

Commercial Refrigeration Load Shape Project

Forum Presentation

June 18, 2015

ne ed

Thank You!

- NEEP Technical Committee
 - Elizabeth Titus
 - Danielle Wilson
 - Dave Jacobson
 - Steve Waite
- Sponsors

Agenda

Study Objectives

- Produce 8,760 savings loadshapes
- Determine annual kWh and kW savings
- Suggest TRM updates

Evaporator Fan Motor Retrofit

Evaporator Fan Motor Retrofit

Evaporator Fan Motor Controls

Motor controller

Evaporator Fan Motor Controls

Variable/Multi-Speed

On/Off

Door Heater Controls

Door moisture sensor

Door Heater Controls

Primary Data Collection

	August	September	October	November
Massachusetts (11)				
Massac			Subcontactor	Count
			NRM	18
(12)			GEE	11
Maryland (12)			Anthony International	2
laryla			Johnson Controls	6
2			Unknown	1
			Willdan	2
New York (13)			Building Type	Count
/ Yor			Small Retail	35
Nev			Restaurant	3
			Other	1
de de			Large Retail	1
Rhode Island (4)				

Post-retrofit

Final Sample- Evaporator Fan Motors

EC Motor Retrofit Power Measurements Motor Controller Runtime Measurements

On/Off Controllers: MA, RI, MD Variable Speed Controllers: NY, MD 12

Final Sample – Door Heater Controls

ASDH Runtime Measurements

On/Off Controllers: NY, MD Micropulse Controllers: MA, RI, MD

Aggregation

- Combine unit data to calculate average parameters and profiles (all units are evenly weighted)
- Combine average parameters and profiles to calculate hourly savings loadshapes

Any questions before we jump into results?

Results

- Sumary
- For each technology:
 - Unit Level Results
 - Performance
 - Key findings
 - Aggregate Results
 - Compare to current TRM estimates
 - Final savings estimates
 - Discussion

Summary of Results

- All three measures provide reliable energy and demand savings
- Easy to install and unobtrusive
- Appropriate for large and small commercial refrigeration

Evaporator Fan Motor Retrofit

Evaporator Fan Motor Retrofit Formula

Constant = 1,192 W/hp User Input

$$\Delta W_{ECM} = \left(\frac{W_{PRE} - W_{POST}}{W_{POST}}\right) \times \left(\frac{W}{hp}\right)_{ECM} \times hp_{ECM}$$

	Parameter	Description	Source	Meter Sample (Circuits)	Value
-	W _{PRE} – W _{POST} W _{POST}	% change in power relative to post wattage	Pre/post metering only	9 primary 0 secondary	1.57
	$ \left(\frac{W}{hp}\right)_{ECM} $ Post power normalized by horsepower		Pre/post and post- only metering	42 primary 24 secondary	759 W/hp

Evaporator Fan Motor Retrofit Motor Power

* Motors rated below 1/50-hp are reported in Watts; value is equivalent hp.

Average Motor hp = 1/12

Evaporator Fan Motor Retrofit Power Reduction

Evaporator Fan Motor Retrofit Motor Power – TRM Comparison

CADMUS

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Evaporator Fan Motor Retrofit Power Reduction – TRM Comparison

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Evaporator Fan Motor Retrofit Aggregation Decisions

 One site where retrofit took place, but not part of utility program

– Included in analysis

• Two sites where PSC as baseline

Removed from analysis

Evaporator Fan Motor Retrofit Equipment Savings Loadshape

Evaporator Fan Motor Retrofit Equipment Savings Metrics

Annual Energy Savings

confidence interval

	Measure	Annual Total Energy Savings		
		RP @ 90%	RP @ 80%	
S	EC Motor Retrofit	5.3%	4.1%	

Peak Demand Savings

(at hp = 1/12)

*Error bars indicate relative precision at 90% confidence interval

	ISO-NE Peak Demand		
Measure	Savings		
	RP @ 90%	RP @ 80%	
EC Motor Retrofit	5.3%	4.1%	

CADMUS

Evaporator Fan Motor Control

Evaporator Fan Motor Control Formula

	$\left(\frac{VV}{V} \right)$	$\times (060N - 060N) \times hn$
$\frac{\Delta W}{motor_{SP}} =$	$\left(\frac{hp}{hp}\right)_{SP}$	$\times (\% ON_{PRE} - \% ON_{POST}) \times hp_{SP}$

Paramete	r Description	Source	Meter Sample (Circuits)	Value
$\left(\frac{W}{hp}\right)_{ECN}$	Post-retrofit power normalized by hp	Post and Pre/Post	42 primary 24 secondary	759 W/hp
$\left(\frac{W}{hp}\right)_{SP}$	Pre-retrofit power normalized by hp	Pre and Pre/Post	13 primary 5 secondary	2,088 W/hp

Evaporator Fan Motor Control %Runtime

Controlled Runtime 🛛 🗕 🗕 Average

Evaporator Fan Motor Control %Runtime – TRM Comparison

CADMUS

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Evaporator Fan Motor Control Aggregation Decisions

- One site had SP motor with controls as baseline
 Used wattage on uncontrolled motor as baseline
- One site installed controls on SP motor as part of program
 - Used runtime as post-retrofit condition
- Two sites where controls were disconnected
 Included in analysis
- One site where technician advised against installing controls were never installed
 - Used pre data only

Evaporator Fan Motor Control Equipment Savings Loadshape

Evaporator Fan Motor Control Equipment Savings Metrics

Annual Energy Savings (at hp = 1/12)

Annual kWh Savings/Motor at hp = 1/12

*Error bars indicate relative precision at 90% confidence interval

	Control Type	Annual Total Energy Savings		
		RP @ 90%	RP @ 80%	
CADMUS	All SP	5.6%	4.4%	

Peak Demand Savings

(at hp = 1/12)

ISO-NE Summer Peak ISO-NE Winter Peak PJM Summer Peak

*Error bars indicate relative precision at 90% confidence interval

Control Type	ISO-NE Peak Summer Demand Savings		
	RP @ 90%	RP @ 80%	
All SP	6.4%	5.0%	

Door Heater Control

Door Heater Controls Formula

Parameter	Description	Source	Meter Sample (Circuits)	Average Value
$\frac{Watt}{door}_{BASE}$	Operating power per door	Pre, Post, and Pre/Post	21 primary 6 secondary	130 Watts/door

Door Heater Controls Door Heater Power (W/door)

Door Heater Controls Door Heater Power – TRM Comparison

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Door Heater Controls %Runtime

Door Heater Controls %Runtime – TRM Comparison

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Door Heater Controls Aggregation Decisions

• One site did not use a door heater in the baseline case.

- Used data from post-installation case only

• At one site, store manger manually turned off heaters at night in pre and post case.

Included in analysis

• Three sites showed no savings

Dropped from the loadshape calculations

Door Heater Controls Equipment Savings Loadshapes

Door Heater Control Equipment Savings Metrics

Annual Energy Savings

*Error bars indicate relative precision at 90% confidence interval

Control Type	Annual Total Energy Savings		
	RP @ 90%	RP @ 80%	
All	6%	5%	

Peak Demand Savings

ISO-NE Summer ISO-NE Winter PJM Summer

*Error bars indicate relative precision at 90% confidence interval

Control Type	ISO-NE Peak Summer Demand Savings		
	RP @ 90%	RP @ 80%	
All	7%	5%	

Interactive Refrigeration Impacts

Interactive Refrigeration Savings Method

Interactive Refrigeration Savings TRM Comparison

CADMUS

Note: Not all TRMs use each parameter; in some cases, we use TRM information to calculate parameters for comparison

Evaporator Fan Motor Retrofit Total Savings Loadshape (1 week)

*Results shown incorporate weather data from Boston, MA

Evaporator Fan Motor Retrofit Total Savings Loadshape (1 year)

*Results shown incorporate weather data from Boston, MA

Evaporator Fan Motor Retrofit Total Savings Metrics

Note: This example is based on SP motor baseline and Boston, MA weather data.

Summary of Findings

- All three measures provide reliable energy and demand savings
- Easy to install and unobtrusive
- Appropriate for large and small commercial refrigeration

Summary of Findings

• Evaporator Fan Motor Retrofits

- Almost all baseline motors observed were shaded pole. PAs that use a blended SP/PSC baseline should consider using SP only.
- These measures operate continuously and are good for peak kW savings

• Evaporator Fan Controls

- Almost all baseline motors observed were shaded pole. PAs that use a blended SP/PSC baseline should consider using SP only.
- At two sites, controls were disconnected by the customer
- When it works, these measures operate continuously and are good for peak kW savings

• Door Heater Controls

- Large variation and small sample sizes makes it difficult to draw conclusions, HOWEVER...
- Two types of door heater controls perform differently
- Three sites exhibited no savings despite installed controls
- When it works, this measure operates continuously and is good for peak kW savings

Summary of Savings

Parameter	EF Motor Retrofit	EF Motor Controls	Door Heater Controls	
Reduction Factor	61% (power)	34% (runtime)	55% (runtime)	
Annual Energy Savings (no RIE)	857 kWh/motor ¹	147 kWh/motor ²	515 kWh/door ³	
Annual Energy Savings (w/RIE) ⁴	1,186 kWh/motor ¹	204 kWh/motor ²	713 kWh/door ³	
Peak Demand Savings (no RIE) ⁵	98 W/motor ¹	14 W/motor ²	57 W/door ³	
Peak Demand Savings (w/RIE) ^{4,5}	136 W/motor ¹	19 W/motor ²	80 W/door ³	
 ¹For average motor hp (1/12) ²EC savings for average EC motor hp (1/12), for all control types ³Average for all control types ⁴For a Cooler ⁵ISO-NE Summer 				

Next Steps

- Currently drafting report, complete by end of June
- Final report, data transfer, and loadshape tool to follow

Questions

Contacts

Name	Email
Elizabeth Titus	etitus@neep.org
Carlyn Aarish	Carlyn.Aarish@cadmusgroup.com
Tim Murray	Tim.Murray@cadmusgroup.com