

Next Generation Energy Efficiency: Opportunities for Public Power in a Rapidly Changing Landscape

Northeast Public Power Association Fall 2016 Public Utility Management Program

November 18, 2016

Brian Buckley Northeast Energy Efficiency Partnerships

NORTHEAST ENERGY EFFICIENCY PARTNERSHIPS

"Accelerating and transforming markets for energy efficiency in the Northeast & Mid-Atlantic States"

Mission

Accelerate energy efficiency as an essential part of demand-side solutions that enable a sustainable regional energy system

Vision

Region embraces Next Generation Energy Efficiency as a core strategy to meet energy needs in a carbon-constrained world

Approach

Overcome barriers and transform markets via

Collaboration, Education and Enterprise

One of six Regional Energy Efficiency organizations (REEOs) funded by the U.S. DOE to support state efficiency policies and programs. Does not lobby or litigate. 1

Today We'll be Covering...

The Changing Energy Landscape

- 1. Unprecedented Embrace of Energy Efficiency
- 2. Photovoltaic Penetration
- 3. Transportation Electrification

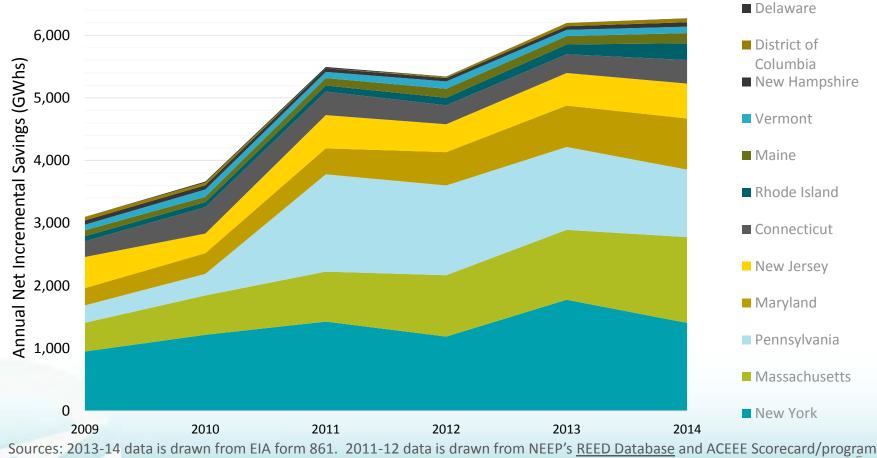
Next Generation Energy Efficiency

- 1. Grid Modernization
- 2. Geo-targeting
- 3. Strategic Electrification
- 4. Integrated Demand Side Management (EE+DR)
- 5. New Program Strategies- Segmentation, SEM,
- 6. Financing
- 7. EM&V 2.0

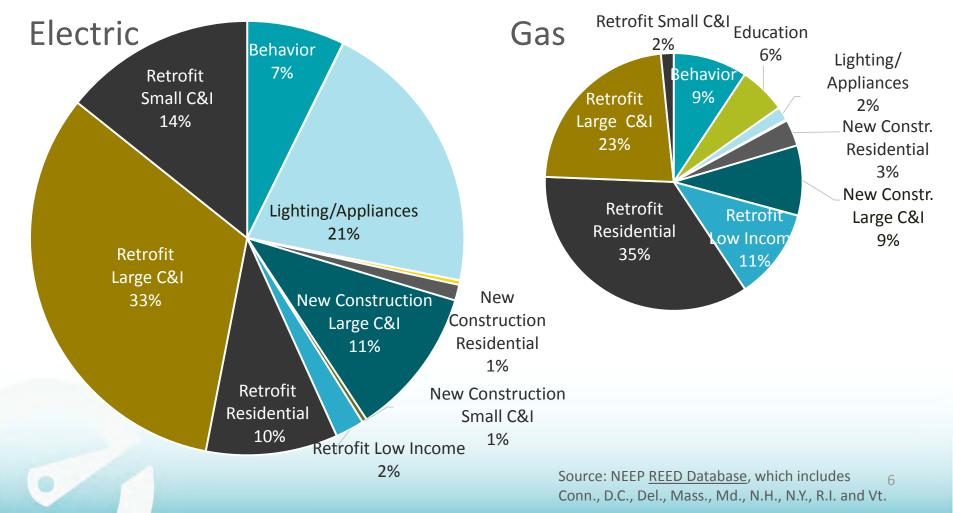
Opportunities for Public Power

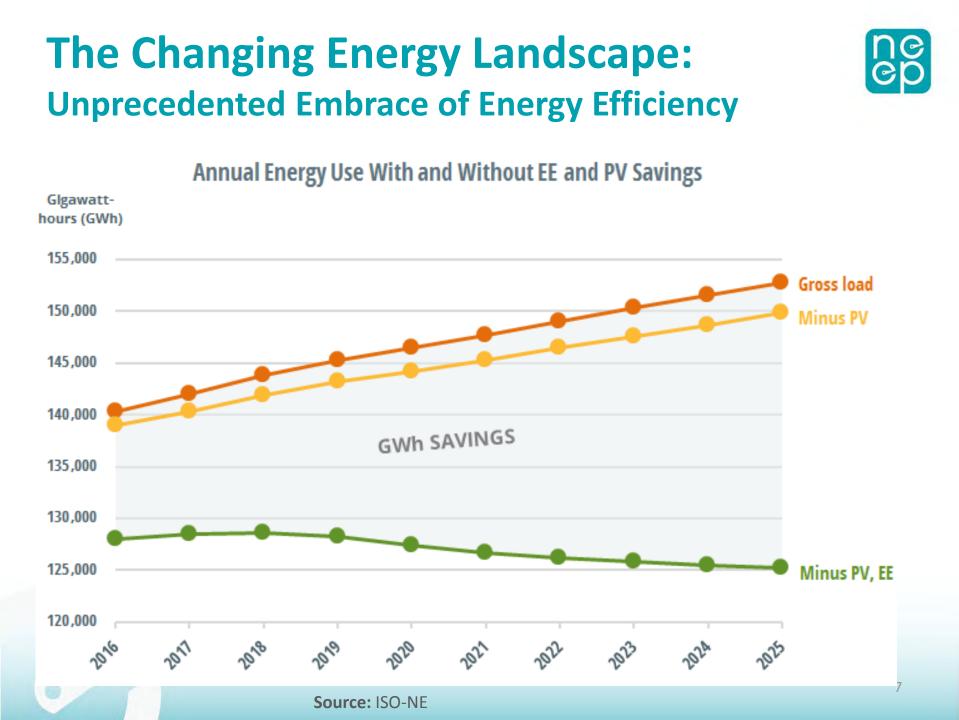
- 1. Lead By Example
- 2. Street Lighting
- 3. GRITs
- 4. Demand Reduction
- 5. Electrification
- 6. Energy Storage

With a lifecycle cost of between \$0 and \$50/MWh, investments in energy efficiency are more costeffective than investments in *any* conventional energy generation resource.

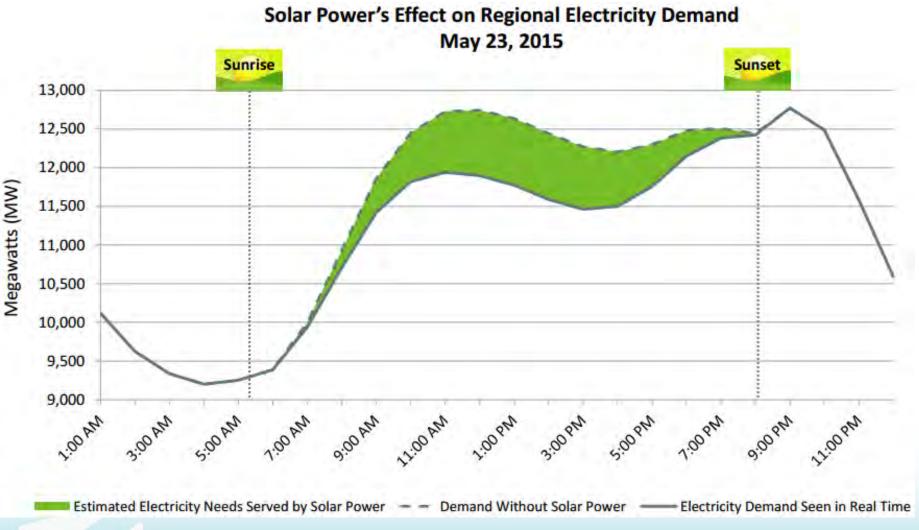


STATE	POLICY TYPE	PROGRAM ADMINISTRATOR	ENERGY SAVINGS GOALS
Connecticut	All Cost-Effective Energy Efficiency	Electric & Gas Utilities 2016-18 Plan	Electric: 1.5% retail sales Gas: 0.6% retail sales (forecasted retail sales)
Maine	All Cost-Effective Energy Efficiency	Efficiency Maine Trust <u>2017-19 Plan</u> (proposed) <u>Budgets and Metrics</u>	Proceeding Pending
Massachusetts	All Cost-Effective Energy Efficiency	Electric & Gas Utilities + CLC <u>2016-18 Plan</u> <u>Term Sheet</u>	Electric: 2.93% retail sales Gas: 1.24% retail sales (forecasted retail sales)
New Hampshire	All Cost-Effective Energy Efficiency	Electric & Gas Utilities 2017 Plan	Electric: 1.3% retail sales Gas: 0.8% retail sales (2014 retail sales)
Rhode Island	All Cost-Effective Energy Efficiency	Electric & Gas Utilities 2015-17 Plan	Electric: 2.6% retail sales Gas: 1.1% retail sales (2012 retail sales)
Vermont	All Cost-Effective Energy Efficiency	Efficiency Vermont, BED, VGS <u>2015-17 Plan</u> <u>Demand Resource Proc.</u>	Electric: 2.1% retail sales Gas: 0.9% retail sales (forecasted retail sales)

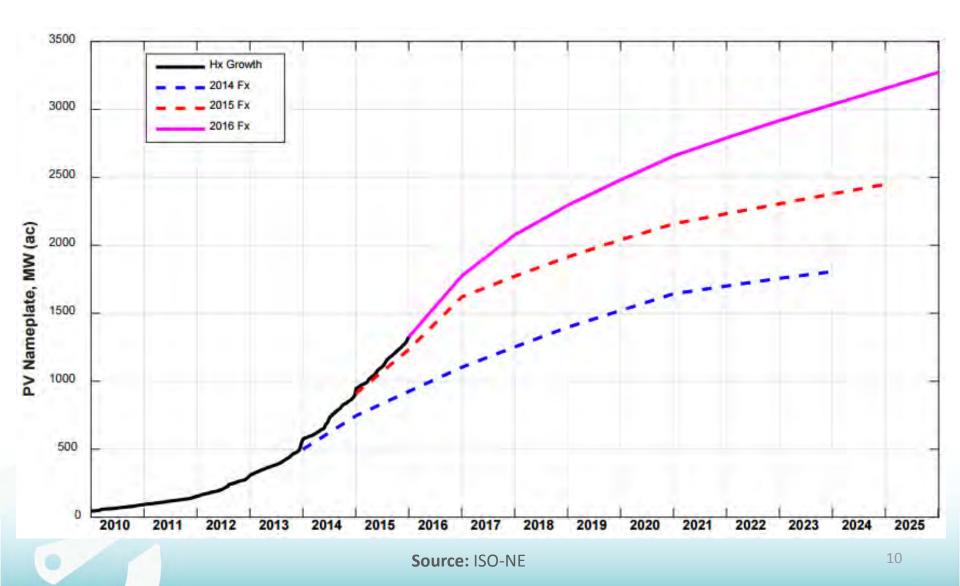

Annual verified electric savings have more than doubled in recent years, moving from ~3,100 GWh in 2009 to ~6,300 GWh in 2014. This is a direct result of regulatory policies and executive leadership in states supporting energy efficiency as a first order resource.

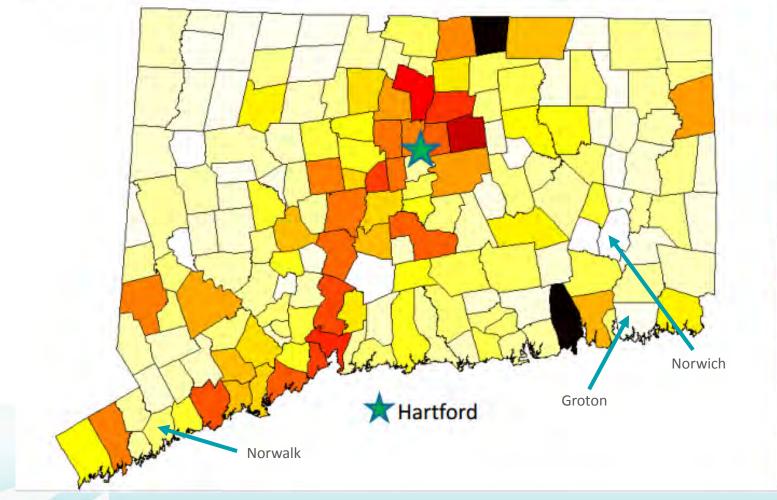


administrator reports (D.C. Del., NJ. Pa.). 2009-10 data is drawn from ACEEE scorecards.


Electric programs mine the majority of their savings from lighting, appliances, and large commercial and industrial retrofits, while natural gas programs focus greater attention on low income and residential retrofit programs.

The Changing Energy Landscape: Growing Photovoltaic Penetration


The Changing Energy Landscape: Growing Photovoltaic Penetration


State	Nameplate PV Capacity	Net Peak Demand	PV as Percent of Peak Capacity
СТ	188.01	7,683	2.5%
ME	15.34	2,127	.7%
MA	947.11	13,317	7.1%
NH	26.36	2,728	1.0%
RI	23.59	2,070	1.1%
VT	124.57	995	12.5%
Total	1,325.00	28,920	4.6%

The Changing Energy Landscape: Growing Photovoltaic Penetration

The Changing Energy Landscape: Growing Photovoltaic Penetration Connecticut Installed Solar PV "Heat Map"

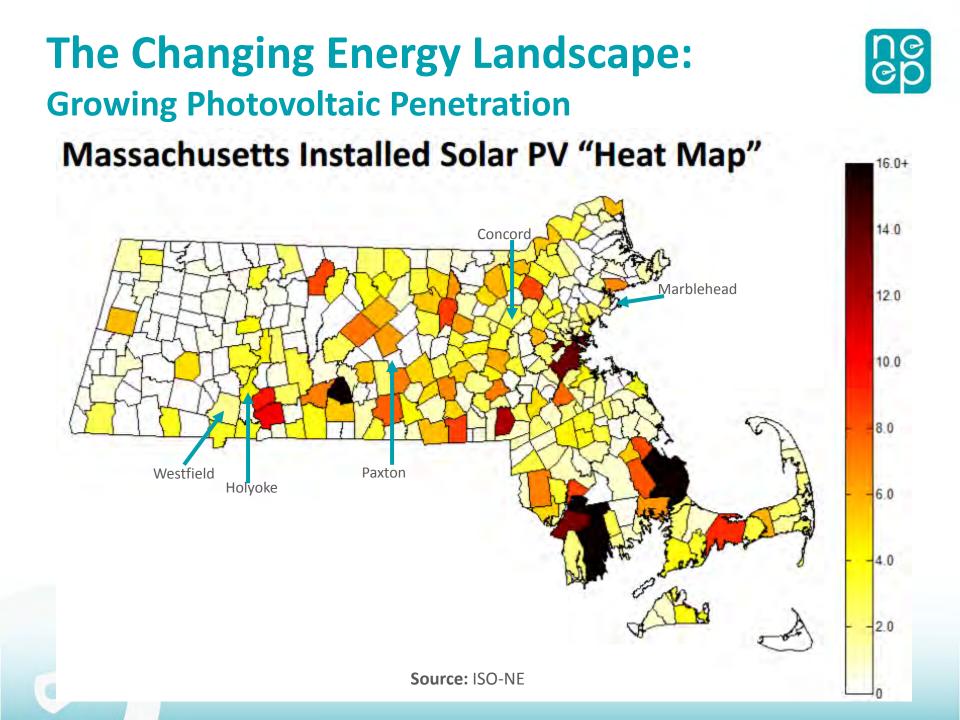
5.0+

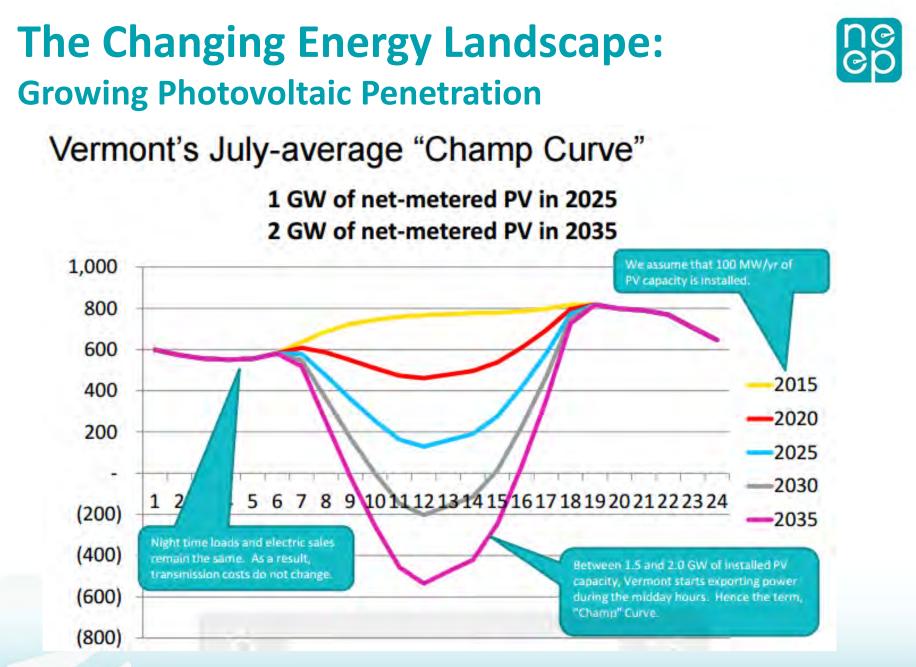
4.5

4.0

3.5

3.0

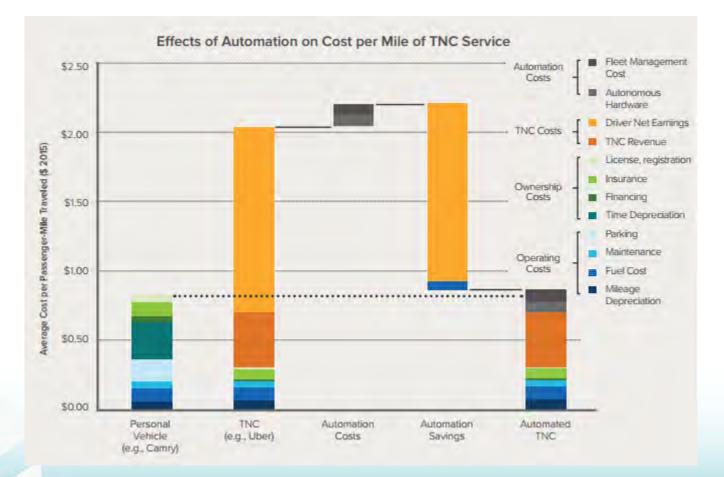

2.5


2.0

1.5

1.0

0.5



Source: Shawn Enterline, Green Mountain Power

The Changing Energy Landscape: Transportation Electrification

"People tend to underestimate the change that will occur in the next two years and underestimate the amount of change in the next ten."



Source: RMI Report: Peak Car Ownership

The Changing Energy Landscape: Transportation Electrification

"People tend to underestimate the change that will occur in the next two years and underestimate the amount of change in the next ten." –Bill Gates

Source: RMI Report: Peak Car Ownership

CHARTING A COURSE: Next Generation Energy Efficiency

- Grid Modernization
- Geo-targeting
- Strategic Electrification
- Integration with other distributed energy resources
- Deep savings for all fuels
- Controls & data analytics
- Advanced building design & operation
- Engaging private markets

The Regional Roundup of Energy Efficiency Policy: Next Generation Energy Efficiency

NEXT GENERATION ENERGY EFFICIENCY

TREND	NEXT GENERATION POLICY	STATES
Grid Modernization	Examining new utility frameworks responsive to emerging technologies/societal challenges and anticipating proliferation of multi-directional power flows , while also emphasizing greater customer engagement .	MA, NY, CT, RI, DC, NH
Strategic Electrification and Geo-targeting	Planning to procure savings from energy systems as a whole — across all fuels — with an emphasis on targeting distributed energy resources and their capabilities to defer or limit the need for further investments in distribution and transmission system assets .	VT, RI, NY, MA, Me
Advanced Building Policies	Shifting toward a whole-building approach to efficiency emphasizing advanced building energy codes, code compliance mechanisms, and building energy rating and labeling practices that drive toward "zero energy ."	RI, MA, CT, VT, DC, NY, DE
New Program Strategies	Harnessing new technology and policy innovations, enhance customer understanding around energy usage through expanded energy data access , information communication technologies , and strategic energy management strategies .	MA, VT, CT, NY
Integrating EE and Demand Response	Pairing energy efficiency program planning with opportunities for demand response in a manner that enhances cost-effectiveness and reduces peak load growth.	MD, CT, RI, MA, PA.
Evolution of Financing Tools	Leveraging private capital investments to increase funding available for energy efficiency programs through the use of Green Banks and related credit facilities, while also preserving proven program structures.	NY, CT, PA., NJ
EM&V 2.0	Coupling new data collection technologies and software-as-a-service analytic tools with traditional EM&V for real-time feedback of efficiency program impacts that is less costly and sufficiently accurate.	Many states exploring, none fully implementing

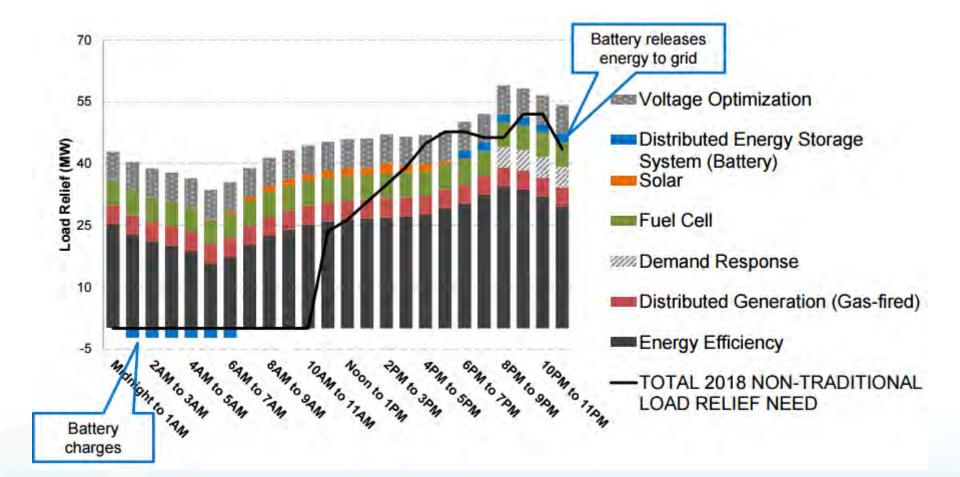
NEXT GENERATION TRENDS Grid Modernization

New utility frameworks responsive to emerging technologies and societal challenges and anticipating proliferation of multi-directional power flows, while also emphasizing greater customer engagement.

NEXT GENERATION TRENDS Geo-Targeting

- Geographic focusing of distributed energy resources and their capabilities to defer or limit the need for further investments in distribution and transmission system assets.
- Often include a combination of targeted energy efficiency, demand response and photovoltaics.
- Leading states: VT, NY, RI, MA, CT, ME

Energy Efficiency as a T&D Resource: Lessons from Recent U.S. Efforts to Use Geographically Targeted Efficiency Programs to Defer T&D Investments


January 9, 2015

Chris Neme & Jim Grevatt, Energy Futures Group

NEXT GENERATION TRENDS Geo-Targeting

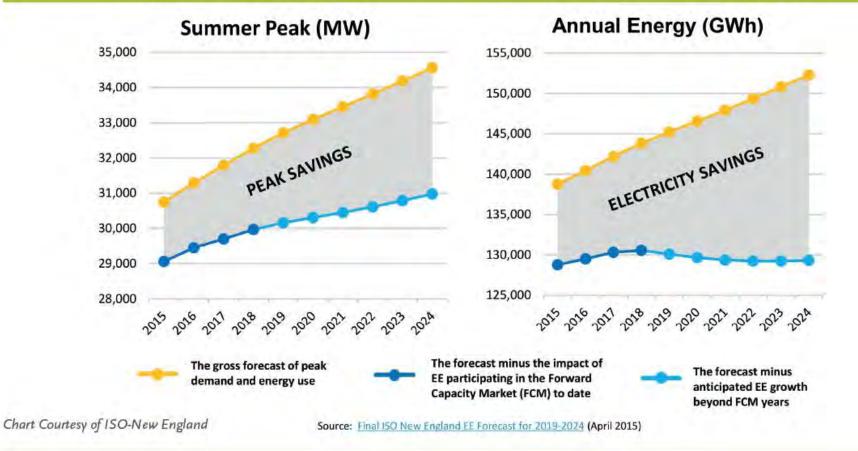
Source: Con Edison BQDM Proposal

NEXT GENERATION TRENDS Strategic Electrification

Planning to procure savings from energy systems as a whole, across all fuels, with emphasis on transforming the heating and transportation sectors to achieve system-wide carbon reduction goals.

Leading states backing up climate goals with policy action: VT, NY, RI, CT

State leadership and planning are key!


NEXT GENERATION TRENDS Strategic Electrification

		2017				2018		116,158 40,147
Tier III Measure	No. of Units	MWh Credits	Tota	l Budget	No. of Units	MWh Credits	Tota	l Budget
Electric Bus	2	2,428	\$	145,680	3	3,642	\$	222,890
Electric Vehicle	40	1,518	\$	91,080	50	1,898	\$	116,158
Electric Vehicle Supply Equipment	12	414	\$	24,840	19	656	\$	40,147
High Performance Heat Pumps	40	2,830	\$	169,800	49	3,467	\$	212,180
PassivHouse	0		\$	-	0		\$	
Total		7,190	\$	431,400		9,663	s	591,376
		2019				2020		
Tier III Measure	No. of Units	MWh Credits	Tota	l Budget	No. of Units	MWh Credits	Tota	l Budget
Electric Bus	2	3,642	\$	227,348	4	4,856	\$	309,194
Electric Vehicle	72	2,733	\$	170,605	80	3,037	\$	193,373
Electric Vehicle Supply Equipment	25	863	\$	53,872	15	518	\$	32,982
High Performance Heat Pumps	70	4,952	\$	309,124	76	5,377	\$	342,367
PassivHouse			\$	-	2	755	\$	48,073
Total		12,190	\$	760,949		14,543	5	925,989

NEXT GENERATION TRENDS Integrating Efficiency and Demand Response

Energy Efficiency is Slowing Peak Demand Growth and Flattening Energy Use

Top 1% of Hours accounts for 8% of MA Spend on Electricity Top 10% of Hours accounts for 40% of Electricity Spend

Source:

MA DOER

NEXT GENERATION TRENDS Integrating Efficiency and Demand Response

Program	Sector	Details
Manual Curtailment	C&I	 Based upon contractual commitments 50-100kW usage reductions Reservation v. voluntary enrollment Opportunity for bonus payments
Direct Load Control (DLC)	Res./ Small C&I	 Based upon direct communication between a program administrator Smaller usage reductions (~1kW)
Legacy DLC	Res./ Small C&I	 Switch based, one way signal Cycling an A/C condensing unit, heat pump, pool pump, or hot water heater Minimum verification required
Two-Way DLC	Res./ Small C&I	 Behind the meter information and communication technologies (ICT) transit data over HAN/Broadband
Behavioral Demand Response	Res.	 Based upon customer engagement Can provide incentive or use behavioral triggers AMI Required

25

NEXT GENERATION TRENDS Integrating Efficiency and Demand Response

Moving beyond switches, toward a proliferation of connected devices

 Smart Phones, T-Stats, Hot Water Heaters, Heat Pumps, EMS, ARTUs, CALCs, PEVs, energy storage, etc.

Program Administrators Offering Demand Response

- NWA projects throughout the country
- Mass. 2016-18 Plan
- Conn. 2016-18 C&LM Plan
- Pennsylvania Act 129 Phase III
- NHEC Go Beyond the Peak
- Maryland BGE Smart Energy Rewards
- NY Dynamic Load Management Plans, Smart Home Rate in REV Track II Order

Why should utilities should get in the game? Survey Says...

- Those who are enthusiastic about smart tech identify as enthusiastic about EE;
 52 percent, v. 27 percent of the general population
- Customers value connectivity almost as much as cost savings
- NGA report outlining opportunities

NEXT GENERATION TRENDS Private Finance as a Supplement to EE Programs

Building on past work in on-bill financing and revolving loan funds, many states are beginning to leverage private capital investments to increase funding available for energy efficiency programs through the use of Green Banks and related credit facilities, while also preserving proven program structures.

Leading states: Ct, NY, Penn

Another increasing trend is private market investment as part of their portfolio.

DOE/EE-1303 Making it Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers Financing Solutions Working Group and Driving Ratepayer-Funded Efficiency through Regulatory Policies Working Group December 2015 The State and Local Energy Efficiency Action Network is a state and local effort facilitated by the federal government helps states, utilities, and other local stakeholders tak cy to scale and achieve all cost-effectiv energy efficiency by 2020. more at www.seeaction.energy.c

NEXT GENERATION TRENDS Evaluation, Measurement & Verification 2.0

- Utilizing quick cycle feedback and non-intrusive load monitoring to identify opportunities for energy savings and verify savings
- Complements "tried & true" EM&V methods
- Opens the door for operational savings that were harder to verify under the measure/incentive approach

Leading By Example

 Municipal Facilities are good targets for energy efficiency upgrades due to high saliency, extended lifetime, and in some cases grants from state government

Green Revolving Investment Tracking System (GRITS) for APPA

- Web-based project management tool that allows users to track and analyze energy, financial, and carbon savings data
- Can recapture operational savings to create green revolving fund
- Free for APPA members

Street Lighting

- LED Street lighting is a proven technology with opportunities to save 50-80% of energy costs, and virtually all maintenance costs
- Muni's can be more agile than regulated utilities, whose tariff revisions can take years

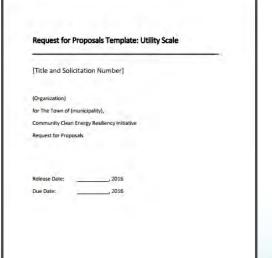
28

Demand Reduction

- Large utilities are piloting large DR programs to reduce ICAP tags, shifting capacity costs to those who are not
- If AMI Penetration, then think about Time Varying Rates and Peak Time Rebates to reduce ICAP Tag. If not, consider Direct Load Control technologies.

Electrification

- Muni's can be more agile than regulated utilities, whose regulatory paradigm does not allow for fuel switching
- Electrification and associated increase in load factor can lower overall costs, spreading MW costs over more MWhs



Use Case Investor Owned Utility (IOU) Grid Mod Asset: Distributed Storage at Utility Substations		Estimated Share of 1766 MW Recommendation		Millions \$		Benefit/Cost
		96	MW	Combined Benefits (Market Revenue + System Benefits	Cost	- Ratio
		40%	707	1301	387	3.36
Municipal Light Plant (MLP) Asset		10%	177	445	97	4.60
Load Serving Entity (LSE)/Competitive Electricity Supplier Portfolio Optimization		8%	141	158	77	2.05
	C&I Solar + Storage	6%	106	103	58	1.78
Behind the Meter	Residential Storage	4%	71	19	53	0.49
	Residential Storage Dispatched by Utility	5.5%	96	129	39	2.43
	Alternative Technology Regulation Resource	1.5%	28	45	15	3.00
Merchant	Storage + Solar	10.5%	185	373	102	3.66
	Stand-alone Storage or Co- Located with Traditional Generation Plant	9.5%	168	405	92	4.40
Re	siliency/Microgrid	5%	87	133	48	2.77

Source: MA DOER/CEC "State of Charge" Potential Study on cost-effectiveness of energy storage

Energy Storage

- Can provide resiliency, as well as revenue streams for from wholesale markets
- \$20 million MA DOER grant funding opportunity pending, CT support dependent upon CES
- CESA released "<u>Energy Storage Procurement Guidance</u> <u>Document for Municipalities</u>" includes RFP template for utility scale storage

Brian D. Buckley Senior Analyst, Public Policy BBuckley@neep.org, x152

NORTHEAST ENERGY EFFICIENCY PARTNERSHIPS

91 Hartwell Avenue Lexington, MA 02421

www.neep.org

