airport flight paths, major highways, or frequent industrial or agricultural equipment use.

This requirement is intended to eliminate sites at which background noise would prevent classroom windows from being open or would restrict outdoor activities.

Documentation for Site Prerequisite 2
Submit a brief narrative describing the site in relation to local sources of excessive noise. When siting near a source of excessive noise is the only option, describe noise abatement actions and procedures.
Site Prerequisite 3: Manage Construction Erosion and Sedimentation Control

Required

S P 3. Prepare and execute a Stormwater Pollution Prevention plan addressing erosion and sediment control that complies with the National Pollution Discharge Elimination System Construction General Permit issued by the U.S. Environmental Protection Agency.

Exception: If land disturbance is less than 100,000 square feet for the entire project as a whole, then the project is exempt from this prerequisite. However, all projects involving the protection of wetlands must meet this requirement.

The plan shall meet the following objectives:

- Prevent loss of soil during construction by stormwater runoff and/or wind erosion, including protecting topsoil by stockpiling for reuse.
- Prevent sedimentation of storm sewer or receiving streams and/or air pollution with dust and particulate matter

Documentation for Site Prerequisite 3

Submit a copy of the project Stormwater Pollution Prevention plan.

Resources

Maine Department of Environmental Protection, Stormwater Program, http://www.state.me.us/dep/blwq/docstand/stormwater/index.htm

New Hampshire Department of Environmental Services, Stormwater Program, http://www.des.state.nh.us/StormWater/

Site Prerequisite 4: Utilize Best Practices for Site and Building Layout

<table>
<thead>
<tr>
<th>Required</th>
<th>S P 4. Sustainable site and building layout. Implement three measures from a list of ten best practice site strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Orient the building(s) to take advantage of maximum natural daylighting and plot shadow patterns from surrounding buildings and place buildings to optimize solar gain (for urban-infill sites).</td>
</tr>
<tr>
<td></td>
<td>2. Consider prevailing winds when determining the site and building layout. For example, consider how the shape of the building itself can create wind-sheltered spaces and consider prevailing winds when designing parking lots and driveways to help blow exhaust fumes away from the school.</td>
</tr>
<tr>
<td></td>
<td>3. Take advantage of existing land formations and vegetation to provide shelter from extreme weather or to deflect unwanted noise.</td>
</tr>
<tr>
<td></td>
<td>4. Plant or protect existing deciduous trees to block summer sun and allow winter solar gain. Plant or protect existing coniferous trees to block winter wind.</td>
</tr>
<tr>
<td></td>
<td>6. Create physical connections to existing bike paths, natural features, or adjacent buildings and neighborhoods.</td>
</tr>
<tr>
<td></td>
<td>7. Design parking lots and driveways to limit student proximity to bus emissions. Design bus loading and unloading areas such that buses need not be lined up head to tail. Do not design bus loading and unloading areas such that bus exhaust is in proximity to any of the school’s air intake vents.</td>
</tr>
<tr>
<td></td>
<td>8. Site the building to maximize opportunities for on-site renewable energy generation. For example, preserve or ensure availability of space for wood chip storage facilities for biomass heating, wind turbines (if wind resources are adequate), or other renewable energy sources.</td>
</tr>
<tr>
<td></td>
<td>9. Encourage the use of public transportation by locating the school within 1/4 mile of a commuter rail, light rail, or subway station, or within 1/8 mile of one or more bus lines.</td>
</tr>
<tr>
<td></td>
<td>10. Implement a comprehensive car/van pooling program for staff members, providing premium parking for participating vehicles.</td>
</tr>
</tbody>
</table>

Performing a thorough site analysis at the pre-design phase is critical to understanding all the opportunities and complexities of a building site. A good site analysis allows the designer to make informed design decisions to take full advantage of solar orientation, prevailing wind...
direction, topography, and tree species and locations. Adjacent streets and traffic patterns should be considered, functional synergies with surrounding buildings created, and special environmental elements featured.

Item #1 highlights the importance of building orientation. Energy efficiency and environmental impacts are affected by decisions made early in the planning process. For example, when the building is oriented along the east-west axis, the designer can take advantage of natural daylighting, which reduces the need for electrical lighting and resultant energy consumption.

Note: Urban infill projects do not usually have the opportunity to orient the building to the sun, due to tight site constraints. However, project designers are encouraged to think about maximum solar exposure within the limits of the surrounding buildings.

Item #2 encourages designers to consider prevailing winds to help move vehicle exhaust away from the school, minimizing exposure to students and staff.

For items #3 and #4, earth berms, forests, and other natural features can help shape the layout of the school building during early design. Likewise, manmade structures, such as storage structures for bio-mass fuel, can be sited carefully to provide protection to the site. Plantings of deciduous trees provide shade to the school during warmer months and access to sunlight at the end of autumn when the trees’ leaves have fallen.

Importation or exportation of soil can be costly in terms of both dollars and environmental impact. Item #5 encourages the conservation of the environment by minimizing excavation and importation of non-native soils. By optimizing cut and fill (ideally 1:1) during clearing and excavation, use of native soils is maximized, reducing the adverse impacts on the site.

In item #6, “creating physical connections” means considering features on adjacent properties and designing the site layout such that it promotes their use.

For item #7, the figures (1 & 2) below demonstrate a traditional dismissal practice experienced at many schools (figure 1) and one that avoids traditional head to tail lining up of buses (figure 2). In the approach in figure 2, bus exhaust is not near the intake for other buses or the school ventilation system. When considering site placement of bus parking, also consider prevailing winter winds so that exhaust is not blown into the school air intakes. (Source of text and graphics below is the Asthma Regional Council, http://www.asthmaregionalcouncil.org/about/BusToolkit.htm)

Item #8 encourages early consideration of opportunities for on-site renewable energy
generation. Biomass heating, for example, can be an effective option for many school projects, but the building and site layout must consider the need for wood chip storage. Wind electricity generation may also make sense for many schools, but wind resources should be investigated early and designers should investigate the best location for turbines on the school site.

Documentation for Site Prerequisite 4

For all strategies attempted, submit site analysis sketches outlining all of the site’s features before the building is placed and submit the following for individual strategies for at least three of the items listed below. Site layouts and design narratives may be combined where appropriate.

1. Site layout and design narrative showing how the project responds to natural daylighting.

2. Site layout and design narrative showing how the project responds to prevailing winds.

3. Site layout and landscape design narrative showing how the existing topography and tree coverage respond to weather or deflect unwanted noise.

4. Site layout and landscape design narrative showing how the intended or existing plantings increase shade in the summer and allow solar gain in the winter.

5. Submit a cut and fill analysis report that shows a maximum of a 5% deviation to a 1:1 ratio. If avoidable, please do not submit the entire report, only the sections that identify the report and support the intent of a 1:1 ratio of excavation and infill with native soils.

6. Site layout and design narrative showing how the project responds to natural features and/or adjacent buildings.

7. Site plan showing bus loading and unloading area. Also show on this drawing, or submit a separate drawing, that shows that the building’s air intake vents are not located near the loading/unloading zone.

8. Site layout and design narrative showing how the project responds to opportunities for on-site renewable energy generation.
9. Supply area map locating transportation lines with distance to school noted.

10. Supply a copy of an implementation plan for a car/van pooling program. The program must include incentives (financial or other) for staff participation.

Resources

Site Selection and Layout Elective Credits

Site Elective Credit 1: Preserve Greenspace and Parklands

| 1 credit | S EC 1. Do not temporarily or permanently modify land, which prior to acquisition for the project was public parkland, conservation land, or land acquired for water supply protection, unless land of equal or greater value as parkland is accepted in trade or purchased by the public landowner. |

Maintain open spaces. If at all possible, do not build on land, which prior to acquisition for the project was public parkland, conservation land, land acquired for water supply protection or land restored to agricultural or forestry use.

Documentation for Site Elective Credit 1
Submit assessor’s map or similar documentation of existing site conditions.

Site Elective Credit 2: Avoid Floodplains

| 1 credit | S EC 2. Do not develop buildings on land whose elevation is lower than the elevation of the 100-year floodplain as defined by FEMA and as shown on the FEMA Flood Insurance Rate Map (FIRM) for the site. |

Do not construct permanent buildings within the 100-year floodplain.

One Hundred-Year Floodplains: Both federal and state agencies have worked together over the last several decades to prevent construction of buildings in 100-year floodplains to achieve two important results: (1) a significant decrease in building damage and liability and (2) a restoration of functional floodplains to absorb flood waters and minimize impacts to downstream communities.

The “above the floodplain” requirement applies to the building footprint only, not the site as a whole. Balanced cut and fill could be used to help applicants achieve this elevation, as long as it does not impact the 100-year floodplain itself.

Maps of 100-year floodplain elevations are available on the Web at http://www.msc.fema.gov, or call 877-336-2627 to talk to a map specialist.
Documentation for Site Elective Credit 2
Submit FIRM Map, highlighting the 100-year floodplain area OR provide map from FEMA Web site with 100-year floodplain highlighted. Show that the building footprint will not be in the 100-year flood level.

Resources

Site Elective Credit 3: Protect Wetlands

| 1 credit | **S EC 3.** Do not develop school sites that are within 50 ft of any wetland. Site development includes the school facilities, playing fields and parking lots, and construction operations that are not related to wetlands improvement.
Exception: Drainage outfall structures may be located within the 50 ft. buffer zone. |

Do not build on sites that are within 50 ft. of a wetland as defined by the state in which the school is located. Site development includes the school facilities, playing fields and parking lots, and construction operations that are not related to wetlands improvement. Drainage outfall structures may be located within the 50 ft. buffer zone.

Each state in the region may have somewhat different definitions of wetlands, but wetlands generally include swamps, marshes, bogs, and similar areas that support vegetation associated with wet areas. Any wetlands areas on or near the site must be delineated by a qualified professional and indicated on the project site plan.

Documentation for Site Elective Credit 3
Submit project site plan and a statement addressing any issues involving wetlands on or near the site.

Resources
State’s Department of Environmental Protection
Local and Regional Conservation Commissions

Site Elective Credit 4: Protect Greenfields

| 1 credit | **S EC 4A.** In urban areas, do not build on sites that have not been previously developed, or sites that have been restored to agricultural, forestry, or park use. |

OR

| 1 credit | **S EC 4B.** In rural areas, do not build on sites that currently support agricultural, forestry, or recreational uses. |
During the site selection process, use previously developed sites instead of greenfields. Urban redevelopment reduces environmental impacts by utilizing established infrastructure and preserving the open space of undeveloped lands. For rural areas, previously developed sites are likely unavailable, but protecting agricultural and recreational land is a priority.

Documentation for Site Elective Credit 4
Submit a narrative describing compliance with this credit.

Resources
State’s Department of Environmental Protection

Site Elective Credit 5: Reduce Building Footprint

| 1 credit | **SEC 5.** Reduced footprint. Increase the Floor Area Ratio (FAR) of the school, or addition to be at least 1.4 to reduce the development footprint and preserve open space. The FAR is the quotient of the building’s total square footage divided by the square footage of its footprint. |

Building multi-story schools reduces the amount of land used in construction. Said another way, achieving a FAR of 1.4 requires at least 40% of a school’s total square footage to be above the first floor.

Documentation for Site Elective Credit 5
Submit a calculation of the Floor Area Ratio (FAR) by dividing the school facility’s footprint by the facility’s entire square footage including all stories.

Site Elective Credit 6: Provide Enhanced Bicycle and Pedestrian Access

| 1 credit | **SEC 6.** Utilizing the guidelines established by the National Center for Safe Routes to Schools, provide sidewalks or walkways that extend at least to the end of the school zone and bike lanes that connect to residential areas at least 1/4 mile from the school entrance at the public way and into the school zone itself. And, provide suitable means for securing bicycles for 5% or more of building occupants (students and staff). For elementary schools, count only students in the 4th grade and above as building occupants. |

The purpose of this credit is to provide safe access to the school by students and staff who choose to walk or ride their bicycles to school. To protect pedestrians, sidewalks or walkways must extend to the end of the school zone. To protect and encourage cyclists, bike lanes must extend at least a quarter mile from the school entrance into surrounding neighborhoods to ensure cyclist safety.
Documentation for Site Elective Credit 6
Submit a site plan highlighting:

- Compliance with the guidelines of the National Center for Safe Routes to Schools
- Sidewalks extending to the end of the school zones
- Bike paths within the school zone and extending ¼ mile into surrounding neighborhoods
- Location of bike racks and detailing the number of bikes the racks can accommodate

Resources
Safe Routes to Schools Program – http://www.saferoutesinfo.org/

Site Elective Credit 7: Reduce Post-Construction Stormwater Runoff

| 1 credit | S EC 7. Implement a stormwater management plan that results in a 25% decrease in the peak runoff rate for the 2-year, 24-hour storm from existing to developed conditions AND design a stormwater system that results in a 25% decrease in runoff volume for the 100-year, 24-hour storm from existing to developed conditions. |

Stormwater runoff is precipitation that flows over surfaces on the site and enters either the sewage system or receiving waters. Stormwater carries sediment and pollutants from the site into the sewage system and/or local bodies of water. In addition, the cumulative runoff throughout the local area requires significant investments in municipal infrastructure to handle peak runoff loads.

Reducing the amount of runoff is the most effective way to minimize its negative impacts. Many strategies exist to limit stormwater runoff, including the following:

- Significantly reduce impervious surfaces, maximize on-site stormwater infiltration, and retain pervious and vegetated areas.
- Capture rainwater from impervious areas of the building for groundwater recharge or for reuse.
- Use green/vegetated roofs.

Documentation for Site Elective Credit 7
Submit a Stormwater Management plan demonstrating compliance with the above criteria.
Resources
See Site Prerequisite 3

Site Elective Credit 8: Landscape to Reduce Heat Island Effect

<table>
<thead>
<tr>
<th>1 credit</th>
<th>S EC 8. Provide shade (within five years) on at least 30% of non-roof, impervious surfaces on the site, including parking lots, walkways, plazas, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR use light-colored / high-albedo materials (reflectance of at least 0.3) for 30% of the site’s non-roof, impervious surfaces</td>
</tr>
<tr>
<td></td>
<td>OR use a combination of shading and high-albedo materials for 30% of the site’s non-roof surfaces.</td>
</tr>
</tbody>
</table>

Although the “heat island effect” is largely an urban phenomenon, dark surfaces, such as pavement, cladding, and roofing absorb heat and radiate it back to surrounding areas. In cities, where there are many dark, heat absorbing surfaces, infrared radiation can boost temperatures by 10°F or more. The heat island effect increases the need for air conditioning (and therefore electricity consumption) and is detrimental to site plantings, local wildlife, and maintaining comfortable temperatures.

Employ design strategies, materials, and landscaping designs that reduce heat absorption of exterior materials. Provide shade using native or climate-tolerant trees and large shrubs, vegetated trellises, or other exterior structures supporting vegetation. Substitute vegetated surfaces for hard surfaces. Explore the elimination of blacktop with the use of new coatings with integral colorants to achieve light colored surfaces.

Documentation for Site Elective Credit 8

1. Submit a site plan or landscaping plan designating trees that contribute to shade and/or light colored non-roof impervious surfaces.

2. Submit shading calculations.

3. Identify all non-roof impervious surfaces on the project site and sum the total area.

4. Identify all trees that contribute shade to non-roof impervious surfaces. Highlight these trees on the plan you submit.

5. Calculate the shade coverage provided by these trees after five years of growth on the non-roof impervious surfaces on June 21 at solar noon to determine the maximum shading effect.

6. Determine the total area of shade provided for non-roof impervious surfaces. Divide by total – result must be 30%.

7. Submit calculations for the use of light-colored/high-albedo materials:

8. Identify all non-roof impervious surfaces on the project site and sum the total area.
9. Calculate the total area of non-roof impervious surfaces designed with light-colored/high-albedo materials. Divide by total – result must be 30%.

10. If light-colored / high-albedo materials are used to achieve this credit, provide specifications.

Note: Applicants may achieve 30% coverage by adding together areas of shading and areas of light-colored/high-albedo materials to total 30%.

Resources

Site Elective Credit 9: Minimize Light Pollution from Outdoor Lighting

| 1 credit | S EC 9. Minimize light pollution from outdoor lighting by minimizing the amount of lighting and carefully selecting fixtures. |

Light pollution obscures the night sky and is intrusive to neighboring properties. Glare from outdoor lighting can make night vision difficult, especially for drivers on or near the property. The over-lighting of the site also wastes significant amounts of energy and contributes to maintenance budgets with the expensive cost of replacing high wattage lamps mounted at heights requiring bucket trucks or lifts.

In order to qualify for this credit, the following criteria should be followed:

1. Light only those areas where exterior lighting is clearly required for safety and comfort. Do not install light fixtures whose main purpose is to light building façades or landscape features.

3. For all exterior site and building mounted lighting fixtures rated higher than 13 watts, specify IES Cutoff or IES Full Cutoff fixtures.

4. For fixtures situated close to the school property line and where the property line abuts residential properties, parks, or natural wildlife areas, provide shielding to prevent view of the lamp from any point 5 feet or higher above the ground along the property line.

5. All exterior site and building mounted lighting fixtures that are only needed when the school is open for nighttime use (i.e., not needed all night and/or every night for security reasons) shall be controlled with easily accessed manual switch controls and a timeclock.
6. Do not install mercury vapor, incandescent, incandescent halogen, or standard (probe-start) metal halide lamps. Fluorescent, high-pressure sodium, and pulse-start metal halide lamps are the current high efficiency options for outdoor lighting.

7. Signs, monuments, and flags. Signs should be lighted from the top down. Fixtures for school signs, monuments, and flags are limited to 50 watts per fixture and must incorporate shielding devices such as hoods, louvers, and source shields. The fixtures are exempt from the cutoff requirements of #3.

8. Sports field lighting design must follow IESNA RP-6 Recommended Practice for Sports and Recreational Area Lighting. Fixtures must incorporate extensive shielding to minimize and redirect stray light. Controls must be provided that encourage the shutting off of the lights when the sports field is not in use. Fixtures specifically for lighting sports fields are exempt from the full cutoff requirements listed in #3 and shielding requirements in #4.

Documentation for Site Elective Credit 9
Submit the following:

1. An exterior lighting fixture schedule with manufacturers and model numbers, and manufacturer’s spec sheets with a clear description of the specified lamping, wattage, IESNA cutoff classification (where applicable), and shielding accessories for each fixture.

2. A photometric site plan produced by computer modeling with the following information:
 - Horizontal illuminances at ground level on a minimum 10-ft. by 10-ft. grid with the property line clearly and boldly marked on photometric plan and abutting residential properties, parks, or natural wildlife areas noted.
 - Maximum illuminances for each area (walkways, parking lots, driveways, building entries, etc.)
 - The location and mounting height of all site and building mounted exterior fixtures clearly indicated, with fixture type designations relating to the lighting fixture schedule.
 - Light loss factors used for each fixture type.

3. A photometric plan produced by computer modeling for any sports field lighting.

4. Provide information on lighting controls and circuiting to verify compliance with control requirements.

Resources
LEED Reference Guide, Site Credit 8: Light Pollution Reduction http://www.usgbc.org/
Site Elective Credit 10: Enhanced Sustainable Site Design

| 1 credit | S EC 10. Adopt a minimum of three additional measures from the measures listed in Site Prerequisite 5. |

Site Prerequisite 5 mandates that three of the listed measures be implemented. Implement at least three additional measures to obtain this credit.

Site Elective Credit 10 Documentation

See Site Prerequisite 5.
XI. Section Eleven: Innovation

Purpose: To recognize design teams and project owners for adopting innovative high performance features, greatly exceeding existing credits, or adopting significant policies that truly represent best practices in sustainability and/or environmental health and safety.

The Innovation credits offer an opportunity to earn credits for practices that are not listed in the Protocol, but which enhance the performance attributes of the completed project. These credits can also be garnered to reward efforts that significantly exceed the existing credit parameters.

The prerequisites and elective credits listed in this document represent performance standards that are recognized by the education and building design communities as practices that are relatively common and are reasonably obtainable. However, no document can comprehensively cover all aspects of high performance design. New ideas and new technologies need to be encouraged and supported.

These credits for innovative practices are offered for communities that incorporate new creative ideas into their school projects and/or incorporate performance that goes beyond what is promoted in Northeast-CHPS.

Innovation credits could include, but are not limited to the following:

- Develop a comprehensive and innovative plan for using the sustainable aspects of the school as teaching tools.
- Include cutting edge technologies for energy efficiency or environmental benefit.
- Design and install a combined heat and power plant.
- Obtain LEED accreditation that includes credits that are not available in this Protocol.

Documentation for Innovation Credits

To achieve innovation credits:

1. Define the technology or action and its purpose
2. Describe the proposed criteria for compliance including any applicable standards
3. Identify and submit documentation that verifies compliance with the proposed credit
4. Submit a narrative describing how the credit reflects sustainable or environmental health and safety practices.

To achieve enhanced performance credits:

1. Identify the Protocol criteria that applies
2. Describe the proposed technology, action, or policy and how performance is significantly enhanced in comparison with Northeast-CHPS requirements.
For examples of Innovation credits, see the LEED NC 2.1 reference guide.

Evaluation

The administrators of Northeast-CHPS or designated state officials will convene a team of experts to evaluate all proposals for innovation credits.

Merrimack Valley HS, NH has a wood chip heating plant that provides heat for the high school and middle school.
Northeast-CHPS Scorecard

Directions

The following table is a worksheet for totaling your project’s points. There is an Excel version of the scorecard available upon request. To calculate your Total Project Score, fill in the credits you are applying for with a numerical value. A NE-CHPS verified school will meet all prerequisites and achieve a minimum of 16 points. Verification requirements for all NE-CHPS schools are as follows (see state addenda for additional state-specific requirements):

Required: Meet all prerequisites

Prerequisite exceptions: Projects may be exempted from individual prerequisites through a variance process.

Required: Obtain a minimum of 16 elective credits consisting of the following:

- **Policy and Operations** – Obtain a minimum of 2 elective credits
- **Indoor Environmental Quality** – Obtain a minimum of 4 elective credits
- **Energy Efficiency** – Obtain a minimum of 2 elective credits
- **On-Site Renewable Energy** – No elective credits required
- **Water Efficiency** – Obtain a minimum of 1 elective credit
- **Materials** – Obtain a minimum of 3 elective credits
- **Site Selection and Layout** – Obtain a minimum of 2 elective credits
- **Innovation** – No elective credits required
- **Other** – Obtain a minimum of 2 additional elective credits from any category
Northeast-CHPS Scorecard

Policy and Operations – Possible Points: 13

<table>
<thead>
<tr>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>PO P 1</td>
<td>High performance design advisory committee</td>
</tr>
<tr>
<td>---</td>
<td>PO P 2</td>
<td>Joint use of facilities</td>
</tr>
<tr>
<td>---</td>
<td>PO P 3</td>
<td>Indoor environmental management plan</td>
</tr>
<tr>
<td>---</td>
<td>PO P 4</td>
<td>Maintenance and staff training plan</td>
</tr>
<tr>
<td>---</td>
<td>PO P 5</td>
<td>ENERGY STAR equipment</td>
</tr>
<tr>
<td>---</td>
<td>PO P 6</td>
<td>Anti-idling measures</td>
</tr>
<tr>
<td>---</td>
<td>PO P 7</td>
<td>Elimination of CFC and HCFC (NC)</td>
</tr>
<tr>
<td>---</td>
<td>PO P 7</td>
<td>Elimination and phase-out of CFC and HCFC (R)</td>
</tr>
<tr>
<td>1</td>
<td>PO EC 1</td>
<td>Computerized maintenance plan</td>
</tr>
<tr>
<td>1</td>
<td>PO EC 2.1</td>
<td>Renewable energy certificates (RECs) 10%</td>
</tr>
<tr>
<td>2</td>
<td>PO EC 2.2</td>
<td>Renewable energy certificates (RECs) 25%</td>
</tr>
<tr>
<td>1</td>
<td>PO EC 2.3</td>
<td>Renewable energy certificates (RECs) local 200 miles</td>
</tr>
<tr>
<td>1</td>
<td>PO EC 3.1</td>
<td>Alternative-fuel demonstration project</td>
</tr>
<tr>
<td>2</td>
<td>PO EC 3.2</td>
<td>Alternative-fuel buses</td>
</tr>
<tr>
<td>2</td>
<td>PO EC 3.3</td>
<td>Alternative-fueled maintenance vehicles and equipment</td>
</tr>
<tr>
<td>1</td>
<td>PO EC 4</td>
<td>Carbon footprinting program</td>
</tr>
<tr>
<td>2</td>
<td>PO EC 5</td>
<td>Zero-Net energy plan</td>
</tr>
</tbody>
</table>

*(NC) = New Construction; (R) = Renovation

Denotes credits applying specifically to renovation projects
Indoor Environmental Quality – Possible Points: 11

<table>
<thead>
<tr>
<th>Points</th>
<th>Section*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>IEQ P 1</td>
<td>Access to views 70%</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 2 (NC)</td>
<td>Classroom daylighting 75%</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 2 (R)</td>
<td>Classroom daylighting 50%</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 3</td>
<td>Low-glare lighting systems</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 4</td>
<td>ASHRAE 62.1-2004</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 5 (NC)</td>
<td>Walk-off system (3 part)</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 5 (R)</td>
<td>Walk-off system (3 or 2 part)</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 6</td>
<td>Prevent water accumulation</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 7 (NC)</td>
<td>Prevent spray on buildings</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 7 (R)</td>
<td>Prevent spray on buildings</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 8</td>
<td>Prevent mold problems during construction</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 9</td>
<td>Use IAQ best practices</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 10</td>
<td>Replace all HVAC filters</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 11</td>
<td>Filter requirements – MERV filter</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 12</td>
<td>Only electric ignitions for gas fired</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 13</td>
<td>Properly locate outside air intakes</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 14</td>
<td>ASTM standard for ductwork</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 15</td>
<td>Prohibit fossil fuel inside building</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 16</td>
<td>Acoustic performance levels best practices</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 17</td>
<td>ASHRAE 55-2004</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 18</td>
<td>Integrated pest management</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 19</td>
<td>Minimize mercury exposure</td>
</tr>
<tr>
<td>---</td>
<td>IEQ P 20 (R)</td>
<td>Unit ventilators best practices</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 1</td>
<td>Install dedicated exhaust for pollutant source control</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 2</td>
<td>Installed ducted air returns</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 3</td>
<td>Install premium HVAC filtration</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 4</td>
<td>Provide operable windows</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 5</td>
<td>Install high intensity florescent lighting in gym</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 6</td>
<td>Construction management – provide ventilation</td>
</tr>
<tr>
<td>1</td>
<td>IEQ EC 7</td>
<td>Construction management – protect ductwork</td>
</tr>
<tr>
<td>2</td>
<td>IEQ EC 8</td>
<td>Construction management – provide HEPA vacuuming</td>
</tr>
<tr>
<td>2</td>
<td>IEQ EC 9</td>
<td>Construction management – provide building flushout</td>
</tr>
<tr>
<td>2</td>
<td>IEQ EC 10 (R)</td>
<td>Classroom daylighting 75%</td>
</tr>
</tbody>
</table>

*(NC) = New Construction; (R) = Renovation

Denotes credits applying specifically to renovation projects
Energy Efficiency – Possible Points: 14

<table>
<thead>
<tr>
<th>Your Project</th>
<th>Points</th>
<th>Section*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE P 1 – A or B (NC)</td>
<td>EE P 1 – A or B (NC)</td>
<td>Energy efficiency standards</td>
</tr>
<tr>
<td></td>
<td>EE P 1 (R)</td>
<td>EE P 1 (R)</td>
<td>Energy efficiency master plan</td>
</tr>
<tr>
<td></td>
<td>EE P 2</td>
<td>EE P 2</td>
<td>Air barrier</td>
</tr>
<tr>
<td></td>
<td>EE P 3</td>
<td>EE P 3</td>
<td>HVAC design and meet ASHRAE 55-2004</td>
</tr>
<tr>
<td></td>
<td>EE P 4 (NC)</td>
<td>EE P 4 (NC)</td>
<td>Commission all energy using systems</td>
</tr>
<tr>
<td></td>
<td>EE P 4 (R)</td>
<td>EE P 4 (R)</td>
<td>Commission and retro-commission energy using systems</td>
</tr>
<tr>
<td></td>
<td>EE P 5</td>
<td>EE P 5</td>
<td>Training and documentation</td>
</tr>
<tr>
<td></td>
<td>EE P 6</td>
<td>EE P 6</td>
<td>Energy efficiency incentives</td>
</tr>
<tr>
<td></td>
<td>EE EC 1</td>
<td>EE EC 1 - Option 1 (NC)</td>
<td>Demonstrate superior energy performance (7-11 of 14 Core Performance Enhanced Performance Strategies)</td>
</tr>
<tr>
<td></td>
<td>EE EC 1 - Option 2 (NC)</td>
<td>Demonstrate superior energy performance (30%-50% reduction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE EC 1 (R)</td>
<td>Demonstrate superior energy performance (25%-45% reduction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE EC 2</td>
<td>EE EC 2</td>
<td>Incorporate daylighting and control at least 40%</td>
</tr>
<tr>
<td></td>
<td>EE EC 3</td>
<td>EE EC 3</td>
<td>Perform enhanced building commissioning</td>
</tr>
<tr>
<td></td>
<td>EE EC 4</td>
<td>EE EC 4</td>
<td>Minimize air conditioning</td>
</tr>
<tr>
<td></td>
<td>EE EC 5</td>
<td>EE EC 5</td>
<td>Install variable air volume (VAV) system</td>
</tr>
<tr>
<td></td>
<td>EE EC 6</td>
<td>EE EC 6</td>
<td>Install energy management system</td>
</tr>
<tr>
<td></td>
<td>EE EC 7</td>
<td>EE EC 7</td>
<td>Install submetering systems</td>
</tr>
<tr>
<td></td>
<td>EE EC 8</td>
<td>EE EC 8</td>
<td>Install a “cool roof”</td>
</tr>
<tr>
<td></td>
<td>EE EC 9</td>
<td>EE EC 9</td>
<td>Install a vegetative roof</td>
</tr>
<tr>
<td></td>
<td>EE EC 10</td>
<td>EE EC 10</td>
<td>Adopt a lights off policy</td>
</tr>
</tbody>
</table>

*(NC) = New Construction; (R) = Renovation

Denotes credits applying specifically to renovation projects

Renewable Energy – Possible Points: 20

<table>
<thead>
<tr>
<th>Your Project</th>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RE EC 1A</td>
<td>RE EC 1A</td>
<td>Renewable solar thermal energy 1%</td>
</tr>
<tr>
<td></td>
<td>RE EC 1B</td>
<td>RE EC 1B</td>
<td>Renewable solar thermal energy 2%</td>
</tr>
<tr>
<td></td>
<td>RE EC 2A</td>
<td>RE EC 2A</td>
<td>Renewable solar photovoltaic energy – 1%</td>
</tr>
<tr>
<td></td>
<td>RE EC 2B</td>
<td>RE EC 2B</td>
<td>Renewable solar photovoltaic energy – 3%</td>
</tr>
<tr>
<td></td>
<td>RE EC 2C</td>
<td>RE EC 2C</td>
<td>Renewable solar photovoltaic energy – 5%</td>
</tr>
<tr>
<td></td>
<td>RE EC 2D</td>
<td>RE EC 2D</td>
<td>Renewable solar photovoltaic energy – 10%</td>
</tr>
<tr>
<td></td>
<td>RE EC 3A</td>
<td>RE EC 3A</td>
<td>Install renewable wind energy system – 1%</td>
</tr>
<tr>
<td></td>
<td>RE EC 3B</td>
<td>RE EC 3B</td>
<td>Install renewable wind energy system – 3%</td>
</tr>
<tr>
<td></td>
<td>RE EC 3C</td>
<td>RE EC 3C</td>
<td>Install renewable wind energy system – 5%</td>
</tr>
<tr>
<td></td>
<td>RE EC 3D</td>
<td>RE EC 3D</td>
<td>Install renewable wind energy system – 10%</td>
</tr>
<tr>
<td></td>
<td>RE EC 4A</td>
<td>RE EC 4A</td>
<td>Install renewable biomass energy system – 10%</td>
</tr>
<tr>
<td></td>
<td>RE EC 4B</td>
<td>RE EC 4B</td>
<td>Install renewable biomass energy system – 20%</td>
</tr>
<tr>
<td></td>
<td>RE EC 5</td>
<td>RE EC 5</td>
<td>Install unlisted renewable energy system</td>
</tr>
<tr>
<td></td>
<td>RE EC 6</td>
<td>RE EC 6</td>
<td>Install performance monitoring system</td>
</tr>
<tr>
<td></td>
<td>RE EC 7</td>
<td>RE EC 7</td>
<td>Renewable energy educational display</td>
</tr>
</tbody>
</table>
Water Efficiency – Possible Points: 10

<table>
<thead>
<tr>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>WE P 1</td>
<td>Reduce total interior water usage by 20%</td>
</tr>
<tr>
<td>2</td>
<td>WE EC 1</td>
<td>Eliminate irrigation for non-playing-field landscaping</td>
</tr>
<tr>
<td>1</td>
<td>WE EC 2A</td>
<td>Reduce or eliminate irrigation for athletic fields</td>
</tr>
<tr>
<td>2</td>
<td>WE EC 2B</td>
<td>Eliminate potable water consumption for athletic fields</td>
</tr>
<tr>
<td>1</td>
<td>WE EC 3</td>
<td>Create an irrigation commissioning plan</td>
</tr>
<tr>
<td>2</td>
<td>WE EC 4</td>
<td>Install a rainwater collection and water storage system</td>
</tr>
<tr>
<td>1</td>
<td>WE EC 5</td>
<td>Reduce water for sewage conveyance by at least 40%</td>
</tr>
<tr>
<td>2</td>
<td>WE EC 6</td>
<td>Reduce total interior water usage by at least 30%</td>
</tr>
</tbody>
</table>

Materials – Possible Points: 10

<table>
<thead>
<tr>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>MP 1</td>
<td>Specify low emission materials</td>
</tr>
<tr>
<td>---</td>
<td>MP 2</td>
<td>Storage and collection of recyclables</td>
</tr>
<tr>
<td>---</td>
<td>MP 3</td>
<td>Site waste management</td>
</tr>
<tr>
<td>1</td>
<td>M EC 1</td>
<td>Building reuse</td>
</tr>
<tr>
<td>1</td>
<td>M EC 2</td>
<td>Reuse interior building elements</td>
</tr>
<tr>
<td>1</td>
<td>M EC 3A</td>
<td>Resources reuse .5%</td>
</tr>
<tr>
<td>2</td>
<td>M EC 3B</td>
<td>Resources reuse 1%</td>
</tr>
<tr>
<td>1</td>
<td>M EC 4A</td>
<td>Include recycled content in construction materials 5%</td>
</tr>
<tr>
<td>2</td>
<td>M EC 4B</td>
<td>Include recycled content in construction materials 10%</td>
</tr>
<tr>
<td>1</td>
<td>M EC 5</td>
<td>Specify rapidly renewable materials</td>
</tr>
<tr>
<td>1</td>
<td>M EC 6</td>
<td>Utilize certified wood</td>
</tr>
<tr>
<td>1</td>
<td>M EC 7A</td>
<td>Utilize locally produced materials 20%</td>
</tr>
<tr>
<td>2</td>
<td>M EC 7B</td>
<td>Utilize locally produced materials 40%</td>
</tr>
</tbody>
</table>

Site – Possible Points: 10

<table>
<thead>
<tr>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>SP 1</td>
<td>Comply with basic school site selection</td>
</tr>
<tr>
<td>---</td>
<td>SP 2</td>
<td>Avoid air and water pollution sources</td>
</tr>
<tr>
<td>---</td>
<td>SP 3</td>
<td>Manage construction erosion and sedimentations control</td>
</tr>
<tr>
<td>---</td>
<td>SP 4</td>
<td>Utilize best practice for site and building layout</td>
</tr>
<tr>
<td>1</td>
<td>SE C 1</td>
<td>Preserve greenspace and parklands</td>
</tr>
<tr>
<td>1</td>
<td>SE C 2</td>
<td>Avoid floodplains</td>
</tr>
<tr>
<td>1</td>
<td>SE C 3</td>
<td>Protect wetlands</td>
</tr>
<tr>
<td>1</td>
<td>SE C 4A</td>
<td>Protect greenfields – urban</td>
</tr>
<tr>
<td>1</td>
<td>SE C 4B</td>
<td>Protect greenfields – rural</td>
</tr>
<tr>
<td>1</td>
<td>SE C 5</td>
<td>Reduce building footprint</td>
</tr>
<tr>
<td>1</td>
<td>SE C 6</td>
<td>Provide enhanced bicycle and pedestrian access</td>
</tr>
<tr>
<td>1</td>
<td>SE C 7</td>
<td>Reduce post-construction stormwater runoff</td>
</tr>
<tr>
<td>1</td>
<td>SE C 8</td>
<td>Landscape to reduce heat island effect</td>
</tr>
<tr>
<td>1</td>
<td>SE C 9</td>
<td>Minimize light pollution from outdoor lighting</td>
</tr>
<tr>
<td>1</td>
<td>SE C 10</td>
<td>Enhanced sustainable site design</td>
</tr>
</tbody>
</table>
Innovation – Possible Points: 3

<table>
<thead>
<tr>
<th>Your Project</th>
<th>Points</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-3</td>
<td>IEC 1</td>
<td>Innovation</td>
</tr>
</tbody>
</table>

Total project store
State Addenda

New Hampshire, Rhode Island, and Vermont have state-specific guidelines and/or requirements that replace or supplement sections of the NE-CHPS Version 2.0 Protocol. If you are building or renovating a school in one of these states, please refer to the addenda below.

New Hampshire Addendum

The State of New Hampshire’s Department of Education approved the following addendum to NE-CHPS Version 2.0.

Effective January 1, 2010, the NE-CHPS Protocol, Version 2.0, October 2009 shall be the standard for New Hampshire Schools seeking designation as High Performance Schools from the New Hampshire Department of Education for the purpose of receiving additional School Building Aid as authorized under RSA 198:15-b.,I-b, subject to the following modifications:

• In order to be designated a High Performance School in New Hampshire, the NE-CHPS Protocol shall apply to the entire school building upon completion of the project, not including detached structures. New additions or other portions of a structure shall not receive the High Performance designation separately from the entire building.

• New Hampshire schools must meet all of the prerequisites indicated in the NE-CHPS Protocol, Version 2.0 and this addendum, and must earn a minimum of 20 elective credits.

• PO EC 4. Carbon Foot Printing - No credits will be awarded in New Hampshire.

• PO EC 5, Zero-Net Energy Plan - No credits will be awarded in New Hampshire.

• IEQ P 1, Access to Views - Glazing shall be considered clear if it has a Visible Light Transmission (VLT) rating of at least 50 percent.

• IEQ EC 2, Install Ducted Air Returns - Required in New Hampshire.

• IEQ EC 5, Lighting Fixtures - No new interior HID fixtures may be installed in New Hampshire. Existing HID fixtures may remain in renovation projects; however, continued use of existing fixtures shall not be considered sufficient justification for exceptions to energy efficiency requirements.

• EE EC 9, Install a Vegetative Roof - The vegetated area of the roof must be at least 5 percent of the total building roof area.

• EE EC 10, Reduce/Eliminate Night Time Security Lighting - Automatic controls must be installed in New Hampshire. A policy is not sufficient by itself.
• S P 4, Best Practice for Site & Building Layout - School bus queuing arrangements that would require buses to back-up are not permissible in New Hampshire. See Figure 2 in the standard.

• M EC 2, Reuse Interior Building Elements - Existing areas that include hazardous materials, such as asbestos floor tiles, are to be excluded from calculations.

Requests for variances or exceptions shall be submitted in writing to the New Hampshire Department of Education. The request shall document attempts to meet the standards and shall fully explain how approval of the request will not diminish attainment of the goals and intent of the High Performance Schools program.

School construction projects for which the schematic design process began prior to January 1, 2010 may continue to use NE-CHPS Protocol, Version 1.1 or 1.2 for projects not yet approved by the legislative body of the school district until December 31, 2010.

Contact:
Ed Murdough
School Building Aid
NH Department of Education
(603) 271-2037
emurdough@ed.state.nh.us

Rhode Island Addendum

Verification in Rhode Island will follow the requirements provided in the NE-CHPS requirements table found on page 2 of this document. Additionally, the School Construction Regulations, established by the Rhode Island Department of Education (RIDE), include a 2% - 4% incentive for approved projects that demonstrate energy and water efficiency cost reduction beyond the minimum school construction threshold requirements as defined in NE-CHPS. The Energy and Water Efficiency Incentive stipulates:

Districts are eligible for 2% additional reimbursement funds for projects that achieve energy efficiency 30% above the RI Building Energy Code; 3% additional reimbursement for energy efficiency 40% above the RI Building Energy Code; and 4% additional reimbursement for energy efficiency 50% above the RI Building Energy Code.

The table below illustrates the Rhode Island-specific changes to the NE-CHPS Scorecard:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO EC 1</td>
<td>Computerized maintenance management system (CMMS)</td>
<td>Incentive Points: Prerequisite for additional energy reimbursement funds</td>
</tr>
<tr>
<td>EE EC 1A</td>
<td>Demonstrate superior energy performance – 30% reduction</td>
<td>Incentive Points: Eligible for 2% additional reimbursement funds</td>
</tr>
<tr>
<td>EE EC 1B</td>
<td>Demonstrate superior energy performance – 40% reduction</td>
<td>Incentive Points: Eligible for 3% additional reimbursement funds</td>
</tr>
<tr>
<td>EE EC 1C</td>
<td>Demonstrate superior energy performance – 50% reduction</td>
<td>Incentive Points: Eligible for 4% additional reimbursement funds</td>
</tr>
</tbody>
</table>
Northeast Collaborative for High Performance Schools Protocol

<table>
<thead>
<tr>
<th>EE EC 6</th>
<th>Install energy management system</th>
<th>Incentive Points: Prerequisite for additional energy reimbursement funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE EC 1</td>
<td>Eliminate irrigation for non-playing-field landscaping</td>
<td>Incentive Points: Prerequisite for additional energy reimbursement funds</td>
</tr>
<tr>
<td>WE EC 2A</td>
<td>Reduce or eliminate irrigation for athletic fields</td>
<td>Incentive Points: Prerequisite for additional energy reimbursement funds</td>
</tr>
<tr>
<td>WE EC 2B</td>
<td>Eliminate potable water consumption for athletic fields</td>
<td>Incentive Points: Prerequisite for additional energy reimbursement funds</td>
</tr>
<tr>
<td>WE EC 6</td>
<td>Reduce total interior water usage by at least 30%</td>
<td>Incentive Points: Prerequisite for additional energy reimbursement funds</td>
</tr>
</tbody>
</table>

Rhode Island’s School Construction Regulations and further information can be found at: http://www.ride.ri.gov/Finance/Funding/construction/

Contacts:

Joseph Paul da Silva, AIA
School Construction Coordinator
Rhode Island Department of Education
(401) 222-4294
Joseph.DaSilva@ride.ri.gov

Manuel Cordero Alvarado, AIA, LEED AP
Assistant School Construction Coordinator
Rhode Island Department of Education
(401) 222-4276
Manuel.Cordero@ride.ri.gov

Vermont Addendum

In 2005, the Vermont Legislature created the School Construction Standards Committee to review and make recommendation regarding high performance school standards for use in Vermont. The Committee established additional requirements and guidelines to supplement the NE-CHPS Protocol.

Indoor Environmental Quality

- IEQ EC 7 is changed from an elective credit to a prerequisite. Add: Prior to occupancy, ductwork must be inspected and certified as clean, or must be professionally cleaned.

- IEQ EC 8 is changed from an elective credit to a prerequisite.

Energy Efficiency

- EE P1. is wholly replaced by:

 Design a school or a portion of an existing school building to perform 10% or more above the most-recently adopted Vermont energy code. (Currently the 2005 Vermont Guidelines for Energy Efficient Commercial Construction). Throughout the protocol, wherever ASHRAE 2004 and the most-recently adopted Vermont energy code differ, the stricter will govern.
Northeast Collaborative for High Performance Schools Protocol

- EE P2. Documentation may include blower door test and thermal imaging test results.
- EE P5. Training must be completed prior to substantial completion and building turnover. Training is to be recorded for future maintenance staff review.
- EE EC1. Reference Vermont code as per EE P1 above.
 - B. 17%
 - C. 20.5%

Renewable Energy

- Add RE P1. Review feasibility of on-site renewable energy systems using Vt Department of Education approved life cycle cost analysis methodology.
- RE EC 4A. 2 credits for using a biomass system to meet 70% of the school’s total heat and hot water load, or 70% of the heating load.
- RE EC 4B. 3 credits for using a biomass system to meet 85% of the total heat and hot water load.

Materials

- M EC7. An additional credit for 10% building materials manufactured in Vermont.

Site

- S EC2. Replace 100-year floodplain with 500-year floorplain.

Contact:

Cathy Hilgendorf
School Construction Coordinator
Vermont Department of Education
(802) 828-5402
Cathy.Hilgendorf@state.vt.us
Glossary

ASHRAE – American Society of Heating, Refrigeration, and Air Conditioning Engineers.

B-20 – The term for a blend of 20% renewable bio-derived diesel fuel with 80% petroleum-based diesel fuel.

biodiesel – A domestic, renewable fuel for diesel engines derived from natural oils like soybean oil, which meets the specifications of American Society for Testing and Materials D 6751. Biodiesel is not the same thing as raw vegetable oil. It is produced by a chemical process that removes the glycerin from the oil.

biogas – Gas, rich in methane, which is produced by the fermentation of animal dung, human sewage, or crop residues in an airtight container. It is used as a fuel to heat stoves and lamps, run small machines, and generate electricity. The residues of biogas production can be used as a low-grade organic fertilizer.

bio-oil – A liquid created from biomass (see below) found in forestry and agricultural residues. The biomass is thermochemically converted to bio-oil by using processes called direct liquefaction or fast pyrolysis. The high water and oxygen content of bio-oils reduces their heating value to less than half the value of petroleum. However, bio-oils are low in viscosity and have been successfully burned in boilers, kilns, turbines, and diesel engines.

biomass – Any biological material that can be used as fuel. Biomass fuel is burned or converted in systems that produce heat, electricity, or both. In this document, biomass-fired systems refer to systems that are fueled by clean wood chips from forestry or saw mill operations.

brownfields – Industrial or commercial property that is abandoned or underused, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.

CSI – Construction Specifications Institute.

CHPS – Collaborative for High Performance Schools.

COMcheck – Software developed by the U.S. DOE to help commercial projects demonstrate compliance with all commercial energy code requirements for envelope, lighting, and mechanical systems. For more information, see http://www.energycodes.gov/comcheck/.

commissioning – A systematic process of ensuring that all building systems perform interactively according to the contract documents, the design intent, and the schools operational needs. Commissioning involves three phases: pre-design, construction, and warranty.

commissioning plan – A plan that includes a list of all equipment to be commissioned, delineation of roles for each of the primary commissioning participants, and details on the scope, timeline, and deliverables throughout the commissioning process.

cool roof – A roof that reflects most of the sun’s energy instead of absorbing it into the interior spaces below.

daylighting – The practice of placing windows and reflective surfaces so that the natural light of day provides effective internal illumination. Optimize the daylighting design to minimize glare and eliminate direct-beam light in the classroom and use daylighting controls designed to dim or turn off electric lights when sufficient daylight is available.
design-build – A construction-project delivery process in which a single entity assumes the obligation of furnishing the design, supervision, and construction services required to complete a project.

DOE-2 – Software that was developed by the U.S. DOE to predict the fuel consumption (both electric and fossil fuel) of a building based on its design. Later iterations include DOE 2.2, a more advanced form of the original software.

DOE-2.1E – An updated version of DOE-2 software.

e-QUEST – (QUick Energy Simulation Tool) – Sophisticated software that allows for detailed energy analysis of a designed building. It also allows users to build 2-D and 3-D displays of the building geometry.

ENERGY STAR- A program that maintains a database of compliant manufacturers and products. Partial list of products include computers, monitors, copy machines, water coolers, printers, scanners, refrigerators, and washing machines.

gray water system – Water that has been used in showers, sinks, and laundry machines that may be reused for other purposes, especially landscape irrigation. Toilet water is not used in this system.

greenfields- Parcels of land not previously developed beyond that of agriculture or forestry use. The opposite of brownfield.

heat island – An effect caused when exterior surfaces absorb the sun’s energy and heat the air near the ground. On a school site, rising temperatures make the school’s air conditioning work harder, increasing energy cost.

HEPA filters – High Efficiency Particulate Air filters

integrated pest management (IPM) – A sustainable approach to managing pests that minimizes economic, health, and environmental risks.

integrated design – The consideration and design of all building systems and components. It brings together the various disciplines involved in designing a building and reviews their recommendations as a whole. It also recognizes that each discipline’s recommendation has an impact on other aspects of the building project.

life cycle costing – A means of calculating and comparing different designs, equipment, and products to identify the best investment.

recycled content – Materials that have been recovered or otherwise diverted from the solid waste stream, either during the manufacturing process (pre-consumer) or after consumer use (post consumer).

OSHA – Occupational Safety and Health Administration.

operations and maintenance manual – Provides detailed operations and maintenance information for all equipment and products used in the school.

operations and maintenance training – Provides a short introduction on operations and mainenance of equipment and products for all school staff and then features hands-on workshops for facility personnel.

potable water – Water of sufficient quality to serve as drinking water.
PowerDOE – Software that allows users to detail the predicted energy consumption of a building. Like e-QUEST, it is very graphical in its presentation of both the building description and the display of results. It includes 2-D and 3-D displays of the building geometry.

rain water collection system – A system that supplies water year round by harvesting both potable and non-potable water.

rapidly renewable materials – Materials that substantially replenish themselves faster than traditional extraction demand (e.g., planted and harvested in less than a 10-year cycle), do not result in significant biodiversity loss or increased erosion, positively impact air quality, and can be sustainably managed. Products in this category include, but are not limited to, bamboo products, wheat grass cabinetry, oriented strand board, and other wood products made from fast-growing pine trees.

responsibly produced – Materials that are extracted, harvested, or manufactured in an environmentally friendly manner (includes certified wood products).

salvaged or reused – Materials that are refurbished and used for a similar purpose rather than processed or remanufactured for different use.

thermal comfort – A condition of mind that expresses satisfaction with the surrounding environment. It is determined by taking into account environmental factors (such as humidity, A/C, heat) and personal factors (what an occupant is wearing).

VisualDOE – Energy modeling software that is based on DOE-2 and allows users to evaluate energy and demand impacts of design alternatives.

VOC – Volatile Organic Compounds

wetlands – Areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support vegetation adapted for life in saturated soil. Wetlands generally include swamps, marshes, bogs, and other similar areas.