

A Project of the Regional Evaluation, Measurement and Verification Forum

March 2013

Prepared by Shelter Analytics

Facilitated and Managed by Northeast Energy Efficiency Partnerships

Table of Contents

The Regional EM&V Forum	5
Acknowledgements	
Subcommittee for the Mid-Atlantic TRM	5
INTRODUCTION	7
Context	8
Approach	9
Task 0: Identify candidate measures for 2012-2013 TRM development	9
Task 1: Confirm measures on the development list	10
Task 2: Develop draft measure updates and assumptions	
Task 3: Facilitate comment / review process and approval of edits	
Task 4: Draft 2012 Mid-Atlantic TRM	
Task 5: Finalize 2012 Mid-Atlantic TRM	12
Use of the TRM	
TRM Update History	17
RESIDENTIAL MARKET SECTOR	18
Lighting End Use	
General Purpose CFL Screw base, Residential	18
Specialty CFLs, Residential	
Hardwired CFL Fixtures (Interior)	37
Hardwired CFL Fixtures (Exterior)	46
Solid State Lighting (LED) Recessed Downlight Luminaire	51
ENERGY STAR Integrated Screw Based SSL (LED) Lamp	58
Refrigeration End Use	68
Freezer	68
Refrigerator	73
Refrigerator Early Replacement	
Refrigerator Early Retirement	79
Heating Ventilation and Air Conditioning (HVAC) End Use	82
Central Furnace Efficient Fan Motor	
Room Air Conditioner	
ENERGY STAR Central A/C	
Duct Sealing	
Air Source Heat Pump	103
HE Gas Boiler	
Condensing Furnace (gas)	110
Programmable Thermostat	
Room Air Conditioner Early Replacement	
Room Air Conditioner Early Retirement / Recycling	
Domestic Hot Water (DHW) End Use	
Low Flow Shower Head	122

Page 3 of 296

Faucet Aerators	126
Domestic Hot Water Tank Wrap	130
DHW pipe insulation	134
High Efficiency Gas Water Heater	137
Heat Pump Domestic Water Heater	140
Appliance End Use	143
Clothes Washer	143
Clothes Washer Early Replacement	152
Dehumidifier	165
Shell Savings End Use	169
Air sealing	169
Attic/ceiling/roof insulation	176
Efficient Windows - Energy Star Time of sale	182
Pool Pump End Use	
Pool pump-two speed	184
Pool pump-variable speed	187
Plug Load End Use	
"Smart-Strip" plug outlets	190
COMMERCIAL & INDUSTRIAL MARKET SECTOR	193
Lighting End Use	
General Purpose CFL Screw base, Retail - Commercial	193
High Performance and Reduced Wattage T8 Lighting Equipment	200
Retrofit	
T5 Lighting	
Pulse-Start Metal Halide fixture - interior	211
Pulse Start Metal Halide - exterior	
High Pressure Sodium	
LED Exit Sign	
Solid State Lighting (LED) Recessed Downlight Luminaire	
Delamping	
Occupancy Sensor - Wall box	
Advanced Lighting Design - Commercial	239
LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting -	
Commercial	
LED Parking Garage/Canopy Lighting - Commercial	
Heating Ventilation and Air Conditioning (HVAC) End Use	
High Efficiency Unitary AC - Existing	
Variable Frequency Drive (VFD)	
Electric Chillers	
Gas Boiler	
Gas Furnace	
Dual Enthalpy Economizer	282

Page 4 of 296

Ref	rigeration End Use	285
-	fficient Freezer	
Hot	t Water End Use	288
С	C&I Heat Pump Water Heater	288
	g Load End Use	
•	Smart-Strip" plug outlets	
	NDIX	
	Supporting Calculation Work Sheets	
В.	Process and Schedule for Maintenance and Update of	
	295	
C.	Description of Unique Measure Codes	295
	, , , , , , , , , , , , , , , , , , ,	

^{*}Measure was updated for this version of the TRM

^{**}Measure is newly added to this version of the TRM

Page 5 of 296

PREFACE

The Regional EM&V Forum

The Regional EM&V Forum is a project managed and facilitated by Northeast Energy Efficiency Partnerships, Inc. The Forum's purpose is to provide a framework for the development and use of common and/or consistent protocols to measure, verify, track and report energy efficiency and other demand resource savings, costs and emission impacts to support the role and credibility of these resources in current and emerging energy and environmental policies and markets in the Northeast and the Mid-Atlantic region. For more information, see http: www.neep.org/emv-forum.

Acknowledgements

Version 1.0 of the Mid-Atlantic Technical Reference Manual (TRM) was prepared for the Regional EM&V Forum by the Vermont Energy Investment Corporation (VEIC). Subsequent updates have been performed by Shelter Analytics. Bret Hamilton of Shelter Analytics was project manager throughout. assisted by Chris Neme (Energy Futures Group), Sam Dent (VEIC), and Jeff Loiter and Matt Socks (Optimal Energy, Inc.).

Subcommittee for the Mid-Atlantic TRM

A special thanks and acknowledgment from Elizabeth Titus on behalf of the EMV Forum staff at NEEP and project contractors is extended to this project's subcommittee members, who have provided important input and guidance throughout the development of the TRM. The subcommittee currently includes:

Maryland Public Service Commission (Brendon Baatz, Crissy Godfrey, Huilan Li, Mike Pascucci); Maryland Energy Administration (Dennis Hartline); Delaware Department of Natural Resources and Environmental Conservation (Rob Underwood); District Department of the Environment (Taresa Lawrence, Lance Locke); Baltimore Gas and Electric (Luba Abrams, Karl Eser, Cheryl Hindes, Ruth Kiselewich, Mary Straub, Sheldon Switzer, William Wolf); First Energy (Ed Miller, Eric Rundy, Chris Siebens, Lisa Wolfe); Pepco Holding Co. (David Pirtle, Steve Sunderhauf, Pamela Tate); Southern Maryland Electric Cooperative (Eugene Bradford); D.C. Sustainable Energy Utility/Vermont Energy Investment Corp. (Nikola Janjic); GDS (Caroline Guidry, Tom Londos;

Page 6 of 296

ICF (Drew Durkee, Catul Kiti); Itron (Kumar Chittory, Joe Loper, Mike Messenger); Lockheed Martin Co. (Kim Byk, Bill Steigelmann); Navigant Consulting (Brent Barkett, Justin Spence); Metropolitan Washington Council of Governments (Jeff King).

Page 7 of 296

INTRODUCTION

This Technical Reference Manual is the outcome of a project conducted for the Regional Evaluation, Measurement and Verification Forum ('the EMV Forum') sponsored by Maryland, Delaware and the District of Columbia. The intent of the project was to develop and document in detail common assumptions for approximately thirty prescriptive residential and commercial/industrial electric energy efficiency measures savings. For each measure, the TRM includes either specific deemed values or algorithms¹ for calculating:

- Gross annual electric energy savings;
- Gross electric summer coincident peak demand savings;
- Gross annual fossil fuel energy savings (for electric efficiency measures that also save fossil fuels, and for certain measures that can save electricity or fossil fuels);
- Other resource savings if appropriate (e.g. water savings, O&M impacts);
- Incremental costs; and
- Measure lives.

The TRM is intended to be easy to use and to serve a wide range of important users and functions, including:

- **Utilities and efficiency Program Administrators** for cost-effectiveness screening and program planning, tracking, and reporting.
- Regulatory entities, independent program evaluators, and other parties for evaluating the performance of efficiency programs relative to statutory
 goals and facilitating planning and portfolio review; and
- Markets, such as PJM's Reliability Pricing Model (its wholesale capacity market) and future carbon markets - for valuing efficiency resources.

The TRM is intended to be a flexible and living document. To that end, NEEP, the project sponsors and the TRM authors all expect it to be periodically updated with additional measures, modifications to characterizations of existing measures and even removal of some measures when they are no longer relevant to regional efficiency programs. In 2012, the Forum subcommittee completed Updating Process Guidelines which help inform continued updates; the guidelines are provided in Appendix B.

¹ Typically, the algorithms provided contain a number of deemed underlying assumptions which when combined with some measure specific information (e.g. equipment capacity) produce deemed calculated savings values.

Context

The Forum initiated this project as a benefit to both the Mid-Atlantic States and the overall Forum Region, for the following reasons:

- To improve the credibility and comparability of energy efficiency resources to support state and regional energy, climate change and other environmental policy goals;
- To remove barriers to the participation of energy efficiency resources in regional markets by making EM&V practices and savings assumptions more transparent, understandable and accessible;
- To reduce the cost of EM&V activities by leveraging resources across the region for studies of common interest (where a need for such studies has been identified); and
- To inform the potential development of national EM&V protocols.

This is the third generation of a document of this type that has been prepared for the mid-Atlantic sponsors, and one of few in the country to serve a multijurisdictional audience. For definitions of many energy efficiency terms and acronyms included in the TRM, users of this TRM may want to refer to the EMV Forum Glossary available at: http://neep.org/emv-forum/forum-products-and-guidelines. As background, we also note the first TRM was developed in parallel with the EMV Forum .

It is also recognized that some programs throughout the Mid-Atlantic region are still in the early stages of implementation of efficiency programs and only just beginning to conduct significant new market research and evaluation studies. As a result, there is a growing body of local data upon which to base savings assumptions, but it is not as complete as is the case in some other regions of the country. It will be important to continue to update the TRM as efficiency programs mature and more evaluation data becomes available. In addition, efficiency programs in the region are not identical and either the availability or the results of existing baseline studies and other sources of information can differ across organizations and jurisdictions. Also, different budgets and policy objectives exist, and states may have different EM&V requirements and practices. Given these considerations, the contents of this TRM reflect the consensus agreement and best judgment of project sponsors, managers, and consultants on information that was most useful and appropriate to include within the time, resource, and information constraints of the study.

Page 9 of 296

Approach

This section briefly identifies and describes the process used for the most recent updates to the TRM. In addition, it provides an overview of some of the considerations and decisions involved in the development of estimates for the many parameters. The development of this TRM required a balance of effectiveness, functionality, and relevance with available sources and research costs. It is helpful to keep in mind that each measure characterization has numerous components, including baseline consumption, annual energy savings, coincident peak demand savings, useful life, and incremental cost. Many of those components have a number of sub-components. Thus, the project needed to research and develop literally hundreds of unique assumptions. It is further helpful to keep in mind that because the project served a multijurisdictional audience, it required data requests, review, and consensus decision-making by a subcommittee comprised of project sponsors (see the end of this Introduction for a list of subcommittee members). The subcommittee was responsible for review and approval of the products generated in each of the tasks needed to complete the project.

Development of the TRM version 3.0 consisted of the following tasks:

Task 0: Identify candidate measures for 2012-2013 TRM development

This phase was performed by the Shelter Analytics team in the summer of 2012. It included steps to identify the appropriate set of measures to update or add to the existing body of work. The team began by soliciting suggestions from Program Administrators for new measures needed for present or near future program plans, gather Stakeholder input. Then they reviewed EMV forum project products and incremental cost study to inform candidate measure list and suggested updates. To keep the TRM relevant in the context of what is happening outside the Mid-Atlantic, the team developed suggestions for new measures based on survey of measures adopted in other jurisdictions. With this information, the team provided suggestions for updates to existing measure assumptions and new measures for development.

By design, this TRM has been restricted to priority prescriptive measures, due to a combination of project resource constraints and the recognition that typically 10 - 20% of a portfolio of efficiency measures (such as CFLs, T8s or super-T8s, some cooling measures, efficient water heaters) likely account for

Page 10 of 296

the large majority (90% or more) of future savings claims from prescriptive measures (i.e., those measures effectively characterized by deemed savings).

Candidate measures were selected on the basis of projected or expected savings from program data by measure type provided by Baltimore Gas and Electric, expert judgment, and review of other relevant criteria available from regulatory filings and the region's Program Administrators. The final list of measures included those likely to provide a significant contribution to the portfolios of sponsors' efficiency programs, plus some, such as solid state lighting, that are expected to increase in importance. Note that some of the measures chosen were variations on other measures. For those measures where fossil fuel savings occur in addition to electricity savings (for example the clothes washer measure), or where either electric or fossil fuel savings could be realized depending on the heating fuel used (for example domestic hot water conservation measures), appropriate MMBtu savings have been provided.

Task 1: Confirm measures on the development list

After the consultant team presented their suggested list of candidate measures, the Stakeholders were invited to ask questions or post comments regarding the nature and relevance of the updates. This exchange caused a minor revision and re-draft of the proposed measure list. At this point, NEEP asked for and received consensus subcommittee approval of the measure list for updates and addition to the TRM.

Task 2: Develop draft measure updates and assumptions

The consultant team then researched and developed draft measure savings assumptions, document those assumptions and the underlying rationale using as much region-specific data as possible, using data from other relevant locales as a proxy when necessary. For existing measures, redline versions of updated measures were drafted. The team developed clean drafts of new measures and presented them during two conference calls with the Subcommittee and respective consultants. The Stakeholders were then asked to review and comment on the measure drafts.

The development of specific recommendations for assumptions or assumption algorithms (informed by the comparative analysis), were accompanied with rationales and supported with references for the recommendations. These recommended assumptions identified cases where calculation of savings is required and where options exist (for example two coincidence factor values are provided for central AC measures, based on two definitions of peak coincidence factors) for calculation of impact. They also recommend deemed values where consistency can or should be achieved. The following criteria

Page 11 of 296

were used in the process of reviewing the proposed assumptions and establishing consensus on the final contents of the TRM:

- Credibility. The savings estimates and any related estimates of the costeffectiveness of efficiency investments are credible.
- Accuracy and completeness. The individual assumptions or calculation protocols are accurate, and measure characterizations capture the full range of effects on savings.
- Transparency. The assumptions are considered by a variety of stakeholders to be transparent - that is, widely-known, widely accessible, and developed and refined through an open process that encourages and addresses challenges from a variety of stakeholders.
- Cost efficiency. The contents of the TRM addressed all inputs that were well within the established project scope and constraints. Sponsors recognize that there are improvements and additions that can be made in future generations of this document.

Additional notes regarding the high level rationale for extrapolation for Mid-Atlantic estimates from the Northeast and other places are provided below under Use of the TRM.

Task 3: Facilitate comment / review process and approval of edits

NEEP and the Shelter Analytics team collected the comments and questions, and responded to each by either:

- a. Making the suggested changes, or
- b. Explaining why the measure assumptions in the draft were favorable.

For measures being changed, the consultants performed additional research and documentation as needed. Then the re-drafted measures were presented to the Stakeholders for consensus approval, which was tacitly implied if no additional comments or questions were presented.

Task 4: Draft 2012 Mid-Atlantic TRM

NEEP and the Shelter Analytics team integrated the new material and updates into the body of the existing TRM and submitted clean draft to subcommittee for review/comment

Page 12 of 296

Task 5: Finalize 2012 Mid-Atlantic TRM

Suggested edits were collected, and the team drafted redline changes to the draft final TRM for submission and consensus approval, after which changes will be accepted and a clean, final copy submitted.

Use of the TRM

As noted above, The TRM is intended to serve as an important tool to support rate-funded efficiency investments, both for planning and assessment of success in meeting specific state goals. In addition, the TRM is intended to support the bidding of efficiency resources into capacity markets, such as PJM's Reliability Pricing Model and in setting and tracking future environmental and climate change goals. It provides a common platform for the Mid-Atlantic stakeholders to characterize measures within their efficiency programs, analyze and meaningfully compare cost-effectiveness of measures and programs, communicate with policymakers about program details, and it can guide future evaluation and measurement activity and help identify priorities for investment in further study, needed either at a regional or individual organizational level.

The savings estimates are expected to serve as representative, recommended values, or ways to calculate savings based on program-specific information. All information is presented on a per measure basis. In using the measure-specific information in the TRM, it is helpful to keep the following notes in mind:

• The TRM clearly identifies whether the measure impacts pertain to "retrofit", "time of sale", or "early retirement" program designs. These program approaches are defined in the following table:

_

² In some jurisdictions, this is called "replace on burn-out". We use the term "time of sale" because not all new equipment purchases take place when an older existing piece of equipment reaches the end of its life.

Page 13 of 296

Program	Attributes
Time of Sale (TOS)	Definition: A program in which the customer is incented to purchase or install higher efficiency equipment than if the program had not existed. Examples include retail rebate (coupon) programs, upstream buydowns, online store programs, contractor based programs, or CFL giveaways. TOS encompasses "End of Life" and "Replace on Burnout" scenarios. Baseline = New equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate
New Construction (NC)	<u>Definition:</u> A program that intervenes during building design to support the use of more-efficient equipment and construction practices. <u>Baseline</u> = Building code or federal standards. <u>Efficient Case</u> = The program's level of building specification <u>Example</u> : Building shell and mechanical measures
Retrofit (RF)	Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation
Early Replacement (EREP)	<u>Definition:</u> A program that <i>replaces</i> existing equipment before the end of its expected life. <u>Baseline</u> = Dual; begins as existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. <u>Efficient Case</u> = New, premium efficiency equipment above federal and state codes and standard industry practice. <u>Example</u> : Refrigerators, freezers
Early Retirement (ERT)	<u>Definition:</u> A program that <i>retires</i> duplicative equipment before its expected life is over. <u>Baseline</u> = The existing equipment, which is retired and not replaced. <u>Efficient Case</u> = Zero because the unit is retired. <u>Example</u> : Appliance recycling
Direct Install (DI)	Definition: A program where measures are installed during a site visit. Baseline = Existing equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Lighting and low-flow hot water measures

- Additional information about the program design is sometimes included in the measure description because program design can affect savings and other parameters.
- Savings algorithms are typically provided for each measure. For a number of measures, prescriptive values for each of the variables in the algorithm are provided along with the output from the algorithm. That output is the deemed assumption. For other measures, prescriptive values are provided for only some of the variables in the algorithm, with the term "actual" or "actual installed" provided for the others. In those cases which one might call "deemed calculations" rather than "deemed assumptions" users of the TRM are expected to use actual efficiency program data (e.g. capacities or rated efficiencies of central air conditioners) in the formula to compute savings. Note that the TRM typically provides example calculations for measures requiring "actual" values. These are for illustrative purposes only.
- All estimates of savings are annual savings and are assumed to be realized for each year of the measure life (unless otherwise noted).
- Unless otherwise noted, measure life is defined to be "The life of an energy consuming measure, including its equipment life and measure persistence (not savings persistence)" (EMV Forum Glossary). Conceptually it is similar to expected useful life, but the results are not necessarily derived from modeling studies, and many are from a report completed for New England program administrators' and regulators' State Program Working Group that is currently used to support the New England Forward Capacity Market M&V plans.
- Where deemed values for savings are provided, these represent average savings that could be expected from the average measures that might be installed in the region in 2011.

Demand Savings Estimates:

- For measures that are not weather-sensitive, peak savings are estimated whenever possible as the average of savings between 2 pm and 6 pm across all summer weekdays (i.e. PJM's EE Performance Hours for its Reliability Pricing Model). For these measures, the peak hourly demand savings should be used to extimate system peak (hottest hours of hottest day) demand savings.
- Where possible for weather sensitive (cooling) measures, we provide estimates of peak savings in two different ways. The primary way is to estimate peak savings during the most typical peak hour (assumed here to be 5 p.m.) on days during which system peak demand typically occurs (i.e., the hottest summer weekdays). This is most indicative of actual peak benefits. The secondary way typically provided in a footnote is to estimate peak savings as it is measured for non-cooling measures: the average between 2 pm and 6 pm across all summer weekdays (regardless of temperature). The second way is presented so that values can be bid into the PJM RPM.

Page 15 of 296

- Wherever possible, savings estimates and other assumptions are based on mid-Atlantic data. For example, data from a BG&E metering study of residential central air conditioners was used to estimate both full load hours and system peak coincidence factors. However, a number of assumptions - including assumptions regarding peak coincidence factors - are based on New York and/or New England sources. While this information is not perfectly transferable, due to differences in definitions of peak periods as well as geography and climate and customer mix, it was used because it was the most transferable and usable source available at the time.³
- Users will note that the TRM presents engineering equations for most measures.
 These were judged to be desirable because they convey information clearly and transparently, and they are widely accepted in the industry. Unlike simulation model results, they also provide flexibility and opportunity for users to substitute locally specific information and to update some or all parameters as they become available on an ad hoc basis. One limitation is that certain interaction effects between end uses, such as how reductions in waste heat from many efficiency measures impacts space conditioning, are not universally captured in this version of the TRM.⁴
- For some of the whole-building program designs that are being planned or implemented in the Mid-Atlantic, simulation modeling may be needed to estimate savings. While they were beyond the scope of this TRM, it is recommended that a future version of the TRM may include the baseline specifications for any whole-building efficiency measures.
- In general, the baselines included in the TRM are intended to represent average conditions in the Mid-Atlantic. Some are based on data from the Mid-Atlantic, such as household consumption characteristics provided by the Energy Information Administration. Some are extrapolated from other areas, when Mid-Atlantic data are not available.
- When weather adjustments were needed in extrapolations, Baltimore weather conditions were generally used as a proxy for the region. This decision was made after comparing Baltimore, MD, Washington, D.C., Dover, DE and other temperature and humidity indicators.
- The TRM anticipates the effects of changes in efficiency standards for some measures, specifically CFLs and motors.

Going forward, the project sponsors can use this TRM, along with other Forum products on common EM&V terminology, guidelines on common evaluation methods, and common reporting formats, along with the experience gained from implementation of the efficiency programs to inform decisions about what savings assumptions should be updated and how. Future TRM updates may also

³ For more discussion about the transferability of consumption data, see the EMV Forum Report: Cataloguing Available End-Use and Efficiency Measure Load Data, October 2009 at http://neep.org/emv-forum/forum-products-and-guidelines.

⁴ They are captured only for lighting measures.

Page 16 of 296

expand the parameters, measures or programs covered beyond those currently included.

Page 17 of 296

TRM Update History

Version	Issued	
1.1		October 2010
1.2		March 2011
2.0	July 2011	
3.0/March 2013*	March 2013	

^{*}From this point forward, versions will be identified by the month and year the TRM measure updates and additions are accepted by the stakeholders.

RESIDENTIAL MARKET SECTOR

Lighting End Use

General Purpose CFL Screw base, Residential

Unique Measure Code(s): RS_LT_TOS_CFLSCR_0113

Effective Date: January 2013

REGIONAL EVALUATION.

End Date: TBD

Measure Description

This measure characterizes the installation of a general purpose compact fluorescent light bulb (CFL) in place of an incandescent bulb. The measure provides assumptions for two implementation strategies (Time of Sale/Retail⁵ and Direct Install), and for two markets (Residential and Multi-Family).

This characterization is for a general purpose screw based CFL bulb (Alamps), and not a specialty bulb (e.g. reflector (PAR) lamps, globes, candelabras, 3-ways etc).

Definition of Baseline Condition

The baseline is the installation of an incandescent light bulb.

Definition of Efficient Condition

The efficient condition is the installation of a compact fluorescent light bulb.

Annual Energy Savings Algorithm

 Δ kWh = ((CFLwatts * DeltaMultiplier) /1000) * ISR * HOURS * WHFe_{Cool} * WHFe_{Heat}

Where:

_

⁵ The utilities might consider evaluating what percentage of retail sales end up in commercial locations, and apply the commercial CFL assumptions to that portion. In the absence of such data it is appropriate to use the Residential assumptions for all retail sales since they will represent a significant majority and result in an appropriately conservative estimate.

Page 19 of 296

CFLwatts = CFL Lamp Watts (if known).

DeltaMultiplier = Multiplier to calculate delta watts. Depends

upon bulb wattage and year of replacement⁶:

CFL	Delta Watts Multiplier	
Wattage	2013	2014 and
		Beyond
15 or less	2.95	1.83
16-20	1.79	1.79
21W+	1.84	1.84

If Compact Fluorescent Watts is unknown use 28.2⁷ from 2013 onwards as the delta watts (i.e. for (CFLwatts * DeltaMultiplier)).

ISR = In Service Rate or percentage of units rebated that are installed and operational.

Program	In Service Rate (ISR)
Time of Sale (Retail)	0.92 ⁸
Direct Install	0.889

⁶ Average wattage of compact fluorescent from RLW study was 15.5W, and the replacement incandescent bulb was 61.2W. This is a ratio of 3.95 to 1, and the delta watts is equal to the compact fluorescent bulb multiplied by 2.95:

RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009. Post EISA multipliers are calculated by finding the new delta watts after incandescent bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014); see MidAtlantic CFL Adjustments.xls.

⁷ To account for the change in baseline stemming from the Energy Independence and Security Act of 2007 discussed below. Calculated by multiplying 45.7 by the average adjustment 2014 percentage adjustment from table below. This adjustment should be made in 2013 since this is the midpoint of the 3 EISA adjustment years.

⁸ Starting with a first year ISR of 0.88 (based on EmPOWER Maryland 2011 Evaluation Report; Chapter 5: Lighting and Appliances) and a lifetime ISR of 0.97 (from Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"), and assuming 43% of the remaining 9% not installed in the first year replace incandescents (24 out of 56 respondents not purchased as spares; Nexus Market Research, RLW Analytics, October 2004; "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs", table 6-7). ISR is therefore calculated as 0.88 + (0.43*0.09) = 0.92. See MidAtlantic CFL Adjustments.xls for calculation.

⁹ Assumption is based on the EmPOWER Maryland 2011 Evaluation Report discussed above, but not adjusted upwards since those people removing bulbs after being installed in Direct Install program are likely to do so because they dislike them, not to use as replacements. Only evaluation we are aware of specifically for Direct Install installation (and persistence) rates is Megdal & Associates, 2003; "2002/2003 Impact Evaluation of LIPA's Clean Energy Initiative REAP Program", which estimated 81%.

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	3.15	1,150 ¹⁰
Multi Family Common Areas	16.3	5,950 ¹¹
Exterior	4.5	1,643 ¹²
Unknown ¹³	3.15	1,150

$WHFe_{Cool}$

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

	WHFe _{Cool}
Building with cooling	1.12 ¹⁴
Building without	1.0
cooling or exterior	
Unknown	1.0915

 $^{^{10}}$ Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

¹¹ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Wisconsin's Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

¹² Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

¹³ For programs where the installation location is unknown (e.g. upstream lighting programs) the assumption is set conservatively to assume an interior residential bulb.

¹⁴ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

¹⁵ The value is estimated at 1.09 (calculated as 1 + (0.78*(0.33 / 2.8)). Based on assumption that 78% of homes have central cooling (based on BGE Residential Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates).

Page 21 of 296

$WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.894¹⁶

HF

= Heating Factor or percentage of light savings that must be heated

> = 47%¹⁷ for interior or unknown location = 0% for exterior or unheated location

nHeat

= Efficiency in COP of Heating equipment = actual. If not available use 18:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
Tieac rump	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ¹⁹

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ²⁰

¹⁶ Calculated using defaults: 1+((0.47/1.67)*0.375)=0.894

¹⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

¹⁹ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after. ²⁰ Based on KEMA baseline study for Maryland.

For example, bulb purchased in 2013 in unknown location: $\Delta kWh = ((28.2)/1000) * 0.92 * 1150 * 1.09 * 0.894$

= 29.1 kWh

Baseline Adjustment²¹

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012, 100W incandescents can no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 60W equivalent bulbs (15W or less CFLs) installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. Note if the adjustment year has passed, the reduced delta watts will be used in year 1 and so no mid life adjustment should be made. For example, in 2013 a 21W+ bulb will use the 1.84 multiplier and not have a mid-life adjustment.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below²²:

²¹ Note that the EISA adjustments discussed only apply to general purpose CFL bulbs. Specialty bulbs (not characterized here) are not currently subject to these adjustments.

²² Calculated by finding the post-EISA delta watts as a percentage or pre-EISA delta watts, for example for a 100W bulb: (72-25.3)/(100-25.3) = 62.5%. See MidAtlantic CFL Adjustments.xls for calculation.

CFL Wattage	Savings as Percentage of Base Year Savings		
	2013 2014 and		
		Beyond	
15 or	100%	62%	
less			
16-20	61%	61%	

If Compact Fluorescent Watts is unknown no adjustment is necessary as it already assumes a reduced delta watts due to EISA.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((CFLwatts * DeltaMultiplier) / 1000) * ISR * WHFd * CF$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ²³
Building without	1.0
cooling or exterior	
Unknown	1.18 ²⁴

CF

= Summer Peak Coincidence Factor for measure

Installation Location	Coincidence Factor CF
Residential interior and in-unit Multi Family	0.09^{25}
Multi Family Common Areas	0.43 ²⁶

²³ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition). 24 The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

²⁵ Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

Page 24 of 296

Exterior	0.018 ²⁷
Unknown	0.09

For example, bulb purchased in 2013:

$$\Delta kW$$
 = ((28.2) / 1000) * 0.92 * 1.18 * 0.09

= 0.0028 kW

Note: The savings adjustment due to the shifting baseline documented above should be applied to the peak kW savings assumed in the later years.

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel²⁸):

$$\Delta$$
MMBtu²⁹ = - ((((CFLwatts * DeltaMultiplier) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that

must be heated

= 47%³⁰ for interior or unknown location = 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

 $=72\%^{31}$

%FossilHeat = Percentage of home with non-electric heat

²⁶ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

²⁷ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

²⁸ Based on KEMA baseline study for Maryland.

²⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

³⁰ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

³¹ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ³²

For example, bulb purchased in 2013 in a home with 75% AFUE gas furnace:

If home heating fuel is unknown:

Annual Water Savings Algorithm

n/a

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost is \$1.90 in 2012, \$1.80 in 2013 and \$1.50 from June 2014³³.

For the Direct Install measure, the full cost of \$2.50 per bulb should be used plus \$5 labor³⁴ for a total measure cost of \$7.50 per lamp.

Measure Life

The measure life is assumed to be:

³² Based on KEMA baseline study for Maryland.

³³ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy, applying sales weighting and phase-in of EISA regulations. Assumption is \$2.50 for CFL over three years and \$0.6 for baseline in 2012, \$0.70 in 2013 and \$1.00 in 2014 as more expensive EISA qualified bulbs become baseline.

34 Assumption based on 15 minutes (including portion of travel time) and \$20 per hour.

Installation Location	Measure Life
Residential interior and in-unit Multi Family	5.5 ³⁵
Multi Family Common Areas	1.136
Exterior	3.8 ³⁷
Unknown	5.5

Operation and Maintenance Impacts

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic CFL Adjustments.xls). The key assumptions used in this calculation are documented below:

³⁵ Calculated starting with an average observed life (5.2 years) of compact fluorescent bulbs with rated life of 8000 hours (8000 hours is the average rated life of ENERGY STAR bulbs (http://www.energystar.gov/index.cfm?c=cfls.pr crit cfls)). Observed life is based on Jump et al "Welcome to the Dark Side: The Effect of Switching on CFL Measure Life" and is due to increased on/off switching. The 5.2 years is adjusted upwards due to the assumption that 57% of the 9% not installed in the first year eventually replace CFLs (based on 32 out of 56 respondents purchased as spares; Nexus Market Research, RLW Analytics, October 2004; "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs", table 6-4). Measure life is therefore calculated as (5.2 + (((0.57 * 0.09)/0.92) *5.2)= 5.5 years.

Note, a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore after 2014 the measure life will have to be reduced each year to account for the number of years remaining to 2020.³⁵

 $^{^{36}}$ Based proportionately on the residential assumption and the differing hours of use (1150/5950 * 5.5 = 1.1).

lbid. (1150/1643 * 5.5 = 3.8)

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$1.00 ³⁸
Component Life ³⁹ (years) Residential interior, in-unit Multi Family or unknown	0.87 ⁴⁰	0.87 ⁴¹
Multi Family Common Areas	0.17	0.17
Exterior	0.60	0.60

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below⁴²:

Residential interior and in-unit Multi Family

	NPV of baseline Replacement Costs	
CFL wattage	2013	2014 on
21W+	\$4.12	\$4.12
16-20W	\$4.12	\$4.12
15W and less	\$4.05	\$4.12

Multi Family Common Areas

	NPV of baseline	
	Replacement Costs	
CFL wattage	2013	2014 on
21W+	\$4.30	\$4.30

³⁸ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy.

³⁹ Based on lamp life / assumed annual run hours.

 $^{^{40}}$ Assumes rated life of incandescent bulb of 1000 hours.

⁴¹ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, Optimal Energy and confirmed by N. Horowitz at NRDC) so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours.

⁴² Note, these values have been adjusted by the appropriate In Service Rate - the Time of Sale assumption (0.92) is used for the Residential interior and multi-family in unit, the Direct Install assumption (0.88) for the remaining categories. The discount rate used for these calculations is 5.0%. See 'MidAtlantic CFL adjustments' for more information.

Page 28 of 296

16-20W	\$4.30	\$4.30
15W and less	\$2.15	\$4.30

Exterior

	NPV of baseline Replacement Costs	
CFL wattage	2013	2014 on
21W+	\$4.58	\$4.58
16-20W	\$4.58	\$4.58
15W and less	\$4.29	\$4.58

Page 29 of 296

Specialty CFLs, Residential

Unique Measure Code(s): RS_LT_TOS_SPECCFL_0113

Effective Date: January 2013

End Date: TBD

Measure Description

An ENERGY STAR qualified specialty compact fluorescent bulb is installed in place of an incandescent specialty bulb. Specialty bulbs defined in this characterization are exempt of the EISA 2007 standard and include the following bulb types: three-way, plant light, daylight bulb, bug light, post light, globes G40, candelabra base, vibration service bulb, decorative candle with medium or intermediate base, shatter resistant, reflector (note that the exemption on reflector bulbs is expected to expire in 2014 for the following wattage and bulb types: 45 W (R20 and BR 19); 50W (R30, ER 30, BR 40, and ER 40); 65W (BR30, BR40, and ER 44)).

The measure provides assumptions for two implementation strategies (Time of Sale/Retail⁴³ and Direct Install), and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a specialty incandescent light bulb.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified specialty CFL bulb as defined above that is exempt from EISA 2007.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBase - WattsEE) /1000) * ISR * HOURS * WHFe_{Cool} * WHFe_{Heat}

Where:

.

⁴³ The utilities might consider evaluating what percentage of retail sales end up in commercial locations, and apply the commercial CFL assumptions to that portion. In the absence of such data it is appropriate to use the Residential assumptions for all retail sales since they will represent a significant majority and result in an appropriately conservative estimate.

Page 30 of 296

WattsBase = If actual CFL wattage is known - find the equivalent baseline wattage from the table below⁴⁴; use 61.7W if unknown⁴⁵

Incandescent Bulbs (watts)	Minimum Light Output (lumens)	Common ENERGY STAR Qualified Bulbs (Watts)
25	250	4 to 9
40	450	9 to 13
60	800	13 to 15
75	1,110	18 to 25
100	1,600	23 to 30
125	2,000	22 to 40
150	2,600	40 to 45

WattsEE = Actual wattage of energy efficient specialty bulb purchased, use 15W if unknown⁴⁶

ISR

= In Service Rate or percentage of units rebated that get installed.

Program	In Service Rate
	(ISR)
Time of Sale (Retail)	0.9247

⁴⁴ Based on ENERGY STAR equivalence table; http://www.energystar.gov/index.cfm?c=cfls.pr_cfls_lumens

⁴⁵ A 2006-2008 California Upstream Lighting Evaluation found an average incandescent wattage of 61.7 Watts (KEMA, Inc., The Cadmus Group, Itron, Inc., PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program. Prepared for the California Public Utilities Commission, Energy Division. December 10, 2009)

⁴⁶ An Illinois evaluation (Energy Efficiency / Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: Residential Energy Star ® Lighting

http://ilsag.org/yahoo_site_admin/assets/docs/ComEd_Res_Lighting_PY2_Evaluation_Report_2_010-12-21_Final.12113928.pdf) reported 13-17W as the most common specialty CFL wattage (69% of program bulbs). 2009 California data also reported an average CFL wattage of 15.5 Watts (KEMA, Inc, The Cadmus Group, Itron, Inc, PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program, Prepared for the California Public Utilities Commission, Energy Division. December 10, 2009).

⁴⁷ Starting with a first year ISR of 0.88 (based on EmPOWER Maryland 2011 Evaluation Report; Chapter 5: Lighting and Appliances) and a lifetime ISR of 0.97 (from Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"), and assuming 43% of the remaining 9% not installed in the first year replace incandescents (24 out of 56 respondents not purchased as spares; Nexus Market Research, RLW Analytics, October 2004; "Impact Evaluation of the Massachusetts, Rhode

Page 31 of 296

Direct Install	0.88 ⁴⁸
----------------	--------------------

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential and in-unit Multi Family	3.15	1,150 ⁴⁹
Multi Family Common Areas	16.3	5,950 ⁵⁰
Exterior	4.5	1,643 ⁵¹
Unknown ⁵²		1,150

WHFe_{Cool}

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

	WHFe _{Cool}
Building with cooling	1.12 ⁵³

Island, and Vermont 2003 Residential Lighting Programs", table 6-7). ISR is therefore calculated as 0.88 + (0.43*0.09) = 0.92. See MidAtlantic CFL Adjustments.xls for calculation.

⁴⁸ Assumption is based on the EmPOWER Maryland 2011 Evaluation Report discussed above, but not adjusted upwards since those people removing bulbs after being installed in Direct Install program are likely to do so because they dislike them, not to use as replacements. Only evaluation we are aware of specifically for Direct Install installation (and persistence) rates is Megdal & Associates, 2003; "2002/2003 Impact Evaluation of LIPA's Clean Energy Initiative REAP Program", which estimated 81%.

⁴⁹ Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

⁵⁰ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

⁵¹ Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

⁵² For programs where the installation location is unknown (e.g. upstream lighting programs) the assumption is set conservatively to assume an interior residential bulb.

⁵³ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

Building without	1.0
cooling or exterior	
Unknown	1.09 ⁵⁴

$WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.894⁵⁵

HF = Heating Factor or percentage of light savings that must be heated

= 47%⁵⁶ for interior or unknown location

= 0% for exterior or unheated location

ηHeat

= Efficiency in COP of Heating equipment = actual. If not available use⁵⁷:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
Ticac ramp	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ⁵⁸

%ElecHeat = Percentage of home with electric heat

⁵⁴ The value is estimated at 1.09 (calculated as 1 + (0.78*(0.33 / 2.8)). Based on assumption that 78% of homes have central cooling (based on BGE Residential Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates).

⁵⁵ Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

⁵⁶ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁵⁷ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁵⁸ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ⁵⁹

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb:

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ⁶⁰
Building without	1.0
cooling or exterior	
Unknown	1.18 ⁶¹

CF

= Summer Peak Coincidence Factor for measure

Installation Location	Coincidence
	Factor CF
Residential interior and	0.0962
in-unit Multi Family	
Multi Family Common Areas	0.4363

⁵⁹ Based on KEMA baseline study for Maryland.

⁶⁰ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

 $^{^{61}}$ The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

⁶² Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

^{63'}Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and

Page 34 of 296

Exterior	0.018 ⁶⁴
Unknown	0.09

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb:

$$\Delta$$
kW = ((60 - 15) / 1000) * 0.92 * 1.18 * 0.09
= 0.0044 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel⁶⁵):

$$\Delta$$
MMBtu⁶⁶ = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that

must be heated

= 47%⁶⁷ for interior or unknown location = 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

 $=72\%^{68}$

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%

Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in% 20Midwest%20Region.xls).

⁶⁴ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

⁶⁵ Based on KEMA baseline study for Maryland.

⁶⁶ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁶⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁶⁸ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

Page 35 of 296

Fossil Fuel	100%
Unknown	62.5% ⁶⁹

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb in a home with 75% AFUE gas furnace:

If home heating fuel is unknown:

Annual Water Savings Algorithm

n/a

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost for this measure is 55^{70} .

For the Direct Install measure, the full cost of \$8.50 should be used plus \$5 labor⁷¹ for a total measure cost of \$13.50 per lamp.

Measure Life

The expected measure life is assumed to be:

Installation Location	Measure Life

Based on KEMA baseline study for Maryland.
 NEEP Residential Lighting Survey, 2011

Assumption based on 15 minutes (including portion of travel time) and \$20 per hour.

Page 36 of 296

Residential interior and in-unit Multi Family	6.8 ⁷²
Multi Family Common Areas	1.3′3
Exterior	4.6 ⁷⁴
Unknown	6.8

Operation and Maintenance Impacts

Life of the baseline bulb is assumed to be 0.87 year for Residential interior and in-unit Multi Family, 0.17 year for multi family common areas and 0.6 year for exterior⁷⁵; baseline replacement cost is assumed to be \$3.5⁷⁶.

⁷² The assumed measure life for the specialty bulb measure characterization was reported in "Residential Lighting Measure Life Study", Nexus Market Research, June 4, 2008 (measure life for markdown bulbs). Measure life estimate does not distinguish between equipment life and measure persistence. Measure life includes products that were installed and operated until failure (i.e., equipment life) as well as those that were retired early and permanently removed from service for any reason, be it early failure, breakage, or the respondent not liking the product (i.e., measure persistence).

⁷³ Based proportionately on the residential assumption and the differing hours of use (1150/5950 * 6.8 = 1.3).

74 lbid. (1150/1643 * 6.8 = 4.8)

⁷⁵ Assuming 1000 hour rated life for incandescent bulb divided by the hours of use assumption.

Page 37 of 296

Hardwired CFL Fixtures (Interior)

Unique Measure Code(s): RS_LT_RTR_CFLFIN_0113 and

RS_LT_INS_CFLIN_0113

Effective Date: January 2013

End Date:

Measure Description

An ENERGY STAR lighting fixture wired for exclusive use with pin-based (including the GU-24 base) compact fluorescent lamps is installed in an interior residential setting. This measure could relate to either retrofit or new installation, and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a standard incandescent interior fixture.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR lighting interior fixture for pin-based compact fluorescent lamps.

Annual Energy Savings Algorithm

 Δ kWh = #lamps * ((CFLwatts * DeltaMultiplier) /1000) * ISR * HOURS * WHFe_{Cool} * WHFe_{Heat}

Where:

#lamps = Number of lamps in fixture. If unknown,

assume 1.

CFLwatts = CFL Lamp Watts (if known).

DeltaMultiplier = Multiplier to calculate delta watts. Depends

upon bulb wattage and year of replacement⁷⁷:

 $^{^{77}}$ Average wattage of compact fluorescent from RLW study was 15.5W, and the replacement incandescent bulb was 61.2W. This is a ratio of 3.95 to 1, and the delta watts is equal to the compact fluorescent bulb multiplied by 2.95:

RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009. Post EISA multipliers are calculated by finding the new delta watts after incandescent bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014); see MidAtlantic CFL Adjustments.xls.

Page 38 of 296

CFL	Delta Watts Multiplier		
Wattage	2013	2014 and	
		Beyond	
15 or less	2.95	1.83	
16-20	1.79	1.79	
21W+	1.84	1.84	

If Compact Fluorescent Watts is unknown use 30.1⁷⁸ from 2013 onwards as the delta watts (i.e. for (CFLwatts * DeltaMultiplier)).

ISR = In Service Rate or percentage of units rebated that get

installed. =0.95 ⁷⁹

HOURS = Average hours of use per year

77.0.430 77.04.5	o, ase per year	
Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	3.15	1,150 ⁸⁰
Multi Family Common Areas	16.3	5,950 ⁸¹
Unknown		1,150

$WHFe_{Cool}$

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

		WHFe _{Cool}
Building with cod	oling	1.1282

⁷⁸ Calculated by multiplying 48.7 by the average adjustment 2014 percentage adjustment from table below. This adjustment should be made in 2013 since this is the midpoint of the 3 EISA adjustment years.

⁷⁹ Based on Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 42 (Table 4-7).

^{7).} 80 Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

⁸¹ Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

⁸² The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air

Page 39 of 296

Building without cooling or exterior	1.0
Unknown	1.0983

$WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / nHeat) * %ElecHeat)

If unknown assume 0.894⁸⁴

HF

- Heating Factor or percentage of light savings that must be heated
 - = 47%⁸⁵ for interior or unknown location
 - = 0% for exterior or unheated location

nHeat

Efficiency in COP of Heating equipment
 actual. If not available use⁸⁶:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
Tieac rump	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.6787

Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

 $^{^{83}}$ The value is estimated at 1.09 (calculated as 1 + (0.78*(0.33 / 2.8)). Based on assumption that 78% of homes have central cooling (based on BGE Residential Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates).

⁸⁴ Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

⁸⁵ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁸⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁸⁷ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ⁸⁸

For example fixture purchased in 2013:

 $\Delta kWh = ((30.1) / 1000) * 0.95 * 1150 * 1.09 * 0.894$

= 32 kWh

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012 100W incandescents can no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 100W equivalent bulbs (21W+ CFLs) installed in 2010, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. Note if the adjustment year has passed, the reduced delta watts will be used in year 1 and so no mid life adjustment should be made. For example, in 2012 a 21W+ bulb will use the 1.84 multiplier and not have a mid-life adjustment.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below⁸⁹:

_

⁸⁸ Based on KEMA baseline study for Maryland.

CFL Wattage	Savings as Percentage of Base Year Savings		
	2013	2014 and	
		Beyond	
15 or less	100%	62%	
16-20	61%	61%	

If Compact Fluorescent Watts is unknown no adjustment is necessary as it already assumes a reduced delta watts due to EISA.

Summer Coincident Peak kW Savings Algorithm

ΔkW = ((CFLwatts * DeltaMultiplier /1000) * ISR * WHFd * CF

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ⁹⁰
Building without	1.0
cooling or exterior	
Unknown	1.18 ⁹¹

CF

= Summer Peak Coincidence Factor for measure

Installation Location	Coincidence Factor CF
Residential interior and in-unit Multi Family	0.0992
Multi Family Common Areas	0.43 ⁹³

⁸⁹ Calculated by finding the post-EISA delta watts as a percentage or pre-EISA delta watts, for example for a 100W bulb: (72-25.3)/(100-25.3) = 62.5%. See MidAtlantic CFL Adjustments.xls

 $^{^{90}}$ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

91 The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

⁹² Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and

Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and

Page 42 of 296

Unknown 0.09

For example, fixture purchased in 2013:

$$\Delta kW = (30.1 / 1000) * 0.95 * 1.18 * 0.09$$

= 0.003 kW

Note: The savings adjustment due to the shifting baseline documented above should be applied to the peak kW savings assumed in the later years.

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel⁹⁴):

$$\Delta$$
MMBtu⁹⁵ = - ((((CFLwatts * DeltaMultiplier) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that

must be heated

= 47%96 for interior or unknown location

= 0% for exterior or unheated location =Converts kWh to MMBtu

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

=**72**%⁹⁷

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat	
Electric	0%	
Fossil Fuel	100%	

Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in% 20Midwest%20Region.xls).

⁹⁴ Based on KEMA baseline study for Maryland.

⁹⁵ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁹⁶ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁹⁷ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

Page 43 of 296

Unknown

62.5%98

For example, fixture purchased in 2013 in a home with 75% AFUE gas furnace:

If home heating fuel is unknown:

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for an interior fixture is assumed to be $$32^{99}$.

Measure Life

An additional provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline.

The measure life of an interior fixture 100 will therefore need to be reduced each year and be equal to the remaining number of years before 2020, i.e. for installations in 2012 the measure life should be 8 years, for installations in 2013 the measure life should be 7 years etc.

Operation and Maintenance Impacts

⁹⁸ Based on KEMA baseline study for Maryland.

⁹⁹ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture

^{(&}lt;a href="http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x">http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x https://www.energystar.gov/ia/business/bulk_purchasing-calc/LightingCalculator.x <a href="https://www.energystar.gov/ia/business

Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007

⁽http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf) gives 20 years for an interior fluorescent fixture.

Page 44 of 296

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic CFL Adjustments.xls). The key assumptions used in this calculation are documented below:

	Baseline		Efficient
	Standard	Efficient	CFL
	Incandescent	Incandescent	
Replacement Cost	\$0.50	\$1.00 ¹⁰¹	\$2.50 ¹⁰²
Component Life ¹⁰³ (years)	0.87 ¹⁰⁴	0.87 ¹⁰⁵	7.4 ¹⁰⁶
Residential interior,			
in-unit Multi Family			
or unknown			
Multi Family Common	0.17	0.17	1.34
Areas			

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below 107:

Residential interior, in-unit Multi Family or unknown

	NPV of baseline Replacement Costs	
CFL wattage	2013	2014
21W+	\$4.96	\$4.25
16-20W	\$4.96	\$4.25
15W and less	\$4.89	\$4.25

Multi Family Common Areas

CFL wattage	NPV of baseline

 $^{^{101}}$ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy.

¹⁰³ Based on lamp life / assumed annual run hours.

Note, these values have been adjusted by the appropriate In Service Rate.

¹⁰² Ibid.

¹⁰⁴ Assumes rated life of incandescent bulb of 1000 hours (simplified to 1 year for calculation).

¹⁰⁵ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard, so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours.

Assumes 8000 hours rated life for CFL (8000 hours is the average rated life of ENERGY STAR bulbs (http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls)

Page 45 of 296

	Replacement Costs		
	2013 2014		
21W+	\$24.01	\$21.16	
16-20W	\$24.01	\$21.16	
15W and less	\$21.69	\$21.16	

Page 46 of 296

Hardwired CFL Fixtures (Exterior)

Unique Measure Code(s): RS_LT_RTR_CFLFEX_0113 and

RS_LT_INS_CFLFEX_0113
Effective Date: January 2013

End Date:

Measure Description

An ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps is installed in an exterior residential setting. This measure could relate to either retrofit or new installation, and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a standard incandescent exterior fixture.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR lighting exterior fixture for pin-based compact fluorescent lamps.

Annual Energy Savings Algorithm

 Δ kWh = #lamps * ((CFLwatts * DeltaMultiplier) /1000) * ISR * HOURS

Where:

#lamps

= Number of lamps in fixture. If unknown,

assume 1.

CFLwatts

= CFL Lamp Watts (if known).

DeltaMultiplier

= Multiplier to calculate delta watts. Depends

upon bulb wattage and year of

replacement 108:

⁴⁰⁰

 $^{^{108}}$ Average wattage of compact fluorescent from RLW study was 15.5W, and the replacement incandescent bulb was 61.2W. This is a ratio of 3.95 to 1, and the delta watts is equal to the compact fluorescent bulb multiplied by 2.95:

RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009. Post EISA multipliers are calculated by finding the new delta watts after incandescent

Page 47 of 296

CFL	Delta Watts Multiplier		
Wattage	2013 2014 and		
		Beyond	
15 or less	2.95	1.83	
16-20	1.79	1.79	
21W+	1.84	1.84	

If Compact Fluorescent Watts is unknown use 58.5¹⁰⁹ from 2013 onwards as the delta watts (i.e. for (CFLwatts * DeltaMultiplier)).

ISR = In Service Rate or percentage of units rebated that get

installed = 0.87 ¹¹⁰

HOURS = Average hours of use per year

 $= 1643 (4.5 \text{ hrs per day})^{111}$

For example:

$$\Delta$$
kWh = ((94.7) / 1000) * 0.87 * 1643

= 135 kWh

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012 100W incandescents can no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014); see MidAtlantic CFL Adjustments.xls.

¹⁰⁹ Calculated by multiplying 94.7 by the average adjustment 2014 percentage adjustment from table below. This adjustment should be made in 2013 since this is the midpoint of the 3 EISA adjustment years.

¹¹⁰ Consistent with Efficiency Vermont and CT Energy Efficiency Fund; based on Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 42 (Table 4-7).

¹¹¹ Updated results from above study, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodeli vered.pdf

To account for these new standards, the annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 100W equivalent bulbs (21W+ CFLs) installed in 2010, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below 112:

CFL Wattage	Savings as Percentage of Base Year Savings	
	2013 2014 and Beyond	
15 or less	100%	62%
16-20	61%	61%

If Compact Fluorescent Watts is unknown no adjustment is necessary as it already assumes a reduced delta watts due to EISA.

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((CFLwatts * DeltaMultiplier) / 1000) * ISR * CF$$

Where:

CF = Summer Peak Coincidence Factor for measure = 0.018 113

For example:

 Δ kW = (94.7 / 1000) * 0.87 * 0.018 = 0.0015 kW

Calculated by finding the post-EISA delta watts as a percentage or pre-EISA delta watts, for example for a 100W bulb: (72-25.3)/(100-25.3) = 62.5%. See MidAtlantic CFL Adjustments.xls for calculation.

¹¹³ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 49 of 296

Note: The savings adjustment due to the shifting baseline documented above should be applied to the peak kW savings assumed in the later years.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for an exterior fixture is assumed to be \$17¹¹⁴.

Measure Life

An additional provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline.

The measure life of an exterior fixture will therefore need to be reduced each year and be equal to the remaining number of years before 2020, i.e. for installations in 2010 the measure life should be 10 years, for installations in 2011 the measure life should be 9 years etc.

Operation and Maintenance Impacts

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic CFL Adjustments.xls). The key assumptions used in this calculation are documented below:

	Baseline		Efficient
	Standard Efficient		CFL
	Incandescent	Incandescent	
Replacement Cost	\$0.50	\$1.00 ¹¹⁶	\$2.50 ¹¹⁷

¹¹⁴ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for exterior fixture

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.x lsx?b299-55ae&b299-55ae)

Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007

⁽http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf) gives 15 years for an exterior fluorescent fixture.

Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG,
 D&R International, Ecova and Optimal Energy.
 Ibid.

Page 50 of 296

Component Life (years)	0.6 ¹¹⁸	0.6 ¹¹⁹	4.9 ¹²⁰
(based on lamp life /			
assumed annual run			
hours)			

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

	NPV of baseline Replacement Costs ¹²¹			
CFL wattage	2013 2014			
21W+	\$6.24	\$5.15		
16-20W	\$6.24	\$5.15		
15W and less	\$5.95	\$5.15		

Assumes rated life of incandescent bulb of 1000 hours.

119 The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard ,so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours.

120 Assumes rated life of 8000 hours.
121 Note, these values have been adjusted by the appropriate In Service Rate.

Page 51 of 296

Solid State Lighting (LED) Recessed Downlight Luminaire

Unique Measure Code: RS_LT_TOS_SSLDWN_0113

Effective Date: January 2013

End Date:

Measure Description

This measure describes savings from the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire in place of an incandescent downlight lamp (i.e. time of sale). The SSL downlight should meet the ENERGY STAR Specification for Solid State Luminaires¹²². The characterization of this measure should not be applied to other types of LEDs.

Note, this measure assumes the baseline is a Bulged Reflector (BR) lamp. This lamp type is generally the cheapest and holds by far the largest market share for this fixture type. They currently are *not* subject to EISA regulations and so this characterization does not include the baseline shift provided in other lighting measures.

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline is the purchase and installation of a standard BR-type incandescent downlight light bulb.

Definition of Efficient Condition

The efficient condition is the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire.

Annual Energy Savings Algorithm

 Δ kWh = ((BaseWatts - EffWatts) /1,000) * ISR * HOURS * WHFe_{Cool} * WHFe_{Heat}

http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/SSL_FinalCriteria.pdf

¹²² ENERGY STAR specification can be viewed here:

Page 52 of 296

Where:

BaseWatts = Connected load of baseline lamp

= Actual if retrofit, if unknown assume 65W ¹²³

= Connected load of efficient lamp **EffWatts**

= Actual. If unknown assume12W ¹²⁴

= In Service Rate or percentage of units rebated that ISR

get installed.

 $= 1.0^{125}$

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	3.15	1,241 ¹²⁶
Multi Family Common Areas	16.3	5,950 ¹²⁷
Unknown	3.15	1,241

WHFe_{Cool}

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

	WHFe _{Cool}
Building with cooling	1.12 ¹²⁸

¹²³ Baseline wattage based on common 65 Watt BR30 incandescent bulb (e.g. http://www.destinationlighting.com/storeitem.jhtml?iid=16926)

¹²⁴ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc.

⁽http://site4.marketsmartinteractive.com/products.htm)

125 Based upon recommendation in NEEP EMV Emerging Tech Research Report.

¹²⁶ There is an absence of evaluations that have looked at SSL lamp run hours so the estimate provided is based on professional judgment. The assumption is that the installation of a more expensive LED downlight will be in a high use location. Therefore assume CFL run hour finding from 12 years ago, when the same was true of CFLs; 3.4 hours based on Xenergy 1998 study "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program". ¹²⁷ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year)

based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

¹²⁸ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at

Page 53 of 296

Building without	1.0
cooling or exterior	
Unknown	1.09 ¹²⁹

 $WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / nHeat) * %ElecHeat)

If unknown assume 0.894¹³⁰

HF = Heating Factor or percentage of light savings that must be heated

= 47%¹³¹ for interior or unknown location

= 0% for exterior or unheated location

ηHeat

Efficiency in COP of Heating equipment
 actual. If not available use¹³²:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
ricac i amp	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ¹³³

Boulder), converted to COP = EER/3.412 = 2.8COP).

The value is estimated at 1.09 (calculated as 1 + (0.78*(0.33 / 2.8)). Based on assumption that 78% of homes have central cooling (based on BGE Residential Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates).

¹³⁰ Calculated using defaults; 1+((0.47/1.67)*0.375)=0.894

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹³² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

¹³³ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

Page 54 of 296

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ¹³⁴

Residential interior and in-unit Multi Family

$$\Delta$$
kWh = ((65 - 12) / 1,000) * 1.0 * 1241 * 1.09 * 0.894

= 64 kWh

Multi Family Common Areas

$$\Delta$$
kWh = ((65 - 12) / 1,000) * 1.0 * 5950 * 1.09 * 0.894

= 307 kWh

Summer Coincident Peak kW Savings Algorithm

= ((BaseWatts - EffWatts) /1000) * ISR * WHFd * CF ΔkW

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ¹³⁵
Building without	1.0
cooling or exterior	
Unknown	1.18 ¹³⁶

CF

= Summer Peak Coincidence Factor for measure

		<u> </u>
Installation	Location	Coincidence
		Factor CF

¹³⁴ Based on KEMA baseline study for Maryland.

 $^{^{135}}$ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

Page 55 of 296

Residential interior and	0.09^{137}
in-unit Multi Family	
Multi Family Common Areas	0.43 ¹³⁸
Exterior	0.018 ¹³⁹
Unknown	0.09

$$\Delta$$
kW = ((65 - 12) / 1,000) * 1.0 * 1.18 * 0.09
= 0.0056 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel¹⁴⁰):

$$\Delta$$
MMBtu¹⁴¹ = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that

must be heated

= 47%¹⁴² for interior or unknown location = 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

=72%143

 137 Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

¹³⁸ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

¹³⁹ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

¹⁴⁰ Based on KEMA baseline study for Maryland.

¹⁴¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ¹⁴⁴

For example, a luminaire in a home with 75% AFUE gas furnace:

If home heating fuel is unknown:

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$61¹⁴⁵.

Measure Life

The measure life is assumed to be 20 yrs for Residential and Multi Family in-unit, and 4.2 years for Multi Family common areas¹⁴⁶.

¹⁴⁴ Based on KEMA baseline study for Maryland.

¹⁴⁵ Based on VEIC product review, April 2011. Baseline bulbs available in \$3-\$5 range, and SSL bulbs available in \$50-\$80 range. Incremental cost of \$61 therefore assumed (\$4 for the baseline bulb and \$65 for the SSL). Note, this product is likely to fall rapidly in cost, so this should be reviewed frequently. Product review, November 2012 suggests incremental cost estimate is still appropriate.

¹⁴⁶ The ENERGY STAR Spec for SSL Recessed Downlights requires luminaires to maintain >=70% initial light output for 25,000 hrs in a residential application. Measure life is therefore assumed to be 20 years (25000/1241) for Residential and multi family in-unit, and 4.2 years (25000/5950) for multi family common area;

http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/SSL_FinalCriteria.pdf

Page 57 of 296

Operation and Maintenance Impacts

The levelized baseline replacement cost over the lifetime of the SSL is calculated (see MidAtlantic CFL Adjustments.xls). The key assumptions used in this calculation are documented below:

	BR-type
	Incandescent
Replacement Cost	\$4.00
Component Life ^{14/} (years)	1.6 ¹⁴⁸
Residential interior	
and in-unit Multi	
Family or unknown.	
Multi Family Common	0.34 ¹⁴⁹
Areas	

The calculated net present value of the baseline replacement costs is \$30.00 for Residential interior and in-unit Multi Family and \$151.72 for Multi Family common areas.

Based on lamp life / assumed annual run hours.
 Assumes rated life of BR incandescent bulb of 2000 hours, based on product review. Lamp life is therefore 2000/1241 = 1.6 years.

¹⁴⁹ Calculated as 2000/5950 = 0.34 years.

Page 58 of 296

ENERGY STAR Integrated Screw Based SSL (LED) Lamp

Unique Measure Code: RS_LT_TOS_SSLDWN_0113

Effective Date: January 2013

End Date:

Measure Description

This measure describes savings from the purchase and installation of an ENERGY STAR Integrated Screw Based SSL (LED) Lamp (specification effective August 2010) in place of an incandescent lamp. This measure is broken down in to Omnidirectional (e.g. A-Type lamps), Decorative (e.g. Globes and Torpedoes) and Directional (PAR Lamps, Reflectors, MR16). Further, the Omnidirectional are broken down in to <10W and >=10W and Directional Lamps in to <15W and >=15W categories to best reflect the delta wattage in each range. The ENERGY STAR specification can be viewed here: http://www.energystar.gov/ia/partners/product_specs/program_reqs/Integral_LED_Lamps_Program_Requirements.pdf?e1ab-be93

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline wattage is assumed to be an incandescent bulb installed in a screw-base socket.

Definition of Efficient Condition

The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp.

Annual Energy Savings Algorithm

ΔkWh = ((LEDwatts * DeltaMultiplier) /1,000) * ISR * HOURS *

WHFe_{Cool} * WHFe_{Heat}

Where:

LEDwatts = LED Lamp Watts (if known).

Page 59 of 296

If unknown assume 14.5W (replacing 60W

incandescent) 150

DeltaMultiplier = Multiplier to calculate delta watts. Depends upon

bulb type, wattage and year of replacement 151

Omnidirectional Lamps

		·	Pre-EISA Incandescent Baseline		012-201 escent B			EISA CFL Eline
Nominal	Minimum	LED	Delta Watts	Baseline	Year	Delta	Baseline	Delta
wattage of	initial light	Wattage ¹⁵²	Multiplier	wattage	of	Watts	wattage	Watts
lamp to be	output of	(<10W -			change	Multiplier	•	Multiplier
replaced	LED lamp	50 lm/W,					lm/W)	
(watts)	(lumens)	>=10W -						
		55 lm/W)						
25	200	4.0	5.3	25	n/a	5.3	25	5.3
35	325	6.5	4.4	35	n/a	4.4	35	4.4
40	450	9.0	3.4	29	2014	2.2	10.0	0.1
60	800	14.5	3.1	43	2014	2.0	17.8	0.2
75	1,100	20.0	2.8	53	2013	1.7	24.4	0.2
100	1,600	29.1	2.4	72	2012	1.5	35.6	0.2
125	2,000	36.4	2.4	125	n/a	2.4	125	2.4
150	2,600	47.3	2.2	150	n/a	2.2	150	2.2

Decorative Lamps

Decorative Lamps					
Nominal wattage of lamp to be replaced (watts)	Minimum initial light output of LED lamp (lumens)	LED Wattage (40 lm/W)	Delta Watts Multiplier		
10	70	1.8	4.7		

¹⁵⁰ Average wattage of replacement incandescent bulb was 61.2W. LED wattage from table

RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009.

¹⁵¹ Based on ENERGY STAR specification standards. See 'ESTAR Integrated Screw SSL Lamp.xls' for details.

¹⁵² Wattage is calculated using the details of the ENERGY STAR specification linked in the measure description. For LED <10W the minimum luminous efficacy is 50 lumens per watt, for >=10W it is 55 lumens per watt.

Page 60 of 296

15	90	2.3	5.7
25	150	3.8	5.7
40	300	7.5	4.3
60	500	12.5	3.8

Directional Lamps

Nominal	Minimum	LED Wattage	Delta Watts
wattage of	initial light	(<=20/8" diameter	Multiplier
lamp to be	output of	- 40 lm/W,	
replaced	LED lamp	>20/8" diameter -	
(watts)	(lumens)	45 lm/W)	
25	250	6.3	3.0
35	350	8.8	3.0
40	400	10.0	3.0
60	600	15.0	3.0
75	750	16.7	3.5
100	1000	22.2	3.5
125	1250	27.8	3.5
150	1500	33.3	3.5

ISR = In Service Rate or percentage of units rebated that get installed.

 $= 0.95^{153}$

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	3.15	1,241 ¹⁵⁴
Multi Family Common Areas	16.3	5,950 ¹⁵⁵
Exterior	4.5	1,643 ¹⁵⁶

¹⁵³ Based upon recommendation in NEEP EMV Emerging Tech Research Report.

¹⁵⁴ There is an absence of evaluations that have looked at SSL lamp run hours so the estimate provided is based on professional judgment. The assumption is that the installation of a more expensive LED bulb will be in a high use location. Therefore assume CFL run hour finding from 12 years ago, when the same was true of CFLs; 3.4 hours based on Xenergy 1998 study "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program".

hased on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

Page 61 of 296

Unk	nown	3.15	1,241

$WHFe_{Cool}$

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

	WHFe _{Cool}
Building with cooling	1.12 ¹⁵⁷
Building without	1.0
cooling or exterior	
Unknown	1.09 ¹⁵⁸

$WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.894¹⁵⁹

HF

- Heating Factor or percentage of light savings that must be heated
 - = 47%¹⁶⁰ for interior or unknown location
 - = 0% for exterior or unheated location

¹⁵⁶ Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo;

 $http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf$

¹⁵⁷ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

¹⁵⁸ The value is estimated at 1.09 (calculated as 1 + (0.78*(0.33 / 2.8)). Based on assumption that 78% of homes have central cooling (based on BGE Residential Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates).

¹⁵⁹ Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

¹⁶⁰ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

REGIONAL EVALUATION.

= Efficiency in COP of Heating equipment = actual. If not available use¹⁶¹:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ¹⁶²

= Percentage of home with electric heat %ElecHeat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ¹⁶³

For example, a 15W omnidirectional LED lamp is installed in a residential interior location in 2013.

Baseline Adjustment

Currently the EISA legislation only applies to omnidirectional bulbs, with Decorative and Directional being exceptions. If additional legislation is passed, this TRM will be adjusted accordingly.

To account for these new standards, the savings for this measure should be reduced to account for the higher baselines in 2012 - 2014 and 2020. The following table shows the calculated adjustments for each measure type¹⁶⁴:

¹⁶¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

¹⁶² Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after. ¹⁶³ Based on KEMA baseline study for Maryland.

¹⁶⁴ See 'ESTAR Integrated Screw SSL Lamp.xls' for details.

Page	42	۰f	204
Page	ns	OT	/ Yn

Minimum initial light output of	Savings as Percentage of Base Year Savings									
(lumens)	2013	2014	2015	2016	2017	2018	2019	2020 on		
200	100%	100%	100%	100%	100%	100%	100%	100%		
325	100%	100%	100%	100%	100%	100%	100%	100%		
450	100%	65%	65%	65%	65%	65%	65%	3%		
800	100%	63%	63%	63%	63%	63%	63%	7%		
1,100	60%	60%	60%	60%	60%	60%	60%	8%		
1,600	100%	100%	100%	100%	100%	100%	100%	15%		
2,000	100%	100%	100%	100%	100%	100%	100%	100%		
2,600	100%	100%	100%	100%	100%	100%	100%	100%		

Summer Coincident Peak kW Savings Algorithm

= ((LEDwatts * DeltaMultiplier) /1000) * ISR * WHFd * CF ΔkW

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ¹⁶⁵
Building without	1.0
cooling or exterior	
Unknown	1.18 ¹⁶⁶

CF

= Summer Peak Coincidence Factor for measure

	,
Installation Location	Coincidence
	Factor CF

 $^{^{165}}$ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

166 The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

Page 64 of 296

Residential interior and	0.09^{167}
in-unit Multi Family	
Multi Family Common Areas	0.43 ¹⁶⁸
Exterior	0.018 ¹⁶⁹
Unknown	0.09

For example, a 15W omnidirectional LED lamp is installed in a residential interior location in 2013:

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel¹⁷⁰):

$$\Delta$$
MMBtu¹⁷¹ = - ((((LEDwatts * DeltaMultiplier) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that must be heated = 47%¹⁷² for interior or unknown location = 0% for exterior or unheated location 0.003412 = Converts kWh to MMBtu

Percentage of light savings that must be heated = 70% for exterior or unknown location = 0.003412 = Converts kWh to MMBtu = Fficiency of heating system = 72%¹⁷³

 $^{^{167}}$ Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

¹⁶⁸ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

¹⁶⁹ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. ¹⁷⁰ Based on KEMA baseline study for Maryland.

¹⁷¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

 $^{^{172}}$ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

Page 65 of 296

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ¹⁷⁴

For example, a 15W omnidirectional LED lamp is installed in in 2013 in a home with 75% AFUE gas furnace:

= - 0.12 MMBtu

If home heating fuel is unknown:

= - 0.076 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is presented below:

		Lan	p Costs	Incremental Cost			
_	Efficient	Baseline			"	iciementai	Cost
LED Wattage	LED ¹⁷⁵	Incande scent		EISA 2020 Compliant		EISA 2012- 2014	EISA 2020 Compliant

¹⁷³ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in% 20Midwest%20Region.xls).

¹⁷⁴ Based on KEMA baseline study for Maryland.

LED costs are based on the Q3 Average Costs per lamp type provided by ENERGY STAR. LED costs are consistently falling and so should be regularly reviewed for appropriateness; http://www.energystar.gov/ia/partners/manuf_res/Bulb_Price_Tracking.xls

Page 66 of 296

							Compliant	
Omni-	<10W	\$31.00	\$0.50	\$1.00	\$2.50	\$30.50	\$30.00	\$28.50
directional	>=10W	\$37.00	\$0.50	\$1.00	\$2.50	\$36.50	\$36.00	\$34.50
Decorative	All	\$25.00	\$1.00	n/a	n/a	\$24.00	n/a	n/a
Directional	<15W	\$30.00	\$5.00	n/a	n/a	\$25.00	n/a	n/a
Directional	>=15W	\$60.00	\$5.00	n/a	n/a	\$55.00	n/a	n/a

Measure Life

The measure life is assumed to be:

		N	leasure Life	
	Rated Life ¹⁷⁶	Residential interior, in-unit Multi Family or unknown	Multi Family Common Areas	Exterior
Omnidirectional	25,000	20	4.2	15.2
Decorative	15,000	12	2.5	9.1
Directional	25,000	20	4.2	15.2

Operation and Maintenance Impacts

For Decorative and Directional bulbs, without a baseline shift, the following component costs and lifetimes will be used to calculate O&M savings:

		Lamp Lifetime ¹⁷⁷			
Lamp Type	Baseline Lamp Cost	Residential interior, Familifum Family and unknown		Exterior	
Decorative	\$1.00	0.8	0.2	0.6	

¹⁷⁶ The ENERGY STAR Spec for Integrated Screw Based SSL bulbs requires lamps to maintain >=70% initial light output for 25,000 hrs in a residential application for omnidirectional and directional bulbs, and 15,000 hrs for decorative bulbs.

177 Assumes incandescent baseline lamp life of 1000 hours.

Page 67 of 296

Directional <15W	\$5.00	0.8	0.2	0.6
Directional	\$5.00	0.8	0.2	0.6
>=15W				

For Omni-directional bulbs, to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated (see 'ESTAR Integrated Screw SSL Lamp.xls'). The key assumptions used in this calculation are documented below:

	Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant
Replacement Cost	\$0.5	\$1.00	\$2.50
Component Life (hours)	1000	1000	8,000 (for Residential Interior and Exterior) 10,000 (for MF Common Areas) ¹⁷⁸
Omnidirectional <10W	Until 2014	2014 - 2019	2020 on
Omnidirectional >=10W	Until 2013	2013 - 2019	2020 on

The calculation results in the following assumptions of equivalent annual baseline replacement cost:

			NPV of baseline Replacement Costs	
	Location	LED Wattage	2013	2014
Residential interior,		<10W	\$8.68	\$8.19
Omnidirectional	and unknown	>=10W	\$8.80	\$8.19
ire	Multi Family	<10W	\$18.67	\$21.03
nid	Common Areas		\$21.03	\$21.03
E E	Exterior	<10W	\$10.63	\$10.13
0	S Exterior		\$10.45	\$10.13

_

 $^{^{\}rm 178}$ Assumed higher lamp life for instances with longer run hours and therefore less switching.

Page 68 of 296

Refrigeration End Use

Freezer

Unique Measure Code(s): RS_RF_TOS_FREEZER_0113

Effective Date: January 2013

End Date:

Measure Description

A freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume): 179

Product Category	NAECA Maximum Energy Usage in kWh/year ¹⁸⁰	ENERGY STAR Maximum Energy Usage in kWh/year ¹⁸¹	Volume (cubic feet)
Upright Freezers			
with Manual Defrost	7.55*AV+258.3	6.795*AV+232.47	7.75 or greater
Upright Freezers			
with Automatic			
Defrost	12.43*AV+326.1	11.187*AV+293.49	7.75 or greater
Chest Freezers and			
all other Freezers			
except Compact			
Freezers	9.88*AV+143.7	8.892*AV+129.33	7.75 or greater
Compact Upright			
Freezers with			< 7.75 and 36 inches
Manual Defrost	9.78*AV+250.8	7.824*AV+200.64	or less in height
Compact Upright			
Freezers with			< 7.75 and 36 inches
Automatic Defrost	11.40*AV+391	9.12*AV+312.8	or less in height
Compact Chest			<7.75 and 36 inches
Freezers	10.45*AV+152	8.36*AV+121.6	or less in height

Definition of Baseline Condition

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer,

 $[\]frac{179}{180} \frac{\text{http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746}{\text{as of July 1, 2001}}$

¹⁸¹ as of April 28, 2008

Page 69 of 296

automatic or manual defrost) and is defined in the table above.

Definition of Efficient Condition

The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as defined below and calculated above:

Equipment	Volume	Criteria
Full Size Freezer	7.75 cubic feet or greater	At least 10% more energy efficient than the minimum federal government standard (NAECA).
Compact Freezer	Less than 7.75 cubic feet and 36 inches or less in height	At least 20% more energy efficient than the minimum federal government standard (NAECA).

Annual Energy Savings Algorithm

$$\Delta kWh = kWh_{Base} - kWh_{ESTAR}$$

Where:

 kWh_{BASE} = Baseline kWh consumption per year as

calculated in algorithm provided in table

above.

 kWh_{ESTAR} = ENERGY STAR kWh consumption per year as

calculated in algorithm provided in table

above.

For example for a 12 cubic foot Upright Freezers with Manual Defrost:

$$\Delta$$
kWh = (7.55 * (12 * 1.73) + 258.3) - (6.795 * (12 * 1.73) + 232.47)

= 359.5 - 323.6

= 41.5 kWh

If volume is unknown, use the following default values:

Product Category	Volume Used ¹⁸²	kWh _{BASE}	kWh _{ESTAR}	kWh Savings	Weighting for unknown configuration
Upright Freezers with Manual Defrost	27.9	469.1	422.2	46.9	0.0%
Upright Freezers with Automatic Defrost	27.9	673.2	605.9	67.3	39.5%
Chest Freezers and all other Freezers except Compact Freezers	27.9	419.6	377.6	42.0	40.5%
Compact Upright Freezers with Manual Defrost	10.4	352.3	281.9	70.5	10.0%
Compact Upright Freezers with Automatic Defrost	10.4	509.3	407.5	101.9	6.0%
Compact Chest Freezers	10.4	260.5	208.4	52.1	4.0%

If configuration is unknown assume 58.8 kWh¹⁸³.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

= Temperature Adjustment Factor TAF

 $= 1.23^{184}$

class market shares from pages 9-17 and 9-24. See 'Freezer default calcs.xls' for more details. Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey,

¹⁸² Volume is based on ENERGY STAR Calculator assumption of 16.14 ft³ average volume, converted to Adjusted volume by multiplying by 1.73. ¹⁸³ Unknown configuration is based upon a weighted average of the different configurations.

Data is taken from the DOE Technical Support Document (http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf). Weighting based on 80% Standard v 20% Compact (2007 annual shipments p3-26) and product

Page 71 of 296

For example for a 12 cubic foot Upright Freezers with Manual Defrost:

$$\Delta$$
kW = 41.5 / 8760 * 1.23 * 1.15
= 0.0067 kW

If volume is unknown, use the following default values:

Product Category	kW Savings
Upright Freezers with Manual Defrost	0.0076
Upright Freezers with Automatic Defrost	0.0109
Chest Freezers and all other Freezers except Compact Freezers	0.0068
Compact Upright Freezers with Manual Defrost	0.0114
Compact Upright Freezers with Automatic Defrost	0.0164
Compact Chest Freezers	0.0084

If configuration is unknown assume 0.0095 kW

Annual Fossil Fuel Savings Algorithm

n/a

Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. Although this evaluation is based upon refrigerators only it is considered a reasonable estimate of the impact of cycling on freezers and gave exactly the same result as an alternative methodology based on Freezer eShape data.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

Page 72 of 296

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is \$35¹⁸⁶.

Measure Life

The measure life is assumed to be 12 years 187.

Operation and Maintenance Impacts

n/a

¹⁸⁶ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative. "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009.

¹⁸⁷ Energy Star Freezer Calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator_xlsx?a8fb-c882&a8fb-c882

Refrigerator

Unique Measure Code(s): RS_RF_TOS_REFRIG_V10.05

Effective Date: March 2011

End Date:

Measure Description

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or Consortium for Energy Efficiency (CEE) TIER 2 specifications (defined as requiring >= 20% or >= 25% less energy consumption than an equivalent unit meeting federal standard requirements respectively). This is a time of sale measure characterization.

Definition of Baseline Condition

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR or CEE TIER 2 efficiency standards.

Annual Energy Savings Algorithm 188

 $\Delta kWh = kWhBASE - kWhES$

Where:

kWhBASE = Annual energy consumption of baseline unit

= 585 4

kWhES = Annual energy consumption of ENERGY STAR unit

= 468.3

Or = Annual energy consumption of CEE Tier 2 unit

= 439.1

∆kWH_{ENERGY} STAR

= 585.4 - 468.3

= 117 kWh

ΔkWH_{CFF TIFR 2}

¹⁸⁸ kWh assumptions for base and efficient condition are based on data compiled by Efficiency Vermont that gives the average federal standard consumption for all units incentivized in their program. ENERGY STAR standards are 20% better than Federal Standard; CEE Tier 2 is 25% better.

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\Delta kWh/8760) * TAF * LSAF$$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{-189}$

LSAF = Load Shape Adjustment Factor

 $= 1.15^{190}$

∆kW_{ENERGY STAR}

REGIONAL EVALUATION.

= (117 / 8760) * 1.23 * 1.15

= 0.019 kW

ΔkW_{CEE} TIER 2

= (146 / 8760) * 1.23 * 1.15

= 0.024 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$40 for an ENERGY STAR unit¹⁹¹ and \$140 for a CEE Tier 2 unit.¹⁹²

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

191 From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator_xlsx?5035-d681&5035-d681

Page 75 of 296

Measure Life

The measure life is assumed to be 12 Years. 193

Operation and Maintenance Impacts

n/a

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?5035-d681&5035-d681

Based on Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005.
 From ENERGY STAR calculator:

Page 76 of 296

Refrigerator Early Replacement

Unique Measure Code(s): RS_RF_EREP_REFRIG_0113

Effective Date: January 2013

End Date:

Measure Description

This measure relates to the early removal of an existing inefficient Refrigerator unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR or CEE Tier 2 qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is an early replacement measure.

Definition of Baseline Condition

The baseline condition is the existing inefficient refrigerator unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR, or CEE TIER 2 efficiency standards (defined as 20% or 25% above federal standards respectively).

Annual Energy Savings Algorithm

Remaining life of existing unit (first 4 years 194)

 $\Delta kWh = kWhEXIST - kWhEE$

Remaining measure life (next 8 years)

 $\Delta kWh = kWhBASE - kWhEE$

¹⁹⁴ Assumed to be 1/3 of the measure life.

Where:

kWhEXIST = Annual energy consumption of existing unit

 $= 1146^{195}$

= Annual energy consumption of new baseline unit kWhBASE

 $= 585.4^{196}$

= Annual energy consumption of ENERGY STAR unit kWhEE

= 468.3

Or = Annual energy consumption of CEE Tier 2 unit

= 439.1

Efficient unit specification	First 4 years ΔkWh	Remaining 8 years ΔkWh	Equivalent Mid Life Savings Adjustment (after 4 years)	Equivalent Weighted Average Annual Savings ¹⁹⁷
ENERGY STAR	677.7	117.1	17.3%	341.4
CEE T2	706.9	146.3	20.7%	370.6

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

= Temperature Adjustment Factor = 1.23 ¹⁹⁸ TAF

¹⁹⁵ Based on EmPower 2011 Interim Evaluation Report Chapter 5: Lighting and Appliances, Table 15, p33. This suggests an average UEC of 1.146kWh.

¹⁹⁶ kWh assumptions for base and efficient condition are based on data compiled by Efficiency Vermont that gives the average federal standard consumption for all units incentivized in their program. ENERGY STAR standards are 20% better than Federal Standard; CEE Tier 2 is 25% better.

¹⁹⁷ These values are provided in case the utility screening tool does not allow for this mid life baseline adjustment. The values are determined by calculating the Net Present Value of the 12 year annual savings values and finding the equivalent annual savings that produces the same result. The Real Discount Rate of 5.0% is used.

¹⁹⁸ Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

Page 78 of 296

LSAF = Load Shape Adjustment Factor

Efficient unit specification	First 4 years ΔkW	Remaining 8 years ΔkW	Equivalent Mid Life Savings Adjustment (after 4 years)	Equivalent Weighted Average Annual Savings
ENERGY STAR	0.109	0.019	17.4%	0.055
CEE T2	0.114	0.024	21.1%	0.060

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The initial full equipment cost for an Energy Star refrigerator is assumed to be \$540 and Tier 2 is \$640. The avoided replacement cost (after 4 years) of a baseline replacement refrigerator is \$500.200

Measure Life

The measure life is assumed to be 12 Years. ²⁰¹

Operation and Maintenance Impacts

n/a

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

200 Incremental and baseline costs are based upon "TECHNICAL REPORT: Analysis of Amended"

Energy Conservation Standards for Residential Refrigerator-Freezers".

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf ²⁰¹ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?5035-d681&5035-d681

Page 79 of 296

Refrigerator Early Retirement

Unique Measure Code(s): RS_RF_ERT_REFRIG_0510

Effective Date: March 2011

End Date:

Measure Description

This measure involves the removal of an existing inefficient refrigerator²⁰² from service, prior to its natural end of life (early retirement). The program should target refrigerators with an age greater than 10 years, though it is expected that the average age will be greater than 20 years based on other similar program performance. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit²⁰³.

Definition of Baseline Condition

The existing refrigerator baseline efficiency is based upon evaluation of a number of existing programs and evaluations.

Definition of Efficient Condition

The existing inefficient refrigerator is removed from service and not replaced.

Annual Energy Savings Algorithm

 Δ kWh = UECretired * ISAF²⁰⁴

Where:

_

²⁰² This measure assumes a mix of primary and secondary refrigerators will be replaced. By definition, the refrigerator in a household's kitchen that satisfies the majority of the household's demand for refrigeration is the primary refrigerator. One or more additional refrigerators in the household that satisfy supplemental needs for refrigeration are referred to as secondary refrigerators.

Note that the hypothetical nature of this measure implies a significant amount of risk and uncertainty in developing the energy and demand impact estimates.

²⁰⁴ There is currently no net to gross (NTG) ratio applied in this algorithm.

A NTG ratio was originally used to account for i) primary units being recycled (as opposed to secondary), ii) refrigerators only used part of the year and iii) for those that would have been removed without the program (i.e. freeriders). The new methodology addresses the first (i) and second (ii) issues because the algorithm incorporates replacement and partial-use adjustments. No other measures in the TRM include free-rider estimates at this time. The freerider adjustment has been removed to make this measure more consistent with the other measures in this TRM.

Page 80 of 296

UECretired = Average in situ Unit Energy Consumption of retired unit,

adjusted for part use

 $= 894 \text{ kWh}^{205}$

ISAF = In Situ Adjustment Factor

 $= 0.85^{206}$

 $\Delta kWh = 894 * 0.85$

= 760 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{207}$

LSAF = Load Shape Adjustment Factor

 $= 1.066^{208}$

 $\Delta kW = 760/8760 * 1.23 * 1.066$

Based on Empower DRAFT

Based on EmPower DRAFT 2010 Interim Evaluation Report Chapter 5: Lighting and Appliances. This suggests an average UEC of 1004kWh and an average part use factor of 0.89 to give an adjusted value of 894kWh.

give an adjusted value of 894kWh.

206 A recent California study suggests that in situ energy consumption of refrigerators is lower than the DOE test procedure would suggest (The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010). The magnitude of the difference - estimated as 6% lower for one California utility, 11% lower for a second, and 16% lower for a third - was a function of whether the recycled appliance was a primary or secondary unit, the size of the household and climate (warmer climates show a small difference between DOE test procedure estimated consumption and actual consumption; cooler climates had lower in situ consumption levels). Ideally, such an adjustment for the Mid Atlantic should be computed using program participant data. However, in the absence of such a calculation, a 15% downward adjustment, which is near the high end of the range found in California, is assumed to be reasonable for Mid Atlantic given its cooler climate (relative to California).

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

²⁰⁸ Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, using the average Existing Units Summer Profile for hours ending 15 through 18.

= 0.114 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure will be the actual cost associated with the removal and recyling of the secondary refrigerator.

Measure Life

The measure life is assumed to be 8 Years. 209

Operation and Maintenance Impacts

n/a

 $^{^{209}}$ KEMA "Residential refrigerator recycling ninth year retention study", 2004.

Page 82 of 296

Heating Ventilation and Air Conditioning (HVAC) End Use

Central Furnace Efficient Fan Motor

Unique Measure Code(s): RS_HV_RTR_FANMTR_0510 and

RS_HV_TOS_FANMTR_0510 Effective Date: March 2011

End Date:

Measure Description

This measure involves the installation of a high efficiency brushless permanent magnet fan motor (BPM or ECM), hereafter referred to as "efficient fan motor". This measure could apply to fan motors installed with a furnace or with a central air conditioning unit and could apply when retrofitting an existing unit or installing a new one.

If a new unit is installed, the program should require that it meet ENERGY STAR efficiency criteria in order to qualify for the incentive, although the savings estimations below relate only to the efficiency gains associated with an upgrade to the efficient fan motor.

For homes that install an efficient furnace fan and have central A/C, both the cooling and heating savings values should be included.

Definition of Baseline Condition

A standard low-efficiency permanent split capacitor (PSC) fan motor.

Definition of Efficient Condition

A high efficiency brushless permanent magnet fan motor (BPM or ECM).

Annual Energy Savings Algorithm

Heating Season kWh Savings from efficient fan motor = 241kWh ²¹⁰

Cooling Season kWh Savings from efficient fan motor = 178kWh ²¹¹

²¹⁰ The average heating savings from Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, is 400kWh. An estimate for Mid-Atlantic is provided by multiplying this by the ratio of heating degree days in Baltimore MD compared to Wisconsin (4704 / 7800).

The average cooling savings from Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, is 70 to

Summer Coincident Peak kW Savings Algorithm

Two methodologies are provided below, the first is a deemed value to use if the appropriate sizing data is not collected, the second provides an algorithm based on the size of the cooling unit.

1. Deemed Summer Coincident Peak kW Assumption

 Δ kWcooling = Δ kW * CF

Where:

ΔkW = Difference in connected load kW of baseline motor and

efficient fan motor

 $= 0.163^{212}$

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{213}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{214}$

 $\Delta kW cooling_{SSP} = 0.163 * 0.69$

= 0.112 kW

 Δ kWcooling_{PJM} = 0.163 * 0.66

= 0.108 kW

2. Summer Coincident Peak kW based on cooling system size

95kWh. An estimate for Mid-Atlantic is provided by multiplying by the ratio of full load cooling hours in Baltimore compared to Southern Wisconsin (1050/487). Full load hour estimates from: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls.

²¹² The average delta watts power draw for a furnace with ECM compared to without is 162.5W, from Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, p34.

²¹³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²¹⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

 Δ kWcooling = Δ kW * CF

Where:

ΔkW = Difference in connected load kW of baseline motor and

efficient fan motor²¹⁵

 $= (-0.023 * Tons^2) + (0.062 * Tons) + 165$

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{216}$

 CF_{PIM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{217}$

For example, a four ton cooling unit:

 Δ kWcooling_{SSP} = $((-0.023 * 4^2) + (0.062 * 4) + 0.165) * 0.69$

= 0.031 kW

 Δ kWcooling_{PJM} = $((-0.023 * 4^2) + (0.062 * 4) + 0.165) * 0.66$

= 0.030 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$200.218

²¹⁵ The polynomial algorithm is based on data pulled from the chart on p34 of Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003.

²¹⁶ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²¹⁷ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

²¹⁸ Sachs and Smith, April 2003; Saving Energy with Efficient Furnace Air Handlers: A Status Update and Program Recommendations.

Page 85 of 296

Measure Life

The measure life is assumed to be 18 years. 218

Operation and Maintenance Impacts

n/a

Page 86 of 296

Room Air Conditioner

Unique Measure Code(s): RS_HV_TOS_RA/CES_0510 and

RS_HV_TOS_RA/CT1_0510 Effective Date: March 2011

End Date:

Measure Description

This measure relates to the purchase (time of sale) and installation of a room air conditioning unit that meets either the ENERGY STAR or CEE TIER 1 minimum qualifying efficiency specifications presented below:

Product Class	Federal Standard	ENERGY STAR	CEE TIER 1 (EER)
(Btu/hour)	(EER)	(EER)	
8,000 to 13,999	>= 9.8	>= 10.8	>= 11.3

Definition of Baseline Condition

The baseline condition is a window AC unit that meets the current minimum federal efficiency standards presented above.

Definition of Efficient Condition

The baseline condition is a window AC unit that meets either the ENERGY STAR of CEE TIER 1 efficiency standards presented above.

Annual Energy Savings Algorithm

 Δ kWH = (Hours * Btu/hour * (1/EERbase - 1/EERee))/1000

Where:

Hours = Run hours of Window AC unit

 $= 325^{219}$

Btu/hour = Size of rebated unit

²¹⁹ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.

REGIONAL EVALUATION.

When available, the actual size of the rebated unit should be used in the calculation. In the absence of this data, the following default value can be used:

= **8500** ²²⁰

= Efficiency of baseline unit in Btus per Watt-hour **EERbase**

 $= 9.8^{221}$

EERee = Efficiency of ENERGY STAR unit in Btus per Watt-hour

 $= 10.8^{222}$

= Efficiency of CEE Tier 1 unit Or

 $= 11.3^{223}$

∆kWH_{ENERGY} STAR

= (325 * 8500 * (1/9.8 - 1/10.8)) / 1000

= 26 kWh

ΔkWH_{CEE TIER 1}

= (325 * 8500 * (1/9.8 - 1/11.3)) / 1000

= 37 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = Btu/hour * (1/EERbase - 1/EERee))/1000 * CF$$

Where:

CF = Summer Peak Coincidence Factor for measure

= Summer System Peak Coincidence Factor for Central A/C CF_{SSP}

(hour ending 5pm on hottest summer weekday)

 $= 0.31^{224}$

 $CF_{P,IM}$ = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.3^{225}$

²²⁰ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008. ²²¹ Minimum Federal Standard for capacity range.

²²² Minimum qualifying for ENERGY STAR, or CEE Tier 1.

²²³ Minimum qualifying for ENERGY STAR, or CEE Tier 1.

²²⁴ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

²²⁵ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$40 for an ENERGY STAR unit and \$80 for a CEE TIER 1 unit. 226

Measure Life

The measure life is assumed to be 12 years. 227

Operation and Maintenance Impacts

n/a

(http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid /117 RLW CF%20Res%20RAC.pdf).

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Based on field study conducted by Efficiency Vermont.

²²⁷ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 89 of 296

ENERGY STAR Central A/C

Unique Measure Code(s): RS_HV_TOS_CENA/C_0510

Effective Date: March 2011

End Date:

Measure Description

This measure relates to the installation of a new Central Air Conditioning ducted split system meeting ENERGY STAR efficiency standards presented below. This measure could relate to the replacing of an existing unit or the installation of a new system in an existing home (time of sale).

Efficiency Level	SEER Rating	EER Rating ²²⁸
Federal Standard	13	11
ENERGY STAR	14.5	12

Definition of Baseline Condition

The baseline condition is a central air conditioning ducted split system that meets the minimum Federal standards.

Definition of Efficient Condition

The efficient condition is a central air conditioning ducted split system that meets the ENERGY STAR standards.

Annual Energy Savings Algorithm

 Δ kWH = (Hours * Btu/hour * (1/SEERbase - 1/SEERee))/1000

Where:

Hours

= Full load cooling hours

Dependent on location as below:

Location	Run Hours	
Wilmington, DE	513 ²²⁹	

²²⁸ SEER and EER refer to Seasonal Energy Efficiency Ratio and Energy Efficiency Ratio, respectively.

Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to

Page 90 of 296

Baltimore, MD	531 ²³⁰
Washington, DC	668 229

Btu/Hour = Size of equipment in Btu/hour (note 1 ton =

12,000Btu/hour)

= Actual installed

SEERbase = SEER Efficiency of baseline unit

 $= 13^{231}$

SEERee = SEER Efficiency of ENERGY STAR unit

= Actual installed

For example, a 3 ton unit with SEER rating of 14.5, in Baltimore:

$$\Delta$$
kWH = (531 * 36000 * (1/13 - 1/14.5)) / 1000

= 152 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = Btu/hour * (1/EERbase - 1/EERee)/1000 * CF$

Where:

EERbase = EER Efficiency of baseline unit

 $= 11^{232}$

= EER Efficiency of ENERGY STAR unit EERee

= Actual installed

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{233}$

 $CF_{P,IM}$ = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{234}$

Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) ²³⁰ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²³¹ Minimum Federal Standard.

²³² Minimum Federal Standard.

²³³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

For example, a 3 ton unit with EER rating of 12:

 ΔkW_{SSP} = (36000 * (1/11 - 1/12)) / 1000 * 0.69

= 0.19 kW

 ΔkW_{PJM} = (36000 * (1/11 - 1/12)) / 1000 * 0.66

= 0.18 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided below: 235

Efficiency Level	Cost per
	Ton
SEER 14	\$119
SEER 15	\$238
SEER 16	\$357
SEER 17	\$476
SEER 18	\$596
SEER 19	\$715
SEER 20	\$834
SEER 21	\$908

Measure Life

The measure life is assumed to be 18 years. 236

Operation and Maintenance Impacts

n/a

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

²³⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

²³⁵ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)

²³⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 92 of 296

Duct Sealing

Unique Measure Code: RS_HV_RTR_DCTSLG_0711

Effective Date: July 2011

End Date:

Measure Description

This measure is the sealing of ducts using mastic sealant or metal tape.

Two methodologies for estimating the savings associate from sealing the ducts are provided. The first method requires the use of a blower door and the second requires careful inspection of the duct work.

- Modified Blower Door Subtraction this technique is described in detail on p44 of the Energy Conservatory Blower Door Manual; http://www.energyconservatory.com/download/bdmanual.pdf
- Evaluation of Distribution Efficiency this methodology requires the evaluation of three duct characteristics below, and use of the Building Performance Institutes 'Distribution Efficiency Look-Up Table'; http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf
 - a. Percentage of duct work found within the conditioned space
 - b. Duct leakage evaluation
 - c. Duct insulation evaluation

This is a retrofit measure.

Definition of Baseline Condition

The existing baseline condition is leaky duct work within the unconditioned space in the home.

Definition of Efficient Condition

The efficient condition is sealed duct work throughout the unconditioned space in the home.

Annual Energy Savings Algorithm

Page 93 of 296

Cooling savings from reduction in Air Conditioning Load:

Methodology 1: Modified Blower Door Subtraction

a. Determine Duct Leakage rate before and after performing duct sealing:

Duct Leakage (CFM50_{DL}) = (CFM50_{Whole House} - CFM50_{Envelope Only}) * SCF

Where:

CFM50_{Whole House} = Standard Blower Door test result finding Cubic

Feet per Minute at 50 Pascal pressure differential

 $CFM50_{Envelope\ Only}$ = Blower Door test result finding Cubic Feet per

Minute at 50 Pascal pressure differential with all

supply and return registers sealed.

SCF = Subtraction Correction Factor to account for

underestimation of duct leakage due to connections between the duct system and the home. Determined by measuring pressure in duct system with registers sealed and using look up table provided by Energy

Conservatory.

b. Calculate duct leakage reduction, convert to CFM25_{DL}²³⁷ and factor in Supply and Return Loss Factors

Duct Leakage Reduction (\triangle CFM25_{DL}) = (Pre CFM50_{DL} - Post CFM50_{DL}) * 0.64 * (SLF + RLF)

Where:

SLF = Supply Loss Factor

= % leaks sealed located in Supply ducts * 1 238

Default = 0.5^{239}

http://www.energyconservatory.com/download/dbmanual.pdf

²³⁷ 25 Pascals is the standard assumption for typical pressures experienced in the duct system under normal operating conditions. To convert CFM50 to CFM25 you multiply by 0.64 (inverse of the "Can't Reach Fifty" factor for CFM25; see Energy Conservatory Blower Door Manual).

Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from

Page 94 of 296

RLF = Return Loss Factor

= % leaks sealed located in Return ducts * 0.5²⁴⁰

Default = 0.25^{241}

c. Calculate Energy Savings:

 Δ kWh_{cooling} = ((Δ CFM25_{DL})/ (Capacity * 400)) * FLHcool * BtuH) / 1000 / nCool

Where:

 $\Delta CFM25_{DL}$ = Duct leakage reduction in CFM25

Capacity = Capacity of Air Cooling system (tons)

400 = Conversion of Capacity to CFM (400CFM / ton)

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	513 ²⁴²
Baltimore, MD	531 ²⁴³
Washington, DC	668

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use²⁴⁴:

²³⁹ Assumes 50% of leaks are in supply ducts.

²⁴⁰ Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than "average" (e.g. pulling return air from a super heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from http://www.energyconservatory.com/download/dbmanual.pdf

²⁴¹ Assumes 50% of leaks are in return ducts.

²⁴² Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 243 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁴⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average

Page 95 of 296

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

For example, duct sealing in a house in Wilmington, DE with 3 ton, SEER 11 central air conditioning and the following blower door test results:

Before:

 $\begin{array}{lll} \text{CFM50}_{\text{Whole House}} & = 4,800 \text{ CFM50} \\ \text{CFM50}_{\text{Envelope Only}} & = 4,500 \text{ CFM50} \\ \text{House to duct pressure} & = 45 \text{ Pascals} \\ \end{array}$

= 1.29 SCF (Energy Conservatory look

up table)

After:

 $\begin{array}{ll} \text{CFM50}_{\text{Whole House}} & = 4,600 \text{ CFM50} \\ \text{CFM50}_{\text{Envelope Only}} & = 4,500 \text{ CFM50} \\ \text{House to duct pressure} & = 43 \text{ Pascals} \end{array}$

= 1.39 SCF (Energy Conservatory look

up table)

Duct Leakage at CFM50:

 $CFM50_{DL before} = (4,800 - 4,500) * 1.29$

= 387 CFM50

 $CFM50_{DL after} = (4,600 - 4,500) * 1.39$

= 139 CFM50

Duct Leakage reduction at CFM25:

 $\Delta CFM25_{DL}$ = (387 - 139) * 0.64 * (0.5 + 0.25)

= 119 CFM25

Energy Savings:

 Δ kWh = ((119 / (3 * 400)) * 513 * 36,000) / 1,000 / 11

= 166 kWh

system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Heating savings for homes with electric heat (Heat Pump):

= $(((\Delta CFM25_{DL} / (Capacity * 400)) * FLHheat * BtuH) /$ ΔkWh

1,000,000 / nHeat) * 293.1

Where:

 $\Delta CFM25_{DI}$ = Duct leakage reduction in CFM25

= Capacity of Air Cooling system (tons) Capacity

400 = Conversion of Capacity to CFM (400CFM / ton)

FLHheat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	1291 ²⁴⁵
Baltimore, MD	1195 ²⁴⁶
Washington, DC	1134

= Size of equipment in Btuh (note 1 ton = 12,000Btuh) BtuH

= Actual

= Efficiency in COP of Heating equipment nHeat

= actual. If not available use 247 :

System Type	Age of Equipment	HSPF Estimate	COP Estimate
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

For example, duct sealing in a 3-ton 2.5 COP heat pump heated house in Baltimore, MD with the blower door results described above:

²⁴⁵ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls) ²⁴⁶ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁴⁷ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Methodology 2: Evaluation of Distribution Efficiency

Cooling savings from reduction in Air Conditioning Load:

Determine Distribution Efficiency by evaluating duct system before and after duct sealing using Building Performance Institute "Distribution Efficiency Look-Up Table"

$$\Delta$$
kWh _{cooling} = ((((DE_{after} - DE_{before})/ DE_{after})) * FLHcool * BtuH) / 1,000 / η Cool

Where:

 DE_{after} = Distribution Efficiency after duct sealing DE_{before} = Distribution Efficiency before duct sealing

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	513 ²⁴⁸
Baltimore, MD	531 249
Washington, DC	668

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use²⁵⁰:

_

²⁴⁸ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 249 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁵⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 98 of 296

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

For example, duct sealing in a house in Wilmington DE, with 3-ton SEER 11 central air conditioning and the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

Heating savings for homes with electric heat (Heat Pump of resistance):

kWh =
$$((((DE_{after} - DE_{before})/DE_{after})) * FLHheat * BtuH) / 1,000,000 / \etaHeat) * 293.1$$

Where:

FLHheat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	1,291 ²⁵¹
Baltimore, MD	1,195 ²⁵²
Washington, DC	1,134

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use 253:

_

²⁵¹ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls) ²⁵² Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁵³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the

Page 99 of 296

System	Age of	HSPF	СОР
Туре	Equipment	Estimate	Estimate
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

For example, duct sealing in a 2.5 COP heat pump heated house in Baltimore, MD with the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

ΔkWh = ((((0.90 - 0.80)/0.90) * 1,195 * 36,000) / 1,000,000 / 2.5) * 293.1

= 560 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{254}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{255}$

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

²⁵⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²⁵⁵ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Methodology 1: Modified Blower Door Subtraction

 Δ MMBTU = (((Δ CFM25_{DL} / (BtuH * 0.0126)) * FLHheat * BtuH) /

1,000,000 / ηHeat

Where:

 $\Delta CFM25_{DL}$ = Duct leakage reduction in CFM25 BtuH = Capacity of Heating System (Btuh)

= Actual

0.0126 = Conversion of Capacity to CFM $(0.0126CFM / Btuh)^{256}$

FLHheat = Full Load Heating Hours

 $=620^{257}$

ηHeat = Efficiency of Heating equipment

= Actual²⁵⁸. If not available use 84%²⁵⁹.

For example, duct sealing in a house with a 100,000Btuh, 80% AFUE natural gas furnace and with the blower door results described above:

Energy Savings:

ΔΜΜΒΤU = (((119 / (100,000 * 0.0126)) * 620 * 100,000) / 1,000,000 / 0.80

= 7.3 MMBtu

Methodology 2: Evaluation of Distribution Efficiency

²⁵⁶ Based on Natural Draft Furnaces requiring 100 CFM per 10,000 BTU, Induced Draft Furnaces requiring 130CFM per 10,000BTU and Condensing Furnaces requiring 150 CFM per 10,000 BTU (rule of thumb from http://contractingbusiness.com/enewsletters/cb_imp_43580/). Data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggested that in 2000, 32% of furnaces purchased in Maryland were condensing units. Therefore a weighted average required airflow rate is calculated assuming a 50:50 split of natural v induced draft non-condensing furnaces, as 126 per 10,000BTU or 0.0126/Btu.
²⁵⁷ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program

conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

²⁵⁸ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

²⁵⁹ The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

$$\Delta$$
MMBTUfossil fuel = ((((DE_{after} - DE_{before})/DE_{after})) * FLHheat * BtuH) / 1,000,000 / nHeat

Where:

DE_{after} = Distribution Efficiency after duct sealing DE_{before} = Distribution Efficiency before duct sealing

FLHheat = Full Load Heating Hours

 $=620^{260}$

BtuH = Capacity of Heating System

= Actual

ηHeat = Efficiency of Heating equipment

= Actual²⁶¹. If not available use 84%²⁶².

For example, duct sealing in a fossil fuel heated house with a 100,000Btuh, 80% AFUE natural gas furnace, with the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

 Δ MMBTU = ((0.90 - 0.80)/0.90) * 620 * 100,000) / 1,000,000 /

0.80

= 8.6 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual labor and material cost to seal the ducts.

²⁶⁰ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

²⁶¹ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

Page 102 of 296

Measure Life

The measure life is assumed to be 20 years²⁶³.

Operation and Maintenance Impacts

n/a

 $^{^{263}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 103 of 296

Air Source Heat Pump

Unique Measure Code: RS_HV_TOS_ASHP_0711

Effective Date: July 2011

End Date:

Measure Description

This measure relates to the installation of a new Air Source Heat Pump split system meeting ENERGY STAR efficiency standards presented below. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Efficiency Level	HSPF	SEER Rating	EER Rating ²⁶⁴
Federal Standard	7.7	13	11
ENERGY STAR	8.2	14.5	12

Definition of Baseline Condition

The baseline condition is an Air Source Heat Pump split system that meets the minimum Federal standards defined above.

Definition of Efficient Condition

The efficient condition is an Air Source Heat Pump split system that meets the ENERGY STAR standards defined above.

Annual Energy Savings Algorithm

ΔkWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1,000 + (FLHheat * BtuH * (1/HSPFbase - 1/HSPFee))/1,000

Where:

FLHcool

= Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	513 ²⁶⁵

²⁶⁴ HSPF, SEER and EER refer to Heating Seasonal Performance Factor, Seasonal Energy Efficiency Ratio and Energy Efficiency Ratio, respectively.

²⁶⁵ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to

Page 104 of 296

Baltimore, MD	531 ²⁶⁶
Washington, DC	668

BtuH = Capacity of Air Source Heat Pump (1 ton =

12,000Btuh)

= Actual

SEERbase = Efficiency in SEER of baseline Air Source Heat

Pump = 13²⁶⁷

SEERee = Efficiency in SEER of efficient Air Source Heat

Pump = Actual

FLHheat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	1,291 ²⁶⁸
Baltimore, MD	1,195 ²⁶⁹
Washington, DC	1,134

HSPFbase = Heating Seasonal Performance Factor of baseline

Air Source Heat Pump

 $= 7.7^{270}$

HSPFee = Heating Seasonal Performance Factor of efficient

Air Source Heat Pump

= Actual

For example, a 3 ton unit with a SEER rating of 14.5 and HSPF of 8.4 in Baltimore, MD:

Baltimore MD (1,050) from the ENERGY STAR calculator.

(http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 266 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁶⁷ Minimum Federal Standard

²⁶⁸ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls) ²⁶⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

²⁷⁰ Minimum Federal Standard

Page 105 of 296

$$\Delta$$
kWH = (531 * 36,000 * (1/13 - 1/14.5))/1,000 + (1,195 * 36,000 * (1/7.7 - 1/8.4))/1,000

= 618 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = BtuH * (1/EERbase - 1/EERee))/1,000 * CF$

Where:

FFRbase = Energy Efficiency Ratio (EER) of Baseline Air

Source Heat Pump

 $= 11^{271}$

EERee = Energy Efficiency Ratio (EER) of Efficient Air

Source Heat Pump

= Actual

If EER is unknown, calculate based on SEER 272 :

 $= (-0.02 * SEER^2) + (1.12 * SEER)$

= Summer System Peak Coincidence Factor for CFSSP

Central A/C (hour ending 5pm on hottest summer

weekday) $= 0.69^{273}$

= PJM Summer Peak Coincidence Factor for Central CF_{PIM}

A/C (June to August weekdays between 2 pm and 6

pm) valued at peak weather

 $= 0.66^{274}$

For example, a 3 ton unit with EER rating of 12.0 in Baltimore, MD:

$$\Delta kW = 36,000 * (1/11 - 1/12))/1,000 * 0.69$$

= 0.19 kW

²⁷¹ Minimum Federal Standard

²⁷² Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Master's Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²⁷⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 106 of 296

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided in the table below²⁷⁵. Note these incremental costs are per ton of capacity, so for example a 3 ton, 15 SEER unit would have an incremental cost of \$822.

Efficiency (SEER)	Incremental Cost per Ton of Capacity
14	\$137
15	\$274
16	\$411
17	\$548
18	\$685

Measure Life

The measure life is assumed to be 18 years²⁷⁶.

Operation and Maintenance Impacts

n/a

²⁷⁵ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

²⁷⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 107 of 296

HE Gas Boiler

Unique Measure Code: RS_HV_TOS_GASBLR_0113

Effective Date: January 2013

End Date:

Measure Description

This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired boiler for residential space heating, instead of a new baseline gas boiler. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a boiler that meets the minimum Federal baseline AFUE for boilers. The Federal baseline for boilers manufactured before September 2012 was 80% AFUE. For boilers manufactured after September 2012, the Federal baseline is 82% AFUE.

Year	Baseline AFUE
2012	80%
2013 on	82%

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified boiler with an AFUE rating \geq 85%.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = (FLHheat * (Btuh/AFUEbase - Btuh/AFUEee)) /1,000,000

Where:

FLHheat = Full Load Heating Hours

Page 108 of 296

 $=620^{277}$

BtuH = Capacity of Boiler

= Actual

AFUEbase = Efficiency in AFUE of baseline boiler

Year	Baseline AFUE
2012	80%
2013 on	82%

AFUEee = Efficiency in AFUE of efficient boiler

= Actual

For example, the purchase and installation of a 100,000 Btuh, 90% AFUE boiler in 2013:

 Δ MMBtu = (620 * (100,000/0.82 - 100,000/0.9)) /1,000,000

= 6.7 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental install cost for this measure is provided below 278:

Efficiency of Boiler (AFUE)	Incremental Cost 2012	Incremental Cost 2013
85% - 90%	\$934	\$725
91% +	\$1481	\$1272

Measure Life

The measure life is assumed to be 18 years²⁷⁹.

²⁷⁷ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

²⁷⁸ Costs derived from Page E-13 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf

VEIC believes it is reasonable to assume that the cost provided from this study for an 85% unit is appropriate for units in the 85-90% AFUE range and the cost for the 91% unit can be used for 91+% units. This is based on the observation that most of the products available in the 85-90 range are in the lower end of the range, as are those units available above 91% AFUE.

Page 109 of 296

Operation and Maintenance Impacts

n/a

 $^{^{279}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 110 of 296

Condensing Furnace (gas)

Unique Measure Code: RS_HV_TOS_GASFUR_0113

Effective Date: January 2013

End Date:

Measure Description

This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired condensing furnace for residential space heating, instead of a new baseline gas furnace. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a non-condensing gas furnace with an AFUE of $80 \%^{280}$.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified gas-fired condensing furnace with an AFUE rating \geq 90%.

Annual Energy Savings Algorithm

n/a. Note, if the furnace has an ECM fan, electric savings should be claimed as characterized in the "Central Furnace Efficient Fan Motor" section of the TRM.

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = (FLHheat * (Btuh/AFUEbase - Btuh/AFUEee)) /1,000,000

Where:

FLHheat = Full Load Heating Hours

²⁸⁰ The Federal baseline for furnaces is actually 78%, although it becomes 80% in May 2013. Experience suggests a suitable market baseline is 80% AFUE.

Page 111 of 296

 $= 620^{281}$

BtuH = Capacity of Furnace

= Actual

AFUEbase = Efficiency in AFUE of baseline Furnace

= 0.80

AFUEee = Efficiency in AFUE of efficient Furnace

= Actual

For example, the purchase and installation of a 100,000 Btuh, 92% AFUE furnace:

 Δ MMBtu = (620 * (100,000/0.8 - 100,000/0.92)) /1,000,000

= 10.1 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided below²⁸²:

Efficiency of	Incremental
Furnace	Cost
(AFUE)	
90%	\$630
92%	\$802
96%	\$1,747

Measure Life

The measure life is assumed to be 18 years²⁸³.

Operation and Maintenance Impacts

n/a

-

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

²⁸¹ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

²⁸² Costs derived from Page E-3 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 112 of 296

Programmable Thermostat

Unique Measure Code: RS_HV_RTR_PRGTHE_0711

Effective Date: July 2011

End Date:

Measure Description

Programmable Thermostats can save energy through the advanced scheduling of setbacks to heating setpoints. Typical usage reduces the heating setpoint during times of the day when occupants are usually not at home (e.g. work hours) or during the night.

Note, savings are only provided for the reduction in heating load for fossil fuel fired heating systems. A literature review could not find any appropriate defensible source of cooling savings from programmable thermostats. It is inappropriate to assume a similar pattern of savings from setting your thermostat down during the heating season and up during the cooling season.

This is a retrofit measure.

Definition of Baseline Condition

A standard, non-programmable thermostat for central heating system (baseboard electric is excluded from this characterization).

Definition of Efficient Condition

A programmable thermostat is installed and programmed by a professional.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = (Savings %) x (Heat Load)

Where:

Page 113 of 296

Savings % = Estimated percent reduction in heating load due to

programmable thermostat

= **6.8**% ²⁸⁴

Heat Load = Annual Home Heating load (MMBtu)

 $= 50.1^{285}$

 Δ MMBtu = 0.068 * 50.1

= 3.41 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual unit cost and if installed via program administrators should also include labor cost²⁸⁶.

Measure Life

The measure life is assumed to be 10 years²⁸⁷.

Operation and Maintenance Impacts

n/a

²⁸⁴ 2007, RLW Analytics, "Validating the Impact of Programmable Thermostats"

²⁸⁵ 50.1 MMBtu heating load is estimated based on the MD Residential Baseline Database, subtracting Base load from Base + Heat.

²⁸⁶ The range of costs observed in VEIC's review of other utilities TRMs was \$35-\$40 for the unit, \$100 for labor. In the absence of actual program costs, this cost could be used.

²⁸⁷ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 114 of 296

Room Air Conditioner Early Replacement

Unique Measure Code: RS_HV_EREP_RA/CES_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes the early removal of an existing inefficient Room Air Conditioner unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is an early replacement measure.

Definition of Baseline Condition

The baseline condition is the existing inefficient room air conditioning unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard (i.e. with an efficiency rating of 9.8EER).

Definition of Efficient Condition

The efficient condition is a new replacement room air conditioning unit meeting the ENERGY STAR efficiency standard (i.e. with an efficiency rating greater than or equal to 10.8EER).

Annual Energy Savings Algorithm

```
Savings for remaining life of existing unit (1st 3 years)

ΔkWh = (Hours * BtuH * (1/EERexist - 1/EERee))/1,000

Savings for remaining measure life (next 9 years)

ΔkWh = (Hours * BtuH * (1/EERbase - 1/EERee))/1,000
```

Page 115 of 296

Where:

= Run hours of Window AC unit Hours

 $= 325^{288}$

Btuh = Capacity of replaced unit

= Actual or 8,500 if unknown ²⁸⁹

= Efficiency of existing unit in Btus per Watt-hour **EERexist**

 $= 7.7^{290}$

= Efficiency of baseline unit in Btus per Watt-hour **EERbase**

= **9**.8 ²⁹¹

EERee = Efficiency of ENERGY STAR unit in Btus per Watt-hour

= Actual

For example, an 8,500 Btuh Room AC unit with an EER rating of 10.8:

Savings for remaining life of existing unit (1st 3 years)

= (325 * 8,500 * (1/7.7-1/10.8)) / 1,000ΔkWh

= 103 kWh

Savings for remaining measure life (next 9 years)

= (325 * 8,500 * (1/9.8-1/10.8)) / 1,000

= 26 kWh

Summer Coincident Peak kW Savings Algorithm

Savings for remaining life of existing unit (1st 3 years) $\Delta kW = ((BtuH * (1/EERexist - 1/EERee))/1000) * CF$

Savings for remaining measure life (next 9 years)

²⁸⁸ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.

²⁸⁹ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

²⁹⁰ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report." Minimum Federal Standard for capacity range.

Page 116 of 296

$$\Delta kW = ((BtuH * (1/EERbase - 1/EERee))/1000) * CF$$

Where:

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.31^{292}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.3^{293}$

For example, a 8500 Btuh Room AC unit with an EER rating of 10.8

Savings for remaining life of existing unit (1st 3 years)

 $\Delta kW_{SSP} = ((8,500 * (1/7.7-1/10.8)) / 1,000) * 0.31$

= 0.098 kW

Savings for remaining measure life (next 9 years)

 ΔkW_{SSP} = ((8,500 * (1/9.8- 1/10.8)) / 1,000) * 0.31

= 0.025 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual cost of the replacement unit and any cost of installation labor.

Note, the deferred baseline replacement cost is presented under Operation and Maintenance Impacts.

 $^{^{292}}$ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

²⁹³ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res%20RAC.pdf).

Page 117 of 296

Measure Life

The measure life is assumed to be 12 years²⁹⁴. Note this characterization also assumes there is 3 years of remaining useful life of the unit being replaced²⁹⁵.

Operation and Maintenance Impacts

REGIONAL EVALUATION.

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have occurred in 3 years, had the existing unit not been replaced) should be calculated as:

NPV_{deferred replacement cost} = (Actual Cost of ENERGY STAR unit - $$40^{296}$) * $69\%^{297}$.

Note that this is a lifecycle cost savings (i.e. a negative cost).

_

²⁹⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

²⁹⁵ Based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year

²⁹⁶ Incremental cost of ENERGY STAR unit over baseline unit; consistent with Time of Sale Room AC measure.

²⁹⁷ 69% is the ratio of the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit. The calculation is done in this way to allow the use of the known ENERGY STAR replacement cost to calculate an appropriate baseline replacement cost.

Page 118 of 296

Room Air Conditioner Early Retirement / Recycling

Unique Measure Code: RS_HV_ERT_RA/C_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes the savings resulting from implementing a drop off service taking existing working inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that a percentage of these units will ultimately be replaced with a baseline standard efficiency unit (note that if it is actually replaced by a new ENERGY STAR qualifying unit, the savings increment between baseline and ENERGY STAR should be captured under the ENERGY STAR Room AC Time of Sale measure).

Definition of Baseline Condition

The baseline condition is the existing inefficient room air conditioning unit.

Definition of Efficient Condition

Not applicable. This measure relates to the retiring of an existing inefficient unit. A percentage of units however are assumed to be replaced with a baseline new unit and the savings are therefore reduced to account for these replacement units.

Annual Energy Savings Algorithm

ΔkWh = ((Hours * BtuH * (1/EERexist))/1,000) - (%replaced * ((Hours * BtuH * (1/EERnewbase))/1,000)

Where:

Hours = Run hours of Window AC unit = 325 ²⁹⁸

²⁹⁸ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at

Page 119 of 296

Btu/hour = Capacity of replaced unit

= Actual or 8,500 if unknown ²⁹⁹

EERexist = Efficiency of existing unit in Btus per Watt-hour

= Actual or 7.7 if unknown 300

%replaced = Percentage of units dropped off that are replaced in the

home = 76% ³⁰¹

EERnewbase = Efficiency of new baseline unit in Btus per Watt-hour

 $= 9.8^{302}$

For example, the turn in of an 8,500 Btuh, 7.7 EER unit:

 Δ kWh = ((325 * 8,500 * (1/7.7))/1,000) - (0.76 * ((325 * 8,500 * (1/9.8))/1,000)

= 145 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((BtuH * (1/EERexist))/1,000) -$

(%replaced * ((BtuH * (1/EERnewbase))/1,000) * CF

Where:

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.31^{303}$

^{31%.} Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.

²⁹⁹ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

³⁰⁰ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

³⁰¹ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report." Report states that 63% were replaced with ENERGY STAR units and 13% with non-ENERGY STAR. However this formula assumes all are non-ENERGY STAR since the increment of savings between baseline units and ENERGY STAR would be recorded by the Time of Sale measure when the new unit is purchased.

Minimum Federal Standard for capacity range. Note that we assume the replacement is only at federal standard efficiency for the reason explained above.

³⁰³ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

Page 120 of 296

 $CF_{P,IM}$

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.3^{304}

For example, the turn in of an 8500 Btuh, 7.7 EER unit:

$$\Delta kW_{SSM}$$
 = ((8,500 * (1/7.7))/1,000) - (0.76 * ((8,500 * (1/9.8))/1,000) * 0.31

= 0.9 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual implementation cost for recycling the existing unit, plus \$129 to account for the replacement of 76% of the units³⁰⁵.

Measure Life

The measure life is assumed to be 3 years³⁰⁶.

Operation and Maintenance Impacts

The net present value of the deferred replacement cost (the cost associated with the replacement of those units that would be replaced, with a

 $^{^{\}rm 304}$ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

 $⁽http://www.puc.nh.gov/Electric/Monitoring\%20 and\%20 Evaluation\%20 Reports/National\%20 Grid/117_RLW_CF\%20 Res\%20 RAC.pdf).$

^{\$129} replacement cost is calculated by multiplying the percentage assumed to be replaced - 76% by the assumed cost of a standard efficiency unit of \$170 (ENERGY STAR calculator; http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerR oomAC.xls); 0.76 * 170 = \$129.2.

³⁰⁶ 3 years of remaining useful life based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year

Page 121 of 296

standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) is calculated as \$89.36³⁰⁷.

_

 $^{^{307}}$ Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing multiplied by the 76%, the percentage of units being replaced (i.e. 0.76 * \$170 = \$129.2). Baseline cost from ENERGY STAR calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls)

Page 122 of 296

Domestic Hot Water (DHW) End Use

Low Flow Shower Head

Unique Measure Code(s): RS_WT_INS_SHWRHD_0510 and

RS_WT_TOS_SHWRHD_0510 Effective Date: March 2011

End Date:

Measure Description

This measure relates to the installation of a low flow (2.0 GPM) showerhead in a home. This is a retrofit direct install measure or a new installation.

Definition of Baseline Condition

The baseline is a standard showerhead using 2.5 GPM.

Definition of Efficient Condition

The efficient condition is an energy efficient showerhead using 2.0 GPM.

Annual Energy Savings Algorithm

If electric domestic water heater:

 Δ kWH³⁰⁸ = ((((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year) / SH/home * 8.3 * (TEMPsh - TEMPin) / 1,000,000) / DHW Recovery Efficiency / 0.003412

Where:

GPMbase = Gallons Per Minute of baseline showerhead

 $= 2.5^{309}$

GPMlow = Gallons Per Minute of low flow showerhead

 $= 2.0^{310}$

³⁰⁸ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.

The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).

Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year.

Page 123 of 296

people = Average number of people per household

 $= 2.56^{311}$

= Average gallons per day used for showering gals/day

 $= 11.6^{312}$

= Days shower used per year davs/v

= 365

Showers/home = Average number of showers in the home

 $= 1.6^{313}$

8.3 = Constant to convert gallons to lbs

TEMPsh = Assumed temperature of water used for shower

 $= 105^{310}$

TEMPin = Assumed temperature of water entering house

 $= 55^{314}$

DHW Recovery Efficiency = Recovery efficiency of electric water heater

 $= 0.98^{315}$

0.003412 = Constant to convert MMBtu to kWh

> Δ kWH = ((((2.5 - 2.0) / 2.5) *2.56 * 11.6 * 365) / 1.6 * 8.3 * (105-55) / 1,000,000) / 0.98 / 0.003412

> > = 168 kWh

Summer Coincident Peak kW Savings Algorithm

= ΔkWh/hours * CF ΔkW

³¹¹ US Energy Information Administration, Residential Energy Consumption Survey; http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc3demographics/pdf/tablehc11 .3.pdf

Most commonly quoted value of gallons of water used per person per day (including in U.S. Environmental Protection Agency's "water sense" documents:

http://www.epa.gov/watersense/docs/home_suppstat508.pdf)

³¹³ Estimate based on review of a number of studies:

a. Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?p url=/10185385-CEkZMk/native/

b. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

³¹⁴ A good approximation of annual average water main temperature is the average annual ambient air temperature. 55 degrees used based on:

http://lwf.ncdc.noaa.gov/img/documentlibrary/clim81supp3/tempnormal hires.jpg ³¹⁵ Electric water heater have recovery efficiency of 98%:

http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Page 124 of 296

Where:

Hours = Average number of hours per year spent using shower

head

= (Gal/person * # people * 365) / SH/home / GPM / 60

= (11.6 * 2.56 * 365) / 1.6 / 2.5 / 60

= 45 hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.00371^{316}$

 $\Delta kW = 168 / 45 * 0.00371$

= 0.0138 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater:

ΔMMBtu = ((((GPMbase - GPMlow) / GPMbase) * # people *

gals/day * days/year)) / SH/home * 8.3 * (TEMPsh - TEMPin) / 1,000,000) / Gas DHW Recovery Efficiency

Where:

Gas DHW Recovery Efficiency = Recovery efficiency of electric water

heater - 0.75 317

 $= 0.75^{317}$

All other variables As above

 Δ MMBtu = ((((2.5 - 2.0) / 2.5) * 2.56 * 11.6 * 365) / 1.6 * 8.3 *

(105-55) / 1,000,000) / 0.75

= 0.7497 MMBtu

Annual Water Savings Algorithm

-

³¹⁶ Calculated as follows: Assume 9% showers take place during peak hours (based on: http://www.aquacraft.com/Download_Reports/DISAGGREGATED-HOT_WATER_USE.pdf) 9% * 7.42 minutes per day (11.6 * 2.56 / 1.6 / 2.5 = 7.42) = 0.668 minutes

^{= 0.668 / 180 (}minutes in peak period) = 0.00371

³¹⁷Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

Page 125 of 296

Water Savings = (((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year) / SH/home /748

Where:

748 = Constant to convert from gallons to CCF All other variables As above

= 1.81 CCF

Incremental Cost

As a retrofit measure, the incremental cost will be the actual cost of installing the new showerhead. As a time of sale measure, the incremental cost is assumed to be $56.^{318}$

Measure Life

The measure life is assumed to be 10 years. 319

Operation and Maintenance Impacts

When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

³¹⁸ Navigant Consulting, Ontario Energy Board, "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

Consistent with assumptions provided on page C-6 of Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf)

Page 126 of 296

Faucet Aerators

Unique Measure Code(s): RS_WT_INS_FAUCET_0510 and

RS_WT_TOS_FAUCET_0510 Effective Date: May 2010

End Date:

Measure Description

This measure relates to the installation of a low flow (1.5 GPM) faucet aerator in a home. This could be a retrofit direct install measure or a new installation.

Definition of Baseline Condition

The baseline is a standard faucet aerator using 2.2 GPM.

Definition of Efficient Condition

The efficient condition is an energy efficient faucet aerator using 1.5 GPM.

Annual Energy Savings Algorithm

If electric domestic water heater:

ΔkWH³²⁰ = (((((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year * DR) / (F/home)) * 8.3 * (TEMPft - TEMPin) / 1,000,000) / DHW Recovery Efficiency / 0.003412

Where:

GPMbase = Gallons Per Minute of baseline faucet

 $= 2.7^{321}$

GPMlow = Gallons Per Minute of low flow faucet

 $= 1.5^{322}$

³²⁰ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

in 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 gpm at 60 psi for all faucets: 63 Federal Register 13307; March 18, 1998.
 Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008

³²² Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year.

Page 127 of 296

people = Average number of people per household

 $= 2.56^{323}$

gals/day = Average gallons per day used by faucet

 $= 10.9^{324}$

days/y = Days faucet used per year

= 365

DR = Percentage of water flowing down drain (if water is

collected in a sink, a faucet aerator will not result in any

saved water)

= 50% 325

F/home = Average number of faucets in the home

 $= 3.5^{326}$

8.3 = Constant to convert gallons to lbs

TEMPft = Assumed temperature of water used by faucet

 $= 80^{322}$

TEMPin = Assumed temperature of water entering house

 $= 55^{327}$

DHW Recovery Efficiency = Recovery efficiency of electric water heater

 $= 0.98^{328}$

0.003412 = Constant to converts MMBtu to kWh

 Δ kWH = ((((2.2 - 1.5) / 2.2) * 2.56 * 10.9 * 365 * 0.5) / 3.5 * 8.3 *

(80-55) / 1,000,000) / 0.98 / 0.003412

= 29 kWh

Summer Coincident Peak kW Savings Algorithm

323 US Energy Information Administration, Residential Energy Consumption Survey;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc3demographics/pdf/tablehc11.3.pdf

http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Most commonly quoted value of gallons of water used per person per day (including in U.S. Environmental Protection Agency's "water sense" documents:

http://www.epa.gov/watersense/docs/home_suppstat508.pdf)

³²⁵ Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning."

Estimate based on East Bay Municipal Utility District; "Water Conservation Market Penetration Study"

http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

A good approximation of annual average water main temperature is the average annual ambient air temperature. 55 degrees used based on:

http://lwf.ncdc.noaa.gov/img/documentlibrary/clim81supp3/tempnormal_hires.jpg

Electric water heater have recovery efficiency of 98%:

 $\Delta kW = \Delta kWh/hours * CF$

Where:

= Average number of hours per year spent using faucet Hours

= (Gal/person * # people * 365) / (F/home) / GPM / 60

= (10.9 * 2.56 * 365) / 3.5 / 2.2 / 60

= 22 hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.00262^{329}$

 $\Delta kW = 29 / 22 * 0.00262$

= 0.0034 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater, MMBtu savings provided below:

ΔMMBtu = ((((GPMbase - GPMlow) / GPMbase) * # people *

gals/day * days/year * DR) / (F/home) * 8.3 * (TEMPft -

TEMPin) / 1,000,000) / Gas DHW Recovery Efficiency

Where:

Gas DHW Recovery Efficiency = Recovery efficiency of electric water

> heater $= 0.75^{330}$

All other variables As above

> = ((((2.2 - 1.5) / 2.2) * 2.56 * 10.9 * 365 * 0.5) / 3.5 *ΔMMBtu

8.3 * (80-55) / 1,000,000) / 0.75

= 0.128 MMBtu

Annual Water Savings Algorithm

329 Calculated as follows: Assume 13% faucet use takes place during peak hours (based on: http://www.aguacraft.com/Download Reports/DISAGGREGATED-HOT WATER USE.pdf) 13% * 3.6 minutes per day (10.9 * 2.56 / 3.5 / 2.2 = 3.6) = 0.47 minutes = 0.47 / 180 (minutes in peak period) = 0.00262

³³⁰ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

Page 129 of 296

Where:

748 = Constant to convert from gallons to CCF All other variables As above

= 0.619 CCF

Incremental Cost

As a retrofit measure, the incremental cost will be the actual cost of installing the new aerator. As a time of sale measure, the incremental cost is assumed to be \$2.331

Measure Life

The measure life is assumed to be 5 years. 332

Operation and Maintenance Impacts

When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

³³¹ Navigant Consulting, Ontario Energy Board, "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

332 Conservative estimate based on review of TRM assumptions from other States.

Page 130 of 296

Domestic Hot Water Tank Wrap

Unique Measure Code(s): RS_WT_INS_HWWRAP_0113

Effective Date: January 2013

End Date:

Measure Description

This measure relates to a Tank Wrap or insulation "blanket" that is wrapped around the outside of a hot water tank to reduce stand-by losses. This measure applies only for homes that have an electric water heater that is not already well insulated.

Definition of Baseline Condition

The baseline condition is a standard electric domestic hot water tank without an additional tank wrap.

Definition of Efficient Condition

The efficient condition is the same standard electric domestic hot water tank with an additional tank wrap.

Annual Energy Savings Algorithm

$$\Delta kWh = ((A_{base} / R_{base} - A_{insul} / R_{insul}) * \Delta T * Hours) / (3412 * \eta DHW)$$

Where:

 $\triangle kWh$ = gross customer annual kWh savings for the measure R_{base} = Overall thermal resistance (R-value) prior to adding tank

wrap (Hr-F-ft²/Btu)

= See table below. If unknown assume 8 333

Rinsul =Overall thermal resistance (R-value) after addition of

tank wrap (Hr-F-ft²/Btu)

= See table below. If unknown assume 18 334

A_{base} = Surface area of storage tank prior to adding tank wrap

(square feet)

= See table below. If unknown assume 23.18 335

334 Assumes an R-10 tank wrap is added.

Assumptions are from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM) for a poorly insulated 40 gallon tank

Page 131 of 296

A_{insul} = Surface area of storage tank after addition of tank wrap

(square feet)

= See table below. If unknown assume 25.31 336

 ΔT = Average temperature difference between tank water and

outside air temperature (°F)

 $= 60^{\circ} F^{33}$

Hours = Number of hours in a year (since savings are assumed to

be constant over year).

= 8760

3412 = Conversion from BTU to kWh

ηDHW = Recovery efficiency of electric hot water heater

 $= 0.98^{338}$

The following table has default savings for various tank capacity and pre and post R-VALUES.

Capacity (gal)	Rbase	Rinsul	Abase (ft2)	Ainsul (ft2)	ΔkWh	ΔkW
30	8	16	19.16	20.94	171	0.019
30	10	18	19.16	20.94	118	0.014
30	12	20	19.16	20.94	86	0.010
30	8	18	19.16	20.94	194	0.022
30	10	20	19.16	20.94	137	0.016
30	12	22	19.16	20.94	101	0.012
40	8	16	23.18	25.31	207	0.024
40	10	18	23.18	25.31	143	0.016
40	12	20	23.18	25.31	105	0.012
40	8	18	23.18	25.31	234	0.027
40	10	20	23.18	25.31	165	0.019
40	12	22	23.18	25.31	123	0.014
50	8	16	24.99	27.06	225	0.026
50	10	18	24.99	27.06	157	0.018
50	12	20	24.99	27.06	115	0.013
50	8	18	24.99	27.06	255	0.029

Assumptions from PA TRM for 40 gallon tank. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

336 Ibid

³³⁷ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.

³³⁸ NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gld=6&ctId=40

Page 132 of 296

50	10	20	24.99	27.06	180	0.021
50	12	22	24.99	27.06	134	0.015
80	8	16	31.84	34.14	290	0.033
80	10	18	31.84	34.14	202	0.023
80	12	20	31.84	34.14	149	0.017
80	8	18	31.84	34.14	327	0.037
80	10	20	31.84	34.14	232	0.027
80	12	22	31.84	34.14	173	0.020

If tank specifics are unknown assume 40 gallons as an average tank size³³⁹, and savings from adding R-10 to a poorly insulated R-8 tank:

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/8760$

Where:

 ΔkWh = kWh savings from tank wrap installation

8760 = Number of hours in a year (since savings are assumed to

be constant over year).

The table above has default savings for various tank capacity and pre and post R-VALUES.

If tank specifics are unknown assume 40 gallons as an average tank size³⁴⁰, and savings are from adding R-10 to a poorly insulated R-8 tank:

$$\Delta$$
kW = 234 / 8760
= 0.027 kW

_

³³⁹ DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf
340 DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13,

JOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure will be the actual cost of installing the tank wrap. If unknown assume \$35 average cost³⁴¹.

Measure Life

The measure life is assumed to be 5 years. 342

Operation and Maintenance Impacts

n/a

 $^{^{341}}$ Based on VEIC online product review. 342 Conservative estimate that assumes the tank wrap is installed on an existing unit with 5 years remaining life.

Page 134 of 296

DHW pipe insulation

Unique Measure Code: RS_WT_RTR_PIPEIN_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes adding insulation to un-insulated domestic hot water pipes. The measure assumes the pipe wrap is installed to the first elbow of the hot water carrying pipe.

Note, the algorithm provided to calculate savings may be used to determine an appropriate deemed savings value if the programs can provide appropriate average values for each of the variables.

This is a retrofit measure.

Definition of Baseline Condition

The baseline condition is un-insulated hot water carrying copper pipes.

Definition of Efficient Condition

To efficiency case is installing pipe wrap insulation to the first elbow of the hot water carrying copper pipe.

Annual Energy Savings Algorithm

If electric domestic hot water tank:

 $\Delta kWh = ((1/Rexist - 1/Rnew) * (L * C) * \Delta T * 8,760) / \eta DHW / 3413$

Where:

Rexist = Assumed R-value of existing uninsulated piping

 $= 1.0^{343}$

Rnew = R-value of existing pipe plus installed insulation

= Actual

http://www.oeb.gov.on.ca/OEB/_Documents/EB-2008-0346/Navigant_Appendix_C_substantiation_sheet_20090429.pdf

³⁴³ Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets", p77, presented to the Ontario Energy Board:

Page 135 of 296

Length = Length of piping insulated

= Actual

Circumference = Circumference of piping

= Actual (0.5" pipe = 0.13ft, 0.75" pipe = 0.196ft)

 ΔT = Temperature difference between water in pipe and

ambient air

 $= 65 \,{}^{\circ}F^{344}$

8,760 = Hours per year

ηDHW = DHW Recovery efficiency (ηDHW)

 $= 0.98^{345}$

3413 = Conversion from Btu to kWh

For example, insulating 4 feet of 0.75" pipe with R-3.5 wrap:

$$\Delta$$
kWh = ((1/1.0 - 1/4.5) * (4 * 0.196) * 65 * 8,760)/ 0.98 / 3,413

= 104 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/8,760$

For example, insulating 4 feet of 0.75" pipe with R-3.5 wrap:

 $\Delta kW = 104 / 8,760$

= 0.012 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel DHW unit:

 Δ MMBtu = ((1/Rexist - 1/Rnew) * (L * C) * Δ T * 8,760) / η DHW /1,000,000

Where:

ηDHW = Recovery efficiency of gas hot water heater

³⁴⁴ Assumes 130°F water leaving the hot water tank and average temperature of basement of 65°F.

³⁴⁵ Electric water heaters have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Page 136 of 296

$$= 0.75^{346}$$

For example, insulating 4 feet of 0.75" pipe with R-3.5 wrap:

$$\Delta$$
MMBtu = ((1/1.0 - 1/4.5) * (4 * 0.196) * 65 * 8,760)/ 0.75 / 1,000,000

= 0.46 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual cost of material and labor. If this is not available, assume \$3 per foot of insulation³⁴⁷.

Measure Life

The measure life is assumed to be 15 years³⁴⁸.

Operation and Maintenance Impacts

n/a

³⁴⁶ Review of AHRI Directory suggests range of recovery efficiency ratings for *new* Gas DHW units of 70-87%. Average of *existing* units is estimated at 75%

³⁴⁷ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

³⁴⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 137 of 296

High Efficiency Gas Water Heater

Unique Measure Code: RS_WT_TOS_GASDHW_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes the purchase of a high efficiency gas water heater meeting or exceeding ENERGY STAR criteria for the water heater category provided below, in place of a new unit rated at the minimum Federal Standard. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a new 50 gallon conventional gas storage water heater rated at the federal minimum $0.58~{\rm EF}^{349}$.

Definition of Efficient Condition

The efficient condition is a new high efficiency gas water heater meeting or exceeding the minimum efficiency Energy Star qualification criteria provided below³⁵⁰:

Water Heater Type	Energy Factor
High Efficiency Gas	0.67
Storage	
Gas Condensing	0.80
Whole Home Gas	0.82
Tankless	

 $^{^{349}}$ The Baseline Energy Factor is based on the Federal Minimum Standard for a standard 50 gallon storage water heater. Currently this is calculated as 0.67 - (0.0019 * Rated Volume) = 0.575 EF. This ruling can be found here:

 $http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf$

Please note that there is a new standard that will come in to force for water heaters sold on or after April 16 2015. This will increase the Federal standard to 0.675 - (0.0015 * Rated Volume) = 0.6 EF:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_fedreg.pdf

³⁵⁰ http://www.energystar.gov/index.cfm?c=water_heat.pr_crit_water_heaters

Page 138 of 296

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = MMBtuDHW * ((EFEff-EFBase)/ EFEff)

Where:

MMBtuDHW = typical annual household hot water consumption

(based on existing units)

 $= 21.1^{351}$

EF_{Base} = Baseline Energy Factor

 $= 0.575^{352}$

 EF_{Eff} = Efficient Energy Factor

= Actual³⁵³

For example, purchase and installation of a 0.82 gas condensing water heater:

 Δ MMBtu = 21.1 * ((0.82 - 0.575)/ 0.82)

= 6.3 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided below³⁵⁴:

http://www.eia.doe.gov/emeu/recs/recs2005/c&e/waterheating/pdf/tablewh7.pdf

VEIC estimate that the average efficiency of the existing DHW unit stock is 52.5% (based on the Federal Minimum standard from 1991 to 2001 (0.62 - (0.0019*50) = 0.525). An estimate of a new baseline unit energy consumption is therefore calculated as 23.1 * (0.525/0.575) = 21.1MMBtu.

³⁵¹ The estimate for hot water consumption for *existing* units is 23.1MMBtu, based on US EIA, Residential Energy Consumption Survey; Average Consumption for Water Heating by Major Fuels Used, 2005

 $^{^{352}}$ Minimum Federal Standard for a 50gallon gas fired tank; 0.67 - (0.0019 × Rated Storage Volume in gallons):

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf

³⁵³ The minimum ENERGY STAR specifications are provided above.

Page 139 of 296

Water Heater Type	Incremental
	Cost
High Efficiency Gas	\$175
Storage	
Gas Condensing	\$1,150
Whole Home Gas	\$750
Tankless	

Measure Life

The measure life is assumed to be 13 years³⁵⁵.

Operation and Maintenance Impacts

n/a

³⁵⁴ Incremental costs based on ACEEE lifecycle cost analysis; http://www.aceee.org/node/3068#lcc. High efficiency gas storage units cost \$1025, condensing gas units cost \$2000 and tankless units cost \$1600, compared to a conventional unit cost of \$850.

355 Based on ACEEE Life-Cycle Cost analysis; http://www.aceee.org/node/3068#lcc

Page 140 of 296

Heat Pump Domestic Water Heater

Unique Measure Code(s): RS_WT_TOS_HPRSHW_0510

Effective Date: March 2011

End Date:

Measure Description

This measure relates to the installation of a Heat Pump domestic water heater in place of a standard electric water heater in conditioned space. This is a time of sale measure.

Definition of Baseline Condition

The baseline condition is a standard electric water heater.

Definition of Efficient Condition

The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

ΔkWH = KWHbase * ((EFnew - EFbase)/EFnew) + KWHcooling - KWHheating

Where:

KWHbase = Average electric DHW consumption

 $= 3460^{356}$

EFnew = Energy Factor of Heat Pump water heater

 $= 2 0^{357}$

EFbase = Energy Factor of standard electric water heater

 $= 0.904^{358}$

Table 9.3.9, p9-34,

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/09.pdf Consistent with FEMP study; Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf

 $^{^{\}rm 356}$ Assumption taken from; Residential Water Heaters Technical Support Document for the January 17, 2001, Final Rule

³⁵⁷ Efficiency based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_heaters/WaterHeaterDraftCriteriaAnalysis.pdf
358 As above

Page 141 of 296

KWHcooling = Cooling savings from conversion of heat in home to water heat

 $= 61^{359}$

KWHheating³⁶⁰ = Heating cost from conversion of heat in home to water heat

KWHheating (electric resistance) = 1043
KWHheating (heat pump COP 2.0) = 521
KWHheating (fossil fuel) = 0

 Δ kWH electric resistance heat = 3460 * ((2.0 - 0.904) / 2.0) + 61 - 1043

= 914 kWh

 Δ kWH heat pump heat = 3460 * ((2.0 - 0.904) / 2.0) + 61 - 521

= 1436 kWh

 Δ kWH fossil fuel heat = 3460 * ((2.0 - 0.904) / 2.0) + 61 - 0

= 1957 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0.17 \ kW^{361}$

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = -KWHheating (electric resistance) * 0.003412 /

AFUEheating³⁶²

= -1043 *.003412 / .80

 $= -4.45 \text{ MMBTU}^{363}$

359 Cooling kWh= KWHbase * ((EFnew - EFbase)/EFnew)/8760 * 829 cooling hours (from TMY Baltimore data) / SEER 10 / 3.412 BTU/Wh

³⁶⁰ Heating kWh= KWHbase * ((EFnew - EFbase)/EFnew)/8760 * 4818 cooling hours (from TMY Baltimore data) / heating system efficiency

³⁶¹ Based on a chart showing summer weekday average electrical demand on page 10 of FEMP Study "Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters" (http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf). Using data points from the chart, the average delta kW in heat pump mode during the peak hours compared to resistance mode is 0.17kW.

³⁶² This is the additional energy consumption required to replace the heat removed from the home during the heating season by the heat pump water heater. KWHheating (electric resistance) is that additional heating energy for a home with electric resistance heat. This formula converts the additional heating kWh for an electric resistance home to the MMBtu required in a fossil fuel heated home.

³⁶³ Negative value because heating energy will increase due to this measure.

Page 142 of 296

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$925. 364

Measure Life

The measure life is assumed to be 10 years. 365

Operation and Maintenance Impacts

n/a

³⁶⁴ Vermont Energy Investment Corporation "Residential Heat Pump Water Heaters: Energy Efficiency Potential and Industry Status" November 2005.

³⁶⁵Based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_heaters/WaterHeaterDraftCriteriaAnalysis.pdf

Page 143 of 296

Appliance End Use

Clothes Washer

Unique Measure Code(s): RS_LA_TOS_CWASHES_0113, RS_LA_TOS_CWASHT2_0113, RS_LA_TOS_CWASHT3_0113, RS_LA_TOS_CWASHTT_0113

Effective Date: January 2013

End Date:

Measure Description

This measure relates to the purchase (time of sale) and installation of a clothes washer exceeding either the ENERGY STAR CEE Tier 2 or CEE TIER 3, ENERGY STAR Most Efficient or Top Ten minimum qualifying efficiency standards presented below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)	
Federal Standard	>= 1.26	<= 9.5	
ENERGY STAR 2011	>= 2.0	<= 6.0	
CEE TIER 2	>= 2.20	<= 4.5	
CEE TIER 3	>= 2.40	<= 4.0	
ENERGY STAR Most	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)	
Efficient (as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)	
Top Ten	Defined as the ten most efficient units available.		

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity; the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Baseline Condition

The baseline condition is a clothes washer at the minimum federal baseline efficiency presented above. The average efficiency of the post 1/1/2007 (when the 1.26 MEF Federal Standard became effective) non-ENERGY STAR units available is used to calculate savings (based on data pulled from the California Energy Commission Appliance Efficiency Database

Page 144 of 296

http://www.appliances.energy.ca.gov/). The average assumptions are provided below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
Federal Standard	1.60	7.93

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the ENERGY STAR, CEE TIER 2 or CEE TIER 3, ENERGY STAR Most Efficient or Top Ten efficiency criteria presented above. The average efficiency of the post 1/1/2007 units available in each classification is used to calculate savings (based on data pulled from the California Energy Commission Appliance Efficiency Database http://www.appliances.energy.ca.gov/). For Top Ten, those units on the website (http://www.toptenusa.org/Top-Ten-Clothes-Washers) as of September 2012 are averaged. The assumptions are provided below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR 2011	2.07	4.80
CEE TIER 2	2.28	4.16
CEE TIER 3	2.65	3.52
ENERGY STAR Most	3.32	2.81
Efficient		
Top Ten	3.38	3.54

Annual Energy Savings Algorithm

(see 'Mid Atlantic CW Analysis.xls' for detailed calculation)

1. Calculate clothes washer savings based on Modified Energy Factor (MEF).

The Modified Energy Factor (MEF) includes unit operation, water heating and drying energy use: "MEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E,

Page 145 of 296

and the energy required for removal of the remaining moisture in the wash load, $D^{"}$ 366.

The hot water and dryer savings calculated here assumes electric DHW and Dryer (this will be separated in Step 2).

MEFsavings = Capacity * (1/MEFbase - 1/MEFeff) * Ncycles

Where

Capacity = Clothes Washer capacity (cubic feet)

= Actual. If capacity is unknown assume 3.5 cubic

feet³⁶⁷

MEFbase = Modified Energy Factor of baseline unit

 $= 1.60^{368}$

MEFeff = Modified Energy Factor of efficient unit

= Actual. If unknown assume average values

provided below.

Ncycles = Number of Cycles per year

= 286³⁶⁹

MEFsavings is provided below based on deemed values³⁷⁰:

Efficiency Level	MEF	MEFSavings (kWh)
Federal Standard	1.60	0.0
ENERGY STAR	2.07	141.9
CEE Tier 2	2.28	186.2
CEE Tier 3	2.65	247.9
ENERGY STAR Most	3.32	
Efficient		324.0
Top Ten	3.38	329.2

2. Break out savings calculated in Step 1 for electric DHW and electric

³⁶⁶ Definition provided on the Energy star website.

³⁶⁷ Based on the average clothes washer volume of all post-1/1/2007 units from the California Energy Commission (CEC) database of Clothes Washer products.

³⁶⁸ Average MEF of post 1/1/2007, non-ENERGY STAR units from the California Energy Commission (CEC) database of Clothes Washer products.

Weighted average of 286 clothes washer cycles per year (based on 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section for Mid Atlantic States: http://www.eia.gov/consumption/residential/data/2009/)

MEF values are the average of the from the California Energy Commission (CEC) database of Clothes Washer products. See "Mid Atlantic CW Analysis.xls" for the calculation.

drver

ΔkWh = [(Capacity * 1/MEFbase * Ncycles) * (%CWbase + (%DHWbase * %Electric_DHW) + (%Dryerbase * %Electric_Dryer)] - [(Capacity * 1/MEFeff * Ncycles) * (%CWeff + (%DHWeff * %Electric_DHW) + (%Dryereff * %Electric_Dryer)]

Where:

= Percentage of total energy consumption for %CW

Clothes Washer operation

= Percentage of total energy consumption used for %DHW

water heating

= Percentage of total energy consumption for dryer %Dryer

operation

(dependent on efficiency level - see table below)

	Percentage of Total Energy Consumption ³⁷¹		
	%CW	%DHW	%Dryer
Baseline	6%	35%	59%
ENERGY STAR	7%	24%	68%
CEE Tier 2	7%	23%	70%
CEE Tier 3	9%	12%	79%
ENERGY STAR Most			
Efficient	10%	3%	87%
Top Ten	10%	3%	87%

%Electric DHW = Percentage of DHW savings assumed to be electric

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%
Unknown	65% ³⁷²

³⁷¹ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excelbased analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm. See "Mid Atlantic CW Analysis.xls" for the calculation.

Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey

%Electric_Dryer = Percentage of dryer savings assumed to be electric

Dryer fuel	%Electric_Dryer
Electric	100%
Fossil Fuel	0%
Unknown	79 % ³⁷³

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔkWH			
	Electric DHW	Gas DHW	Electric DHW	Gas DHW
	Electric	Electric	Gas Dryer	Gas Dryer
	Dryer	Dryer		
ENERGY STAR	141.9	40.2	101.2	-0.5
CEE Tier 2	186.2	67.6	122.8	4.2
CEE Tier 3	247.9	75.9	174.3	2.3
ENERGY STAR Most				
Efficient	324.0	113.4	215.6	5.0
Top Ten	329.2	118.4	216.3	5.5

If the DHW and dryer fuel is unknown the prescriptive kWH savings based on defaults provided above should be:

	ΔkWH
ENERGY STAR	97.6
CEE Tier 2	131.3
CEE Tier 3	172.1
ENERGY STAR Most	
Efficient	227.3
Top Ten	231.5

Summer Coincident Peak kW Savings Algorithm

⁽RECS) 2009 for Mid Atlantic States. 373 Default assumption for unknown is based on percentage of homes with electric dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Page 148 of 296

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours = Assumed Run hours of Clothes Washer

 $= 286^{374}$

CF = Summer Peak Coincidence Factor for measure

 $= 0.033^{375}$

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔkW			
	Electric DHW	Gas DHW	Electric DHW	Gas DHW
	Electric	Electric	Gas Dryer	Gas Dryer
	Dryer	Dryer		
ENERGY STAR	0.016	0.005	0.012	0.000
CEE Tier 2	0.021	0.008	0.014	0.000
CEE Tier 3	0.029	0.009	0.020	0.000
ENERGY STAR Most Efficient	0.037	0.013	0.025	0.001
Top Ten	0.038	0.014	0.025	0.001

If the DHW and dryer fuel is unknown the prescriptive kWH savings based on defaults provided above should be:

	ΔkW
ENERGY STAR	0.011
CEE Tier 2	0.015
CEE Tier 3	0.020
ENERGY STAR Most	0.026
Efficient	
Top Ten	0.027

Annual Fossil Fuel Savings Algorithm

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

³⁷⁴ Based on assumption of 1 hour average per cycle (number of cycles based on 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section for Mid Atlantic States: http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc10homeappliaceindicators/pdf/tablehc11.10.pdf

³⁷⁵ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

ΔMMBtu = [(Capacity * 1/MEFbase * Ncycles) * ((%DHWbase * %Natural Gas_DHW * R_eff) + (%Dryerbase * %Gas _Dryer)] - [(Capacity * 1/MEFeff * Ncycles) * ((%DHWeff * %Natural Gas_DHW * R_eff) + (%Dryereff * %Gas_Dryer)] * MMBtu_convert

Where:

R_eff = Recovery efficiency factor

 $= 1.26^{376}$

MMBtu convert = Convertion factor from kWh to MMBtu

= 0.003413

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Natural Gas_DHW
Electric	0%
Natural Gas	100%
Unknown	35%377

%Gas_Dryer = Percentage of dryer savings assumed to be Natural
Gas

Dryer fuel	%Gas_Dryer
Electric	0%
Natural Gas	100%
Unknown	6% ³⁷⁸

Other factors as defined above

(http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

 $^{^{376}}$ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

³⁷⁷ Default assumption for unknown fuel is based on percentage of homes with gas DHW from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Default assumption for unknown is based on percentage of homes with gas dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Page 150 of 296

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔMMBtu			
	Electric DHW	Gas DHW	Electric DHW	Gas DHW
	Electric	Electric	Gas Dryer	Gas Dryer
	Dryer	Dryer		
ENERGY STAR	0.00	0.44	0.14	0.58
CEE Tier 2	0.00	0.51	0.22	0.73
CEE Tier 3	0.00	0.74	0.25	0.99
ENERGY STAR Most				
Efficient	0.00	0.91	0.37	1.28
Top Ten	0.00	0.91	0.39	1.29

If the DHW and dryer fuel is unknown the prescriptive MMBtu savings should be:

	ΔMMBtu
ENERGY STAR	0.16
CEE Tier 2	0.19
CEE Tier 3	0.28
ENERGY STAR Most	
Efficient	0.34
Top Ten	0.34

Annual Water Savings Algorithm

ΔWater (CCF) = (Capacity * (WFbase - WFeff)) * Ncycles

Where

WFbase = Water Factor of baseline clothes washer

 $= 7.93^{379}$

WFeff = Water Factor of efficient clothes washer

= Actual. If unknown assume average values

provided below.

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

Efficiency Level	WF ³⁸⁰	ΔWater

³⁷⁹ Average MEF of post 1/1/2007, non-ENERGY STAR units.

Water Factor is the number of gallons required for each cubic foot of laundry. WF values are

Page 151 of 296

		(CCF per
		year)
Federal Standard	7.93	0.0
ENERGY STAR	4.80	4.2
CEE Tier 2	4.16	5.0
CEE Tier 3	3.52	5.9
ENERGY STAR Most		
Efficient	2.81	6.8
Top Ten	3.54	5.9

Incremental Cost

The incremental cost for this measure is provided in the table below³⁸¹:

Efficiency Level	Incremental Cost
ENERGY STAR	\$225
CEE Tier 2	\$250
CEE Tier 3	\$350
ENERGY STAR Most Efficient	\$500
Top Ten	\$510

Measure Life

The measure life is assumed to be 14 years ³⁸².

Operation and Maintenance Impacts

n/a

the average of the CEC data set. See "Mid Atlantic CW Analysis.xls" for the calculation. ³⁸¹ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm. See "Mid Atlantic CW Analysis.xls" for the calculation.
382 Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm

Page 152 of 296

Clothes Washer Early Replacement

Unique Measure Code(s): RS_LA_EREP_CWASHES_0113, RS_LA_EREP_CWASHT2_0113, RS_LA_EREP_CWASHT3_0113, RS_LA_EREP_CWASHTT_0113

Effective Date: January 2013

End Date:

Measure Description

This measure relates to the early removal of an existing inefficient clothes washer from service, prior to its natural end of life, and replacement with a new unit exceeding either the ENERGY STAR CEE Tier 2 or CEE TIER 3, ENERGY STAR Most Efficient or Top Ten minimum qualifying efficiency standards presented below.

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)	
Federal Standard	>= 1.26	<= 9.5	
ENERGY STAR 2011	>= 2.0	<= 6.0	
CEE TIER 2	>= 2.20	<= 4.5	
CEE TIER 3	>= 2.40	<= 4.0	
ENERGY STAR Most	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)	
Efficient (as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)	
Top Ten	Defined as the ten most efficient units available.		

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity; the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is an early replacement measure.

Page 153 of 296

Definition of Baseline Condition

The baseline condition is the existing inefficient clothes washer for the remaining assumed useful life of the unit, assumed to be 5 years³⁸³, and then for the remainder of the measure life (next 9 years) the baseline becomes a new replacement unit meeting the minimum federal efficiency standard presented above.

To estimate the efficiency of the existing unit, the Federal Standard for clothes washers prior to 2004 is used; 0.817 MEF 384 . The Water Factor is assumed to be 11.0^{385}

The new baseline unit is consistent with the Time of Sale measure and is based on the average efficiency of the post 1/1/2007³⁸⁶ non-ENERGY STAR units available (based on data pulled from the California Energy Commission Appliance Efficiency Database http://www.appliances.energy.ca.gov/).

The baseline assumptions are provided below:

Efficiency Level	Modified Energy	Water Factor
	Factor (MEF)	(WF)
Existing unit	0.817	11.0
Federal Standard	1.60	7.93

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the ENERGY STAR, CEE TIER 2 or CEE TIER 3, ENERGY STAR Most Efficient or Top Ten efficiency criteria presented above. The average efficiency of the post 1/1/2007 units available in each classification is used to calculate savings (based on data pulled from the California Energy Commission Appliance Efficiency Database http://www.appliances.energy.ca.gov/). For Top Ten, those units on the website (http://www.toptenusa.org/Top-Ten-Clothes-Washers) as of September 2012 are averaged. The assumptions are provided below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR 2011	2.07	4.80

³⁸³ Based on 1/3 of the measure life.

384 http://www.cee1.org/resid/seha/rwsh/press-rel.php3

³⁸⁵ US DOE, Life Cycle Cost Model, spreadsheet dated December 1999, indicates 38.61 gallons of water per cycle. Assume average size of 3.5 cu ft gives 11.0 WF assumption. http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadshee

³⁸⁶ 1/1/2007 is when the current 1.26 MEF Federal Standard became effective.

Page 154 of 296

CEE TIER 2	2.28	4.16
CEE TIER 3	2.65	3.52
ENERGY STAR Most	3.32	2.81
Efficient		
Top Ten	3.38	3.54

Annual Energy Savings Algorithm

(see 'Mid Atlantic CW Retrofit Analysis.xls' for detailed calculation)

1. Calculate clothes washer savings based on Modified Energy Factor (MEF).

The Modified Energy Factor (MEF) includes unit operation, water heating and drying energy use: "MEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E, and the energy required for removal of the remaining moisture in the wash load, D" 387.

The hot water and dryer savings calculated here assumes electric DHW and Dryer (this will be separated in Step 2).

MEFsavings = Capacity * (1/MEFbase - 1/MEFeff) * Ncycles

Where

Capacity = Clothes Washer capacity (cubic feet)

= Actual. If capacity is unknown assume 3.5 cubic

feet³⁸⁸

MEFbase = Modified Energy Factor of baseline unit

Remaining life of existing unit (first 5 years) = 0.817^{389}

Remaining measure life (next 9 years) = 1.60^{390}

MEFeff = Modified Energy Factor of efficient unit

³⁸⁷ Definition provided on the Energy star website.

Based on the average clothes washer volume of all post-1/1/2007 units from the California Energy Commission (CEC) database of Clothes Washer products.

³⁸⁹ The Federal baseline for clothes washers prior to 2004 is used; 0.817 MEF.

³⁹⁰ Average MEF of post 1/1/2007, non-ENERGY STAR units from the California Energy Commission (CEC) database of Clothes Washer products.

Page 155 of 296

= Actual. If unknown assume average values

provided below.

Ncycles = Number of Cycles per year

 $= 286^{391}$

MEFsavings is provided below based on deemed values³⁹²:

		MEFSavings (kWh)		
		Remaining life	Remaining	
		of existing unit	measure life	
Efficiency Level	MEF	(first 5 years)	(next 9 years)	
Existing unit	0.817	n/a	n/a	
Federal Standard	1.60	n/a	n/a	
ENERGY STAR	2.07	741.6	141.9	
CEE Tier 2	2.28	785.9	186.2	
CEE Tier 3	2.65	847.6	247.9	
ENERGY STAR Most	3.32	923.7		
Efficient			324.0	
Top Ten	3.38	928.9	329.2	

2. Break out savings calculated in Step 1 for electric DHW and electric dryer

Where:

%CW

= Percentage of total energy consumption for

Clothes Washer operation

%DHW

= Percentage of total energy consumption used for

water heating

%Dryer

= Percentage of total energy consumption for dryer

operation

(dependent on efficiency level - see table below)

³⁹¹ Weighted average of 286 clothes washer cycles per year (based on 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section for Mid Atlantic States: http://www.eia.gov/consumption/residential/data/2009/)

³⁹² MEF values are the average of available products from the California Energy Commission (CEC) database of Clothes Washer products. See "Mid Atlantic CW Retrofit Analysis.xls" for the calculation.

	Percentage of Total Energy Consumption ³⁹³			
	%CW	%CW %DHW %Dryer		
Existing and Baseline	6%	35%	59%	
ENERGY STAR	7%	24%	68%	
CEE Tier 2	7%	23%	70%	
CEE Tier 3	9%	12%	79%	
ENERGY STAR Most				
Efficient	10%	3%	87%	
Top Ten	10%	3%	87%	

%Electric_DHW = Percentage of DHW savings assumed to be electric

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%
Unknown	65% ³⁹⁴

%Electric_Dryer = Percentage of dryer savings assumed to be electric

Dryer fuel	%Electric_Dryer
Electric	100%
Fossil Fuel	0%
Unknown	79 % ³⁹⁵

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

³⁹³ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excelbased analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st_andard.xlsm. See "Mid Atlantic CW Retrofit Analysis.xls" for the calculation.

394 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey

 ³⁹⁴ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.
 ³⁹⁵ Default assumption for unknown is based on percentage of homes with electric dryer from

³⁹⁵ Default assumption for unknown is based on percentage of homes with electric dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Remaining life of existing unit (first 5 years):

•	ΔkWH			
	Electric DHW	Gas DHW	Electric DHW	Gas DHW
	Electric	Electric	Gas Dryer	Gas Dryer
	Dryer	Dryer		
ENERGY STAR	741.6	429.7	344.5	32.6
CEE Tier 2	785.9	457.1	366.1	37.3
CEE Tier 3	847.6	465.4	417.6	35.4
ENERGY STAR Most	923.7	502.8	458.9	38.1
Efficient				
Top Ten	928.9	507.9	459.6	38.6

Remaining measure life (next 9 years):

-	ΔkWH				
	Electric DHW	Gas DHW	Electric DHW	Gas DHW	
	Electric	Electric	Gas Dryer	Gas Dryer	
	Dryer	Dryer			
ENERGY STAR	141.9	40.2	101.2	-0.5	
CEE Tier 2	186.2	67.6	122.8	4.2	
CEE Tier 3	247.9	75.9	174.3	2.3	
ENERGY STAR Most	324.0	113.4	215.6	5.0	
Efficient					
Top Ten	329.2	118.4	216.3	5.5	

If the DHW and dryer fuel is unknown the prescriptive kWH savings based on defaults provided above should be:

	ΔkWH		Equivalent Mid	Equivalent
	Remaining life of Remaining		Life Savings	Weighted
		measure life (next	Adjustment	Average Annual
	(first 5 years)	9 years)	(after 5 years)	Savings ³⁹⁶
	549.8			
ENERGY STAR		97.6	17.8%	295.4
CEE Tier 2	583.4	131.3	22.5%	329.0

_

³⁹⁶ These values are provided in case the utility screening tool does not allow for this mid life baseline adjustment. The values are determined by calculating the Net Present Value of the 14 year annual savings values and finding the equivalent annual savings that produces the same result. The Real Discount Rate of 5.0% is used.

Page 158 of 296

CEE Tier 3	624.2	172.1	27.6%	369.8
ENERGY STAR Most	679.4			
Efficient		227.3	33.5%	425.0
Top Ten	683.7	231.5	33.9%	429.3

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours = Assumed Run hours of Clothes Washer

 $= 286^{397}$

CF = Summer Peak Coincidence Factor for measure

 $= 0.033^{398}$

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

Remaining life of existing unit (first 5 years):

	ΔkW				
	Electric DHW	Electric DHW Gas DHW Electric DHW			
	Electric	Electric	Gas Dryer	Gas Dryer	
	Dryer	Dryer			
ENERGY STAR	0.086	0.050	0.040	0.004	
CEE Tier 2	0.091	0.053	0.042	0.004	
CEE Tier 3	0.098	0.054	0.048	0.004	
ENERGY STAR Most Efficient	0.107	0.058	0.053	0.004	
Top Ten	0.107	0.059	0.053	0.004	

Remaining measure life (next 9 years):

³⁹⁷ Based on assumption of 1 hour average per cycle (number of cycles based on 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section for Mid Atlantic States: http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc10homeappliaceindicators/pdf/tablehc11.10.pdf

³⁹⁸ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 159 of 296

	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer
ENERGY STAR	0.016	0.005	0.012	0.000
CEE Tier 2	0.021	0.008	0.014	0.000
CEE Tier 3	0.029	0.009	0.020	0.000
ENERGY STAR Most Efficient	0.037	0.013	0.025	0.001
Top Ten	0.038	0.014	0.025	0.001

If the DHW and dryer fuel is unknown the prescriptive kWH savings based on defaults provided above should be:

	ΔkW		Equivalent Mid	Equivalent
	Remaining life of	Remaining	Life Savings	Weighted
		measure life (next	Adjustment	Average Annual
	(first 5 years)	9 years)	(after 5 years)	Savings
ENERGY STAR	0.063	0.011	17.5%	0.034
CEE Tier 2	0.067	0.015	22.4%	0.038
CEE Tier 3	0.072	0.020	27.8%	0.043
ENERGY STAR Most	0.078	0.026		
Efficient			33.3%	0.049
Top Ten	0.079	0.027	34.2%	0.050

Annual Fossil Fuel Savings Algorithm

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

Where:

 $^{^{}m 399}$ To account for the different efficiency of electric and Natural Gas hot water heaters (gas

Page 160 of 296

MMBtu _convert = Convertion factor from kWh to MMBtu = 0.003413

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Natural Gas_DHW
Electric	0%
Natural Gas	100%
Unknown	35% ⁴⁰⁰

%Gas_Dryer = Percentage of dryer savings assumed to be Natural
Gas

Dryer fuel	%Gas_Dryer
Electric	0%
Natural Gas	100%
Unknown	6% ⁴⁰¹

Other factors as defined above

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

Remaining life of existing unit (first 5 years):

	ΔMMBtu					
	Electric DHW	Electric DHW Gas DHW Electric DHW Gas DH				
	Electric	Electric	Gas Dryer	Gas Dryer		
	Dryer	Dryer				
ENERGY STAR	0.00	1.34	1.36	2.70		
CEE Tier 2	0.00	1.41	1.43	2.85		
CEE Tier 3	0.00	1.64	1.47	3.11		
ENERGY STAR Most	0.00	1.81	1.59	3.40		

water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

(http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

⁴⁰⁰ Default assumption for unknown fuel is based on percentage of homes with gas DHW from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Default assumption for unknown is based on percentage of homes with gas dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Page 161 of 296

Efficient				
Top Ten	0.00	1.81	1.60	3.41

Remaining measure life (next 9 years):

emaming measure are	(next >) cars).					
	ΔMMBtu					
	Electric DHW	Gas DHW	Electric DHW	Gas DHW		
	Electric	Electric	Gas Dryer	Gas Dryer		
	Dryer	Dryer				
ENERGY STAR	0.00	0.44	0.14	0.58		
CEE Tier 2	0.00	0.51	0.22	0.73		
CEE Tier 3	0.00	0.74	0.25	0.99		
ENERGY STAR Most						
Efficient	0.00	0.91	0.37	1.28		
Top Ten	0.00	0.91	0.39	1.29		

If the DHW and dryer fuel is unknown the prescriptive MMBtu savings should be:

	ΔMMBtu		Equivalent Mid	Equivalent
	Remaining life of	Remaining	Life Savings	Weighted
		measure life (next	Adjustment	Average Annual
	(first 5 years)	9 years)	(after 5 years)	Savings ⁴⁰²
ENERGY STAR	0.55	0.16	29.1%	0.33
CEE Tier 2	0.58	0.19	32.8%	0.36
CEE Tier 3	0.67	0.28	41.8%	0.45
ENERGY STAR Most	0.73			
Efficient		0.34	46.6%	0.51
Top Ten	0.73	0.34	46.6%	0.51

Annual Water Savings Algorithm

ΔWater (CCF) = (Capacity * (WFbase - WFeff)) * Ncycles

Where

WFbase = Water Factor of baseline clothes washer

40

 $^{^{402}}$ These values are provided in case the utility screening tool does not allow for this mid life baseline adjustment. The values are determined by calculating the Net Present Value of the 14 year annual savings values and finding the equivalent annual savings that results in the same result. The Real Discount Rate of 5.0% is used.

Page 162 of 296

Remaining life of existing unit (first 5 years) = 11.0⁴⁰³

Remaining measure life (next 9 years) = 7.93⁴⁰⁴

WFeff = Water Factor of efficient clothes washer = Actual. If unknown assume average values provided below.

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

	,	ΔWater (CCF per year)		
Efficiency Level	WF ⁴⁰⁵	Remaining life	Remaining	
		of existing unit	measure life	
		(first 5 years)	(next 9 years)	
Existing Unit	11.0	n/a	n/a	
Federal Standard	7.93	n/a	n/a	
ENERGY STAR	4.80	8.3	4.2	
CEE Tier 2	4.16	9.2	5.0	
CEE Tier 3	3.52	10.0	5.9	
ENERGY STAR Most Efficient	2.81	11.0	6.8	
Top Ten	3.54	10.0	5.9	

Incremental Cost

The full measure cost assumption is provided below:

	Full Measure
Efficiency Level	Cost
ENERGY STAR	\$825
CEE Tier 2	\$850
CEE Tier 3	\$950
ENERGY STAR Most Efficient	\$1100

⁴⁰³ US DOE, Life Cycle Cost Model, spreadsheet dated December 1999, indicates 38.61 gallons of water per cycle. Assume average size of 3.5 cu ft gives 11.0 WF assumption. http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadshee

t.xls

404 Average MEF of post 1/1/2007, non-ENERGY STAR units.

Water Factor is the number of gallons required for each cubic foot of laundry. WF values for all but the existing unit are based on the average of the CEC data set. See "Mid Atlantic CW Retrofit Analysis.xls" for the calculation.

Page 163 of 296

Top Ten \$1110

The deferred (for 5 years) baseline replacement clothes washer cost is assumed to be \$600.406

Measure Life

The measure life is assumed to be 14 years 407.

Operation and Maintenance Impacts

n/a

 $^{^{406}}$ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm. See "Mid Atlantic CW Retrofit Analysis.xls" for details.

407 Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm

Page 164 of 296

Page 165 of 296

Dehumidifier

Unique Measure Code(s): RS_AP_TOS_DEHUMID_0113

Effective Date: January 2013

End Date:

Measure Description

This measure relates to the purchase (time of sale) and installation of a dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR (Version 3.0)⁴⁰⁸ in place of a unit that meets the minimum federal standard efficiency.

Definition of Baseline Condition

The baseline for this measure is defined as a new dehumidifier that meets the Federal Standard efficiency standards as defined below:

Capacity (pints/day)	Federal Standard Criteria (L/kWh) ⁴⁰⁹
Up to 35	≥1.35
> 35 to ≤45	≥1.50
> 45 to ≤ 54	≥1.60
> 54 to ≤ 75	≥1.70
> 75 to ≤ 185	≥2.50

Definition of Efficient Condition

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards effective $10/1/2012^{410}$ as defined below:

Capacity (pints/day)	ENERGY STAR Criteria (L/kWh)
<75	≥1.85
75 to ≤185	≥2.80

⁴⁰⁸ Energy Star Version 3.0 became effective 10/1/12

⁴⁰⁹ The Federal Standard for Dehumidifiers changed as of October 2012; https://www.federalregister.gov/articles/2010/12/02/2010-29756/energy-conservation-program-for-consumer-products-test-procedures-for-residential-dishwashers#h-11 http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/

^{***}Unttp://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/ES_Dehumidifiers_Final_V3.0_Eligibility_Criteria.pdf?d70c-99b0

Page 166 of 296

Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

Annual Energy Savings Algorithm

 $\Delta kWh = (((Capacity * 0.473) / 24) * Hours) * (1 / (L/kWh Base) - 1 / (L/kWh Base) - 1$ (L/kWh_Eff))

Where:

Capacity = Capacity of the unit (pints/day) 0.473 = Constant to convert Pints to Liters

24 = Constant to convert Liters/day to Liters/hour

Hours = Run hours per year

 $= 1632^{411}$

L/kWh = Liters of water per kWh consumed, as provided in

tables above

Annual kWh results for each capacity class are presented below using the average of the capacity range. If the capacity of installed units is collected, the savings should be calculated using the algorithm. If the capacity is unknown, a default average value is provided:

				Annual kWh		
Capacity	Capacity Used	Federal Standard Criteria	ENERGY STAR Criteria	Federal Standard	ENERGY STAR	Savings
(pints/day) Range		(≥ L/kWh)	(≥ L/kWh)	'		
≤25	20	1.35	1.85	477	348	129
> 25 to ≤35	30	1.35	1.85	715	522	193
> 35 to ≤45	40	1.5	1.85	858	695	162
> 45 to ≤ 54	50	1.6	1.85	1005	869	136

⁴¹¹ Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?f3f7-6a8b&f3f7-6a8b

Page 167 of 296

> 54 to ≤ 75	65	1.7	1.85	1230	1130	100
> 75 to ≤ 185	130	2.5	2.8	1673	1493	179
Average	46	1.51	1.85	983	800	183

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

= Annual operating hours = 1632 hours⁴¹² Hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.37^{413}$

Capacity	ΔkW
(pints/day) Range	
≤25	0.029
> 25 to ≤35	0.044
> 35 to ≤45	0.037
> 45 to ≤ 54	0.031
> 54 to ≤ 75	0.023
> 75 to ≤ 185	0.041
Average	0.042

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm

⁴¹² Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator

<u>.xlsx?f3f7-6a8b&f3f7-6a8b</u>

413 Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1632/4392 = 37.2%

Page 168 of 296

n/a

Incremental Cost

The assumed incremental capital cost for this measure is \$45⁴¹⁴.

Measure Life

The measure life is assumed to be 12 years. 415

Operation and Maintenance Impacts

n/a

⁴¹⁴ Based on available data from the Department of Energy's Life Cycle Cost analysis spreadsheet:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_dehumidifi er.xls
415 ENERGY STAR Dehumidifier Calculator

Page 169 of 296

Shell Savings End Use

Air sealing

Unique Measure Code: RS_SL_RTR_AIRSLG_0711

Effective Date: July 2011

End Date:

Measure Description

This measure characterization provides a method of claiming both heating and cooling (where appropriate) savings from the improvement of a residential building's air-barrier, which together with its insulation defines the thermal boundary of the conditioned space.

The measure assumes that a trained auditor, contractor or utility staff member is on location, and will measure and record the existing and post airleakage rate using a blower door in accordance with industry best practices⁴¹⁶. Where possible, the efficiency of the heating and cooling system used in the home should be recorded, but default estimates are provided if this is not available.

This is a retrofit measure.

Definition of Baseline Condition

The existing air leakage prior to any air sealing work should be determined using a blower door.

Definition of Efficient Condition

Air sealing materials and diagnostic testing should meet all program eligibility qualification criteria. The post air sealing leakage rate should then be determined using a blower door.

Annual Energy Savings Algorithm

Cooling savings from reduction in Air Conditioning Load:

⁴¹⁶ See BPI Building Analyst and Envelope Professional standards, http://www.bpi.org/standards_approved.aspx

Page 170 of 296

ΔkWh = [(((CFM50Exist - CFM50New) / N-factor) *60 * CDH * DUA * 0.018) / 1,000 / nCool] * LM

Where:

CFM50exist = Blower Door result (CFM50) prior to air sealing

= actual

CFMnew = Blower Door result (CFM₅₀) after air sealing

= actual

N-factor = conversion from CFM_{50} to $CFM_{Natural}^{417}$

= dependent on exposure level:

Exposure	Well Shielded	24
	Normal	20
	Exposed	18

CDH = Cooling Degree Hours⁴¹⁸

= dependent on location:

Location	Cooling Degree Hours (75°F set point)
Wilmington, DE	7,514
Baltimore, MD	9,616
Washington, DC	13,178

DUA = Discretionary Use Adjustment⁴¹⁹

= 0.75

0.018 = The volumetric heat capacity of air (Btu/ft3°F) ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use⁴²⁰:

http://www.homeenergy.org/archive/hem.dis.anl.gov/eehem/94/940111.html#94011122

⁴¹⁷ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). Since there is minimal stack effect due to low delta T, the height of the building is not included in determining n-factor for cooling savings.

⁴¹⁸ Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html)

⁴¹⁹ To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

Page 171 of 296

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

For example, a well shielded home in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

Heating savings for homes with electric heat (Heat Pump or resistance):

Where:

N-factor

= conversion from CFM₅₀ to CFM_{Natural} 422

= Based on building height and exposure level:

	# Stories:	1	1.5	2	3
Exposure	Well Shielded	24	21.6	19.2	16.8
	Normal	20	18	16	14

⁴²⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

The Latent Multiplier is used to convert the Sensible cooling savings calculated to a value representing Sensible and Latent Cooling loads. The value 6.9 is derived from Harriman et al "Dehumidification and Cooling Loads From Ventilation Air", ASHRAE Journal, which provides a Latent to Sensible load ratio for Baltimore, MD of 4.7:0.8. Thus, the total load (i.e. sensible + latent) to sensible load ratio is 5.5 to 0.8, or 6.9 to 1. While this report also provides a value for Wilmington, DE (7.14), because it is very similar and within the likely range of error for this algorithm, and because there is no equivalent value for Washington DC, for simplicity sake we recommend using a single value to account for the latent cooling loads throughout the region.

A22 N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location, height of building (stack effect) and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). http://www.homeenergy.org/archive/hem.dis.anl.gov/eehem/94/940111.html#94011122

Page 172 of 296

= Heating Degree Days HDD

= dependent on location⁴²³

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

= Efficiency in COP of Heating equipment = actual. If not available use⁴²⁴: ηHeat

System Type	Age of Equipment	HSPF Estimate	COP Estimate ⁴²⁵
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

293.1 = Converts MMBtu to kWh

For example, a well shielded home in Wilmington, DE with a heat pump with COP of 2.5, has pre and post blower door test results of 3,400 and 2,250.

$$\Delta$$
kWh = [(((3,400 - 2,250) / 24) *60 * 24 * 3,275 * 0.018) / 1,000,000 / 2.5] * 293.1

477 kWh

Summer Coincident Peak kW Savings Algorithm

⁴²⁵ To convert HSPF to COP, divide the HSPF rating by 3.413.

efficiencies over time means that using the minimum standard is appropriate.

⁴²³ The 10 year average annual heating degree day value is calculated for each location, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used. ⁴²⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of

Page 173 of 296

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	513 ⁴²⁶
Baltimore, MD	531 ⁴²⁷
Washington, DC	668

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{428}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{429}$

For example, a well shielded home in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

 $\Delta kW = 168 / 513 * 0.69$

= 0.23 kW

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

ΔMMBTU = (((CFM50Exist - CFM50New) / N-factor) *60 * 24 * HDD * 0.018) / 1,000,000 / ηHeat

47

⁴²⁶ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) ⁴²⁷ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

⁴²⁸ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

⁴²⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 174 of 296

Where:

N-factor

= conversion from CFM₅₀ to CFM_{Natural} 430

= Based on building height and exposure level:

	# Stories:	1	1.5	2	3
	Well Shielded	24	21.6	19.2	16.8
Exposure	Normal	20	18	16	14
	Exposed	18	16.2	14.4	12.6

HDD = Heating Degree Days

= dependent on location⁴³¹

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

ηHeat

Efficiency of Heating equipment (equipment efficiency * distribution efficiency)
 actual⁴³². If not available use 84% for equipment

= actual⁴³². If not available use 84% for equipment efficiency and 78% for distribution efficiency to give $66\%^{433}$.

⁴³⁰ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location, height of building (stack effect) and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). http://www.homeenergy.org/archive/hem.dis.anl.gov/eehem/94/940111.html#94011122

The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://www.engr.udayton.edu/weather/). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁴³² Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

⁴³³ The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

Page 175 of 296

For example, a well shielded home in Wilmington, DE with a 70% heating system efficiency, has pre and post blower door test results of 3,400 and 2,250.

$$\Delta$$
MMBtu = (((3,400 - 2,250) / 24) *60 * 24 * 3,275 * 0.018) / 1,000,000 / 0.7

= 5.8 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the air sealing work.

Measure Life

The measure life is assumed to be 15 yrs⁴³⁴.

Operation and Maintenance Impacts

n/a

⁴³⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 176 of 296

Attic/ceiling/roof insulation

Unique Measure Code: RS_SL_RTR_ATTICI_0711

Effective Date: July 2011

End Date:

Measure Description

This measure characterization is for the installation of new insulation in the attic/roof/ceiling of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation depth and type (to calculate R-values), the surface area of insulation added, and where possible the efficiency of the heating and cooling system used in the home.

This is a retrofit measure.

Definition of Baseline Condition

The existing insulation R-value should include the total attic floor / roof assembly. An R-value of 5 should be assumed for the roof assembly plus the R-value of any existing insulation⁴³⁵. Therefore if there is no insulation currently present, the R-value of 5 should be used.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The new insulation R-value should include the total attic floor /roof assembly and include the effective R-value of any existing insulation that is left in situ.

Annual Energy Savings Algorithm

Savings from reduction in Air Conditioning Load:

 Δ kWh = ((1/Rexist - 1/Rnew) * CDH * DUA * Area) / 1,000 / η Cool

Where:

⁴³⁵ The R-5 assumption for roof assembly is based on J.Neymark & Associates and National Renewable Energy Laboratory, June 2009; "BESTEST-EX Interim Test Procedure" p27. The attic floor and roof should be modeled as a system including solar gains and attic ventilation, and R-5 is the standard assumption for the thermal resistance of the whole attic/roof system.

Page 177 of 296

Rexist = R-value of roof assembly plus any existing insulation

= actual (minimum of R-5)

Rnew = R-value of roof assembly plus new insulation

= actual

CDH = Cooling Degree Hours⁴³⁶

= dependent on location:

Location	Cooling Degree Hours (75°F set point)
Wilmington, DE	7,514
Baltimore, MD	9,616
Washington, DC	13,178

DUA = Discretionary Use Adjustment⁴³⁷

= 0.75

Area = square footage of area covered by new insulation

= actual

ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use⁴³⁸:

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

For example, insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

$$\Delta$$
kWh = ((1/5 - 1/30) * 9,616 * 0.75 * 1,200) / 1,000 / 12
= 120kWh

Savings for homes with electric heat (Heat Pump of resistance):

43

⁴³⁶ Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/)

⁴³⁷ To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

⁴³⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

 Δ kWh = (((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / nHeat) * 293.1

HDD = Heating Degree Days

= dependent on location 439

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

1,000,000 nHeat = Converts Btu to MMBtu

= Efficiency in COP of Heating equipment

= actual. If not available use 440 :

System	Age of	HSPF	СОР
Туре	Equipment	Estimate	Estimate
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

293.1 = Converts MMBtu to kWh

For example, insulating 1200 square feet of attic from R-5 to R-30 in a home with a 2.5COP Heat Pump in Baltimore, MD.

$$\Delta$$
kWh = (((1/5 - 1/30) * 3457 * 24 * 1,200) / 1,000,000 / 2.5) * 293.1
= 1,945 kWh

Summer Coincident Peak kW Savings Algorithm

_

⁴³⁹ The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁴⁴⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 179 of 296

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	513 ⁴⁴¹
Baltimore, MD	531 ⁴⁴²
Washington, DC	668

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{443}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{444}$

For example, insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

$$\Delta kW = 120 / 531 * 0.69$$

= 0.16 kW

Annual Fossil Fuel Savings Algorithm

Where:

_

⁴⁴¹ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (531 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 442 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research.

⁴⁴³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 180 of 296

HDD

- = Heating Degree Days
- = dependent on location⁴⁴⁵

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

ηHeat

Efficiency of Heating equipment (equipment efficiency * distribution efficiency)
 actual⁴⁴⁶. If not available use 84% for equipment

= actual⁴⁴⁶. If not available use 84% for equipment efficiency and 78% for distribution efficiency to give $66\%^{447}$.

For example, insulating 1200 square feet of attic from R-5 to R-30 in a home with a 75% efficiency heating system in Baltimore, MD.

= 22 MMBtu

Annual Water Savings Algorithm n/a

Incremental Cost

The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁴⁴⁶ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

⁴⁴⁷ The equipment efficiency default is based on data provided by GAMA during the Federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

Page 181 of 296

The incremental cost for this measure should be the actual installation and labor cost to perform the insulation work.

Measure Life

The measure life is assumed to be 25 years⁴⁴⁸.

Operation and Maintenance Impacts

n/a

_

 $^{^{448}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 182 of 296

Efficient Windows - Energy Star Time of sale

Unique Measure Code(s): RS_SL_TOS_WINDOW_0510

Effective Date: March 2011

End Date:

Measure Description

This measure describes the purchase of Energy Star Windows (u-0.32; SHGC-0.40 minimum requirement for North Central region) at natural time of replacement or new construction outside of the Energy Star Homes program. This does not relate to a window retrofit program. Measure characterization assumes electric heat- either resistance or heat pump.

Definition of Baseline Condition

The baseline condition is a standard double pane window with vinyl sash, (u- 0.49 SHGC-0.58).

Definition of Efficient Condition

The efficient condition is an ENERGY STAR window (u-0.32; SHGC-0.40 minimum requirement for North Central region).

Annual Energy Savings Algorithm 449

Heating kWh Savings (Electric Resistance) = 356 kWh per 100 square feet window area

Heating kWh Savings (Heat Pump COP 2.0)

= 194 kWh per 100 square feet

window area

Cooling kWh Savings (SEER 10) = 205 kWh per 100 square feet

window area

Summer Coincident Peak kW Savings Algorithm

 Δ kWcooling = Δ kWREM * CF

⁴⁴⁹ Based on REMRate modeling of New Jersey baseline existing home moved to Baltimore climate with electric furnace or air source heat pump HSPF 2.0, SEER 10 AC. Ducts installed in un-conditioned basement. Duct leakage set at RESNET/HERS qualitative default.

Page 183 of 296

Where:

 $\Delta kWREM$ = Delta kW calculated in REMRate model

= 0.12 kW per 100 square feet window area

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{450}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{451}$

 ΔkW_{SSP} cooling = 0.12 * 0.69

= 0.083 kW per 100 square feet of windows

 ΔkW_{PIM} cooling = 0.12 * 0.66

= 0.079 kW per 100 square feet of windows

Annual Fossil Fuel Savings Algorithm

n/a for homes with electric heat.

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$150 per 100 square feet of windows. 452

Measure Life

The measure life is assumed to be 25 years. 453

Operation and Maintenance Impacts

n/a

-

⁴⁵⁰ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

⁴⁵¹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

⁴⁵² Alliance to Save Energy Efficiency Windows Collaborative Report, December 2007.

⁴⁵³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 184 of 296

Pool Pump End Use

Pool pump-two speed

Unique Measure Code: RS_PP_TOS_PPTWO_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes the purchase of a two speed swimming pool pump capable of running at 50% speed and being run twice as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition

The efficient condition is an identically sized two speed pump operating at 50% speed (50% flow) for 10.36 hours per day.

Annual Energy Savings Algorithm

$$\Delta kWh = kWh_{Base} - kWh_{Two Speed}^{454}$$

Where:

 kWh_{Base} = typical consumption of a single speed motor in a cool

climate (assumes 100 day pool season)

= 707 kWh

 $kWh_{Two Speed}$ = typical consumption for an efficient two speed pump

motor = 177 kWh

 $\Delta kWh = 707 - 177$

 $^{^{454}}$ Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

= 530 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (kW_{Base} - kW_{Two Speed}) * CF^{455}$$

Where:

 kW_{Base} = Connected load of baseline motor

= 1.3 kW

 $kW_{Two Speed}$ = Connected load of two speed motor

= 0.171 kW

CF_{SSP} = Summer System Peak Coincidence Factor for pool pumps

(hour ending 5pm on hottest summer weekday)

 $= 0.20^{456}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for pool pumps

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.27^{457}$

 $\Delta kW_{SSP} = (1.3-0.171) * 0.20$

= 0.23 kW

 $\Delta kW_{SSP} = (1.3-0.171) * 0.27$

= 0.31 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

4

⁴⁵⁵ All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

⁴⁵⁶ Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16
⁴⁵⁷ Ibid

Page 186 of 296

The incremental cost for this measure is assumed to be \$175 for a two speed pool pump motor⁴⁵⁸.

Measure Life

The measure life is assumed to be 10 yrs⁴⁵⁹.

Operation and Maintenance Impacts

n/a

 $^{^{\}rm 458}$ Based on review of Lockheed Martin pump retail price data, July 2009. $^{\rm 459}$ VEIC estimate.

Page 187 of 296

Pool pump-variable speed

Unique Measure Code: RS_PP_TOS_PPVAR_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes the purchase of a variable speed swimming pool pump capable of running at 40% speed and being run two and a half times as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition

The efficient condition is an identically sized two speed pump operating at 40% speed (50% flow) for 13 hours per day.

Annual Energy Savings Algorithm

$$\Delta kWh = kWh_{Base} - kWh_{Variable Speed}$$
 460

Where:

kWh_{Base}

= typical consumption of a single speed motor in a cool

climate (assumes 100 day pool season)

 $= 707 \, kWh$

kWh_{Variable} Speed

= typical consumption for an efficient variable

speed pump motor

= 113 kWh

 Δ kWh = 707 - 113

⁴⁶⁰ Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

= 594 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (kW_{Base} - kW_{Two Speed}) * CF^{461}$$

Where:

= Connected load of baseline motor kW_{Base}

= 1.3 kW

= Connected load of two speed motor $kW_{Two\ Speed}$

= 0.087 kW

CF_{SSP} = Summer System Peak Coincidence Factor for pool pumps

(hour ending 5pm on hottest summer weekday)

 $= 0.20^{462}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for pool pumps

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.27^{463}$

 $\Delta kW_{SSP} = (1.3-0.087) * 0.20$

= 0.24 kW

 $\Delta kW_{SSP} = (1.3-0.087) * 0.27$

= 0.34 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$750 for a variable speed pool pump motor⁴⁶⁴.

⁴⁶³ Ibid.

⁴⁶¹ All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

⁴⁶² Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16

Page 189 of 296

Measure Life

The measure life is assumed to be 10 yrs⁴⁶⁵.

Operation and Maintenance Impacts

n/a

 $^{\rm 464}$ Based on review of Lockheed Martin pump retail price data, July 2009. $^{\rm 465}$ VEIC estimate.

Page 190 of 296

Plug Load End Use

"Smart-Strip" plug outlets

Unique Measure Code: RS_PL_TOS_SMARTS_0711

Effective Date: July 2011

End Date:

Measure Description

This measure describes savings associated with the purchase and use of a Controlled Power Strip (or Smart Strips). These multi-plug power strips have the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced.

This measure characterization provides savings for a 5-plug strip and a 7-plug strip.

Definition of Baseline Condition

The assumed baseline is a standard power strip that does not control any of the connected loads.

Definition of Efficient Condition

The efficient case is the use of a 5 or 7-plug smart strip.

Annual Energy Savings Algorithm

 Δ kWh_{5-Plug} = 56.5 kWh Δ kWh_{7-Plug} = 102.8 kWh

⁴⁶⁶ NYSERDA Measure Characterization for Advanced Power Strips. Study based on review of:

i) Smart Strip Electrical Savings and Usability, Power Smart Engineering, October 27, 2008.

ii) Final Field Research Report, Ecos Consulting, October 31, 2006. Prepared for California Energy Commission's PIER Program.

iii) Developing and Testing Low Power Mode Measurement Methods, Lawrence Berkeley National Laboratory (LBNL), September 2004. Prepared for California Energy Commission's Public Interest Energy Research (PIER) Program.

REGIONAL EVALUATION.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours = Annual hours when controlled standby loads are turned

off

 $= 7,149^{467}$

CF = Coincidence Factor

 $= 0.8^{468}$

 $\Delta kW_{5-Plug} = (56.5/7,149) * 0.8$

= 0.0063 kW

 $\Delta kW_{5-Plug} = (102.8/7, 149) * 0.8$

= 0.012 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$16 for a 5-plug and \$26 for a 7-plug⁴⁶⁹.

Measure Life

The measure life is assumed to be 4 years⁴⁷⁰.

iv) 2005 Intrusive Residential Standby Survey Report, Energy Efficient Strategies, March, 2006.

v) Smart Strip Portfolio of the Future, Navigant Consulting for San Diego G&E, March 31, 2009.

⁴⁶⁷ Average of off hours for controlled TV and computer from above study.

⁴⁶⁸ In the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

⁴⁶⁹ NYSERDA Measure Characterization for Advanced Power Strips

⁴⁷⁰ David Rogers, Power Smart Engineering, October 2008: "Smart Strip electrical savings and usability", p22. Assumes that the unit can only take one surge and then needs to be replaced.

Page 192 of 296

Operation and Maintenance Impacts n/a

Page 193 of 296

COMMERCIAL & INDUSTRIAL MARKET SECTOR

Lighting End Use

General Purpose CFL Screw base, Retail - Commercial

Unique Measure Code(s): CI_LT_TOS_CFLSCR_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure characterizes the installation of a general purpose compact fluorescent light bulb (CFL) in place of an incandescent bulb. The measure provides assumptions based on the use of a program that uses a Time of Sale/Retail implementation strategy. Direct Install assumptions are presented with the residential characterization. This characterization is for a general purpose screw based CFL bulb (A-lamps), and not a specialty bulb (e.g., reflector (PAR) lamp, globes, candelabras, 3-ways, etc.).

Definition of Baseline Condition

The baseline is the installation of an incandescent light bulb.

Definition of Efficient Condition

The efficient condition is the installation of a compact fluorescent light bulb.

Annual Energy Savings Algorithm

 Δ kWh = ((CFLwatts x DeltaMultiplier) / 1000) x HOURS x ISR x WHFe

Where:

CFLwatts = CFL Lamp Watts (if known)

DeltaMultiplier = Multiplier to calculate delta watts. Depends upon bulb wattage and year of replacement⁴⁷¹

⁴⁷¹ Average wattage of compact fluorescent from *RLW study* was 15.5W, and the replacement incandescent bulb was 61.2W. This is a ratio of 3.95 to 1, and the delta watts is equal to the compact fluorescent bulb multiplied by 2.95: RLW Analytics, New England Residential Lighting

CFL	Delta Watts Multiplier ⁴⁷²			
Wattage	2013 2014 and			
		Beyond		
15 or less	2.95	1.83		
16-20	1.79	1.79		
21W+	1.84	1.84		

If Compact Fluorescent Watts is unknown use 28.2⁴⁷³ from 2013 onwards as the delta watts (i.e., for (CFLwatts x DeltaMultiplier)).

HOURS = Average hours of use per year

> = If annual operating hours are unknown, see table "Interior CFL Lighting Operating Hours and Coincidence Factors by Building Type" below. Otherwise, use site specific annual operating hours information. 474

ISR = In Service Rate or percentage of units rebated that are

installed and operational

 $= 0.79^{475}$

WHFe = Waste Heat Factor for Energy to account for cooling

savings from efficient lighting. = 1.14 476

For example, assuming a 19W CFL is installed in an office building in 2013:

Markdown Impact Evaluation, January 20, 2009. Post EISA multipliers are calculated by finding the new delta watts after incandescent bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014); see MidAtlantic CFL Adjustments.xls.

Calculated by finding the new delta watts after incandescent bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014); see MidAtlantic CFL

⁴⁷³ To account for the change in baseline stemming from the Energy Independence and Security Act of 2007 discussed below. Calculated by multiplying 45.7 by the average adjustment 2014 percentage adjustment from table below. This adjustment should be made in 2013 since this is the midpoint of the 3 EISA adjustment years.

⁴⁷⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁴⁷⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁴⁷⁶ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

 Δ kWh = [(19 x 1.79) / 1000] x 3,516 x 0.79 x 1.14 = 108 kWh

Interior CFL Lighting Operating Hours and Coincidence Factors by Building Type⁴⁷⁷

Building Type	HOURS	CF_{PJM}	CF _{SSP}
Education	2,513	0.56	0.18
Grocery	5,010	0.90	0.29
Lodging - Common Area	3,984	0.43	0.14
Lodging - Guest Room	766	0.09	0.03
Manufacturing	2,034	0.40	0.13
Medical	2,849	0.52	0.17
Municipal	2,491	0.37	0.12
Office	3,516	0.44	0.14
Other	4,444	0.60	0.19
Public Assembly	2,426	0.48	0.15
Religious	2,117	0.31	0.10
Restaurant	4,261	0.70	0.22
Retail	4,413	0.59	0.19
Service	2,815	0.57	0.18
University/College	3,484	0.56	0.18
Warehouse	3,571	0.66	0.21

⁴⁷⁷ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. As the KEMA study did not develop statistically significant estimates of annual operating hours by lighting technology type, CFL annual operating hours were estimated by multiplying the general annual operating hours by the ratio of CFL to Non-CFL operating hours by building type from the aforementioned 2010 EmPOWER evaluation.

Page 196 of 296

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012, 100W incandescents can no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 60W equivalent bulbs (15W or less CFLs) installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. Note if the adjustment year has passed, the reduced delta watts will be used in year 1 and so no mid life adjustment should be made. For example, in 2013 a 21W+ bulb will use the 1.84 multiplier and not have a mid-life adjustment.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below⁴⁷⁸:

CFL Wattage	Savings as Percentage of Base Year Savings			
	2013 2014 and Beyond			
15 or less	100%	62%		
16-20	61%	61%		

_

 $^{^{478}}$ Calculated by finding the post-EISA delta watts as a percentage or pre-EISA delta watts, for example for a 100W bulb: (72-25.3)/(100-25.3) = 62.5%. See MidAtlantic CFL Adjustments.xls for calculation.

Page 197 of 296

If Compact Fluorescent Watts is unknown no adjustment is necessary as it already assumed a reduced delta watts due to EISA.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((CFLwatts \times DeltaMultiplier) / 1000) \times ISR \times WHFd \times CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

CF_{SSP}41

CF = Summer Peak Coincidence Factor for measure

= See table "Interior CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above

For example, assuming a 19W CFL is installed in an office building in 2013 and estimating PJM summer peak coincidence:

$$\Delta$$
kW = [(19 x 1.79) / 1000] x 0.79 x 1.32 x 0.44
= 0.017 kW

Note: The savings adjustment due to the shifting baseline documented above should be applied to the peak kW savings assumed in the later years.

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$

 $= -\Delta kWh \times 0.00065$

Where:

0.7 = Aspect ratio 480

0.003413 = Constant to convert kWh to MMBTU

⁴⁷⁹ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁴⁸⁰ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

Page 198 of 296

0.23 = Fraction of lighting heat that contributes to space heating ⁴⁸¹

0.75 = Assumed heating system efficiency ⁴⁸²

For example, assuming a 19W CFL is installed in an office building in 2013:

 Δ MMBTU = -108 x 0.00065

= -0.07 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost is \$1.90 in 2012, \$1.80 in 2013 and \$1.50 from June 2014^{483} .

Measure Life

The measure life is assumed to be 3.4 years. 484

Operation and Maintenance Impacts

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic CFL Adjustments.xls). The key assumptions used in this calculation are documented below:

	Standard	Efficient
	Incandescent	Incandescent
Replacement Cost	\$0.50	\$1.00 ⁴⁸⁵
Component Life (years)	0.29^{486}	0.29487

...

⁴⁸¹ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁴⁸² Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁴⁸³ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy, March 2012, applying sales weighting and phase-in of EISA regulations. Assumption is \$2.50 for CFL over three years and \$0.6 for baseline in 2012, \$0.70 in 2013 and \$1.00 in 2014 as more expensive EISA qualified bulbs become baseline. ⁴⁸⁴ Conservative assumption based on a typical equipment lifetime of 12,000 hours and average daily usage of 9.6 hours.

⁴⁸⁵ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy.

⁴⁸⁶ Assumes rated life of incandescent bulb of 1000 hours and assumes 3,500 run hours.

Page 199 of 296

(based on lamp life /	
assumed annual run	
hours)	

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below⁴⁸⁸:

	NPV of baseline Replacement Costs			
CFL wattage	2013 2014 on			
21W+	\$4.52	\$4.30		
16-20W	\$4.35	\$4.52		
15W and less	\$4.18	\$4.35		

⁴⁸⁷ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard, so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours (as provided by G. Arnold, Optimal Energy and confirmed by N. Horowitz at NRDC).

⁴⁸⁸ Note, these values have been adjusted by the appropriate In Service Rate (0.79). See 'MidAtlantic CFL adjustments' for more information. The discount rate used for these calculations is 5.0%.

Page 200 of 296

High Performance and Reduced Wattage T8 Lighting Equipment

Unique Measure Code(s): CI_LT_TOS_HPT8_0113 and

CI_LT_RTR_HPT8_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure promotes the installation of High-Performance T8 (HPT8) or Reduced Wattage (RWT8) 4-ft lamp/ballast systems that have higher lumens per watt than standard 4-ft T8 systems. This results in lamp/ballast systems that produce equal or greater light than standard T8 systems, while using fewer watts. The Consortium for Energy Efficiency (CEE) maintains specifications and a list for qualifying High Performance and Reduced Wattage T8 lamps and ballasts. The list is updated frequently and is available at http://www.cee1.org/com/com-lt/com-lt-main.php3.

For lost opportunity scenarios (i.e. time of replacement) this measures assumes that a HPT8 or RWT8 fixture is installed instead of a standard performance 4-ft T8 fixture. For retrofit situations, it is assumed that the lamp(s) and ballast(s) in an existing 4-ft T12 fixture are replaced with qualifying HPT8 or RWT8 components.

Two-foot and 3-ft T8 advanced T8 systems can similarly replace standard-performance 2-ft and 3-ft T8 or T12 systems. Although 2-ft and 3-ft lamps are not listed on the CEE website, the same qualifying ballasts listed on the website that are used for 4-ft lamps should be selected for the 2-ft and 3-ft lamps.

Definition of Baseline Condition

The baseline condition is assumed to be the existing lighting fixture in retrofit applications. For lost-opportunity applications, the baseline condition will vary depending upon the specific characteristics of the fixtures installed (e.g. number of lamps) and any applicable codes and standards in the region. For illustrative purposes the following baseline conditions are assumed:

Lost-opportunity: a 3-lamp standard performance 4-ft F32 T8 fixture with normal output electronic ballast with an input wattage of 89W.

Retrofit: a 3-lamp 4-ft F34 T12 fixture with magnetic ballast with an input wattage of 136W.

Page 201 of 296

Definition of Efficient Condition

The efficient conditions for the lost-opportunity and retrofit applications are a qualifying High Performance or Reduced Watt T8 fixture and lamp/ballast combination, respectively. For illustrative purposes the following high efficiency conditions for the corresponding baselines are assumed:

Lost-opportunity: a 3-lamp CEE High Performance T8 fixture with electronic, normal output type ballast with a fixture input wattage of 85W.

Retrofit: relamp / reballast with qualifying lamps and ballast with resulting fixture input wattage of 72W.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times ISR \times WHFe$

Where:

WattsBASE = Connected load of baseline fixture (for "Time of Sale" or

"Replacement on Burnout" measures)

Or = Connected load of existing fixture (for "Retrofit"

measures)

WattsEE = Connected load of HPT8 fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" below. Otherwise, use site specific annual operating hours information. 489

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁴⁹⁰

WHFe = Waste Heat Factor for Energy to account for cooling

savings from efficient lighting.

 $= 1.14^{491}$

_

⁴⁸⁹ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁴⁹⁰ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

⁴⁹¹ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 202 of 296

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type⁴⁹²

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

For example, assuming an office installation:

Lost opportunity:
$$\Delta kWh = ((89 - 72) / 1000) \times 3,642 \times 1.00 \times 1.14$$

⁴⁹² Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

= 71 kWh per fixture

Retrofit:

 Δ kWh = ((136 - 72) / 1000) x 3,642 x 1.00 x 1.14

= 266 kWh per fixture

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times WHFd \times CF$$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

 CF_{SSP}^{493}

CF = Summer Peak Coincidence Factor for measure

= See table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above)

For example, assuming an office installation and estimating PJM summer peak coincidence:

Lost opportunity:

 $\Delta kW = ((89 - 72) / 1000) \times 1.00 \times 1.32 \times 0.63$

= 0.014 kW per fixture

Retrofit:

 $\Delta kW = ((136 - 72) / 1000) \times 1.00 \times 1.32 \times 0.63$

= 0.053 kW per fixture

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

⁴⁹³ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

 Δ MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$

 $= -\Delta kWh \times 0.00065$

Where:

0.7 = Aspect ratio 494

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

neating ⁴⁹⁵

0.75 = Assumed heating system efficiency ⁴⁹⁶

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs will vary by specific equipment installed. The incremental costs for the example measures are assumed to be \$25 for lost opportunity and \$60 for retrofit. 497

Measure Life

The measure life is assumed to be 15 years for "Time of Sale" or "Replacement on Burnout" measures. For "Retrofit" measure lifetimes by year, see the table below. 498

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf.

On June 26, 2009, the U.S. Department of Energy issued a final rule establishing new energy conservation standards for general service fluorescent lamps. These standards cover the most common types of linear fluorescent lamps including all 4-foot T12 and T8 lamps. Beginning July 14, 2012, the manufacture of T12 linear fluorescent lamps and the lowest efficiency 700-series T8 lamps was largely banned; however, 800-series standard T8 lamps will be unaffected. Some manufacturers will continue to produce an exempted type of T12 lamp with greater than 87 CRI. However, this lamp will be several times the cost of banned T12 lamps and will drive more users to upgrade to T8 systems.

If a customer relamped an existing fixture with T12s the day the standard takes effect, an assumption can be made that they would likely need to upgrade to, at a minimum, 800-series

⁴⁹⁴ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

⁴⁹⁵ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for

Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁴⁹⁶ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁴⁹⁷ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

⁴⁹⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates. June 2007.

Measure Life for Retrofit Measures with T12 Baseline

Year	2012	2013	2014	2015	2016	2017
Measure Life	6.2	5.5	5.0	4.6	4.3	No T12 baseline

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of replacement lamps and ballasts between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Actual operation and maintenance costs will vary by specific equipment installed/replaced. For the selected examples presented in the "Definition of Baseline Condition" and "Definition of Efficient Condition" sections: 499

Retrofit⁵⁰⁰

INC CI OTTC				
	Baseline Linear Fluorescent (Standard T8)		Efficient Linear Fluorescent (High Performance T8)	
	Lamp (each)	Ballast	Lamp (each)	Ballast
Replacement Cost	\$5.17	\$35	\$7.67	\$47.50
Component Life ⁵⁰¹ (years)	5.71502	20 ⁵⁰³	8.57 ⁵⁰⁴	20 ⁵⁰⁵

T8s in less than 6 years' time. This assumes the T12s installed have a typical rated life of 20,000 hours and are operated for 3,500 hours annually. Certainly, it is not realistic that everyone would wait until the final moment to relamp with T12s. Also, the exempted T12 lamps greater than 87 CRI will continue to be available to purchase, albeit at much higher cost. Therefore the more likely scenario would be a gradual shift to T8s over the 6 year timeframe. To simplify this assumption, it is recommended that the assumed measure life be gradually reduced between 2012 and 2017 as presented in table. Note: Adjusted measures lives take into account the savings that would result over the duration of the unadjusted measure life relative to baseline T8 fixtures once T12s are no longer available.

⁴⁹⁹ Unless otherwise noted, all table values adapted from Efficiency Vermont Technical Reference Manual 2012-77, July 2012.

⁵⁰⁰ While the retrofit example assumes a baseline T12 system, the baseline component values for the retrofit scenario reflect a standard T8 system because it is assumed that standard T12 components will no longer be sold when relamping/reballasting is necessary due to federal standards.

⁵⁰¹ Based on lamp life / assumed annual run hours.

⁵⁰² Assumes baseline lamp with rated life of 20,000 hours operated for 3,500 hours annually. ⁵⁰³ Assumes baseline ballast with rated life of 70,000 hours operated for 3,500 hours annually.

Lost-Opportunity

	Baseline Linear Fluorescent (Standard T8)		Efficient Linear Fluorescent (High Performance T8)	
	Lamp (each)	Ballast	Lamp (each)	Ballast
Replacement Cost	\$5.17	\$30	\$7.67	\$47.50
Component Life ⁵⁰⁶ (years)	5.71 ⁵⁰⁷	20 ⁵⁰⁸	8.57 ⁵⁰⁹	20 ⁵¹⁰

The calculated net present value of the net replacement costs by market are presented below⁵¹¹:

	NPV of Net
	Replacement Costs
CFL wattage	2013
Retrofit	\$33.07
Lost-Opportunity	\$5.65

⁵⁰⁴ Assumes efficient lamp with rated life of 30,000 hours operated for 3,500 hours annually.

⁵⁰⁵ Assumes efficient ballast with rated life of 70,000 hours operated for 3,500 hours annually.

⁵⁰⁶ Based on lamp life / assumed annual run hours.

Assumes baseline lamp with rated life of 20,000 hours operated for 3,500 hours annually.

Assumes baseline ballast with rated life of 70,000 hours operated for 3,500 hours annually. Assumes efficient lamp with rated life of 30,000 hours operated for 3,500 hours annually.

⁵¹⁰ Assumes efficient ballast with rated life of 70,000 hours operated for 3,500 hours annually.

 $^{^{511}}$ Note, these values have been adjusted by the appropriate In Service Rate and assume a 5% discount rate.

T5 Lighting

Unique Measure Code(s): CI_LT_TOS_T5_0113 and CI_LT_RTR_T5_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure describes the installation of high-bay T5 lamp/ballast systems.

Definition of Baseline Condition

The baseline condition is a metal-halide fixture.

Definition of Efficient Condition

The efficient condition is a four Lamp T5 High Output fixture.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times ISR \times WHFe$

Where:

WattsBASE = Actual Connected load of baseline fixture
WattsEE = Actual Connected load of T5 fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" below. Otherwise, use site specific annual operating hours information. 512

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁵¹³

_

⁵¹² Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁵¹³ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

Page 208 of 296

WHFe

= Waste Heat Factor for Energy to account for cooling savings from efficient lighting. = 1.14 ⁵¹⁴

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type⁵¹⁵

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

⁵¹⁴ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵¹⁵ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 209 of 296

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a warehouse:

$$\Delta$$
kWh = ((455 - 240) / 1000) x 4,009 x 1.00 x 1.14
= 982.6 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times WHFd \times CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

CF_{SSP}⁵¹⁶

CF = Summer Peak Coincidence Factor for measure

= See table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above)

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a warehouse and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((455 - 240) / 1000) x 1.00 x 1.32 x 0.62
= 0.18 kW

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$
= $-\Delta kWh \times 0.00065$

⁵¹⁶ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Northeast Energy Efficiency Partnerships 91 Hartwell Avenue Lexington, MA 02421 P: 781.860.9177 www.neep.org

Page 210 of 296

Where:

= Aspect ratio 517 0.7 0.003413

= Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁵¹⁸

= Assumed heating system efficiency 519 0.75

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a warehouse:

ΔMMBTU $= -1002 \times 0.00065$

= -0.65 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$300.520

Measure Life

The measure life is assumed to be 15 years. 521

Operation and Maintenance Impacts

n/a

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁵¹⁷ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones. ⁵¹⁸ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁵¹⁹ Typical heating system efficiency of 75%, consistent with current federal standards for fossil

fuel-fired systems. ⁵²⁰ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

^{521 &#}x27;Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Pulse-Start Metal Halide fixture - interior

Unique Measure Code(s): CI_LT_TOS_MHFIN_0113 and

CI_LT_RTR_MHFIN_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure documents the electricity impacts for the installation of a high efficiency pulse-start metal halide fixture in an interior space.

Definition of Baseline Condition

The baseline condition is a standard probe-start metal halide fixture. For illustrative purposes, assuming a "Time of Sale" scenario, a 455W standard probe-start metal halide (~400W lamp wattage) is assumed.

Definition of Efficient Condition

The efficient condition is a pulse-start metal halide fixture. For illustrative purposes, assuming a "Time of Sale" scenario, an 365W pulse-start metal halide fixture (~320W lamp wattage) is assumed.

Annual Energy Savings Algorithm

 $\Delta kWh = (WattsBASE - WattsEE) / 1000 x HOURS x ISR x WHFe$

Where:

WattsBASE = Connected load of baseline fixture (for "Time of Sale" or

"Replacement on Burnout" measures). See "Pulse Start Metal Halide Baseline and Efficient Wattage" table for default baseline wattage assumptions for typical efficient

case nominal wattages.

Or = Connected load of existing fixture (for "Retrofit"

measures)

= Actual

WattsEE = Connected load of installed pulse-start metal halide

fixture. See "Pulse Start Metal Halide Baseline and Efficient Wattage" table for default efficient fixture wattage assumptions based on nominal lamp wattages.

ISR

MID-ATLANTIC TECHNICAL REFERENCE MANUAL VERSION 3.0/March 2013

Page 212 of 296

Pulse Start Metal Halide Baseline and Efficient Wattage⁵²²

Efficient Lamp Nominal Wattage	WattsEE	WattsBASE
Pulse start metal halide - 200 W	232	295
Pulse start metal halide - 320 W	365	455

HOURS = Average hours of use per year
= If annual operating hours are unknown, see table
"Interior Non-CFL Lighting Operating Hours and
Coincidence Factors by Building Type" below. Otherwise,
use site specific annual operating hours information. 523

= In Service Rate or percentage of units rebated that get

installed = 1.00⁵²⁴

WHFe = Waste Heat Factor for Energy to account for cooling

savings from efficient lighting.

 $= 1.14^{525}$

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type⁵²⁶

Building Type	HOURS	CF_{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00

⁵²² Efficiency Vermont Technical Reference User Manual, December 2010.

⁵²³ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁵²⁴ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial

⁵²⁴ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

⁵²⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵²⁶ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 213 of 296

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

For example, assuming a pulse-start metal halide lamp and ballast with nominal lamp wattage of 320W is installed in a warehouse as part of a "Time of Sale" application:

$$\Delta kW = ((455 - 365) / 1000) \times 4,009 \times 1.00 \times 1.14$$

= 411 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times WHFd \times CF$$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling savings from efficient lighting

Page 214 of 296

= 1.32 when used with CF_{PJM} and 1.36 when used with CF_{SSP}⁵²⁷
= Summer Peak Coincidence Factor for measure

CF = Summer Peak Coincidence Factor for measure

See table "Interior Non-CFL Lighting Operating Hours and Coincidence Factors by Building Type" above)

For example, assuming a pulse-start metal halide lamp and ballast with nominal lamp wattage of 320W is installed in a warehouse as part of a "Time of Sale" application and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((455 - 365) / 1000) x 1.00 x 1.32 x 0.62
= 0.07 kW

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

 Δ MMBTU = (- Δ kWh / WHFe) x 0.70 x 0.003413 x 0.23 / 0.75 = - Δ kWh x 0.00065

Where:

0.7 = Aspect ratio 528

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁵²⁹

0.75 = Assumed heating system efficiency ⁵³⁰

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$37.5.⁵³¹

⁵²⁷ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵²⁸ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones. ⁵²⁹ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁵³⁰ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Page 215 of 296

Measure Life

The measure life is assumed to be 15 years. 532

Operation and Maintenance Impacts

n/a

 $^{^{531}}$ Efficiency Vermont Technical Reference User Manual, December 2010. 532 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Pulse Start Metal Halide - exterior

Unique Measure Code(s): CI_LT_TOS_MHFEX_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of a pulse start metal halide in place of a standard metal halide in an exterior setting. This could relate to a time of replacement or retrofit situation.

Definition of Baseline Condition

The baseline condition is defined as a standard metal halide.

Definition of Efficient Condition

The efficient condition is defined as a pulse start metal halide.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times ISR$

Where:

WattsBASE = Actual Connected load of baseline fixture

WattsEE = Actual Connected load of pulse start metal halide fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, assume 3,338 533.

Otherwise, use site specific annual operating hours

information.⁵³⁴

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00⁵³⁵

⁵³³ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey.

⁵³⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

For example, a 365W pulse start metal halide fixture is installed in place of a 455W standard metal halide:

$$\Delta$$
kWh = ((455 - 365) / 1000) x 3,338 x 1.00

= 300 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.037^{536}$

For example, a 365W pulse start metal halide fixture is installed in place of a 455W standard metal halide:

$$\Delta kW = ((455 - 365) / 1000) \times 1.00 \times 0.037$$

= 0.003 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$37.50.537

Measure Life

The measure life is assumed to be 15 years. 538

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁵³⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

⁵³⁶ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

⁵³⁸ 'Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 218 of 296

Operation and Maintenance Impacts n/a

High Pressure Sodium

Unique Measure Code(s): CI_LT_TOS_SODIUM_0113 and

CI_LT_RTR_SODIUM_0113
Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of a High Pressure Sodium fixture in an exterior location.

Definition of Baseline Condition

The baseline condition is a quartz halogen lamp.

Definition of Efficient Condition

The efficient condition is a high-pressure sodium lamp.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times ISR$

Where:

WattsBASE = Actual Connected load of baseline fixture
WattsEE = Actual Connected load of HPT8 fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, assume 3,338 ⁵³⁹.

Otherwise, use site specific annual operating hours

information.⁵⁴⁰

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00⁵⁴¹

⁵³⁹ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey.

⁵⁴⁰ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

For example, a 90W high pressure sodium lamp installed in place of a 200W quartz halogen lamp:

$$\Delta kWh = ((200 - 90) / 1000) \times 3,338 \times 1.00$$

=367 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times CF$

Where:

CF = Summer Peak Coincidence Factor for measure = 0.0374 ⁵⁴²

For example, a 90W high pressure sodium lamp installed in place of a 200W quartz halogen lamp:

$$\Delta$$
kW = ((200 - 90) / 1000) x 1.00 x 0.0374

= 0.004 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$30.543

Measure Life

The measure life is assumed to be 15 years. 544

Operation and Maintenance Impacts

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁵⁴¹ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

⁵⁴² Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

⁵⁴⁴ 'Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 221 of 296

n/a

LED Exit Sign

Unique Measure Code(s): CI_LT_RTR_LEDEXI_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of an exit sign illuminated with light emitting diodes (LED). This measure should be limited to retrofit installations.

Definition of Baseline Condition

The baseline condition is an exit sign with a non-LED light-source.

Definition of Efficient Condition

The efficient condition is an exit sign illuminated with light emitting diodes (LED).

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) x HOURS x ISR x WHFe$

Where:

WattsBASE = Actual Connected load of existing exit sign. If connected

load of existing exit sign is unknown, assume 16 W. 545

WattsEE = Actual Connected load of LED exit sign

HOURS = Average hours of use per year

 $= 8,760^{-546}$

ISR = In Service Rate or percentage of units rebated that get

installed = 0.98 ⁵⁴⁷

 $^{^{545}}$ Assumes a fluorescent illuminated exit sign. Wattage consistent with ENERGY STAR assumptions. See

http://www.energystar.gov/ia/business/small_business/led_exitsigns_techsheet.pdf. ⁵⁴⁶ Assumes operation 24 hours per day, 365 days per year.

⁵⁴⁷ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 223 of 296

WHFe

 Waste Heat Factor for Energy to account for cooling savings from efficient lighting.
 1.14 548

For example a 5W LED lamp in place of a 16W CFL:

$$\Delta$$
kWh = ((16 - 5) / 1000) x 8,760 x 0.98 x 1.14
= 108 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (WattsBASE - WattsEE) / 1000 x ISR x WHFd x CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

CF_{SSP}⁵⁴⁹

CF = Summer Peak Coincidence Factor for measure

 $= 1.0^{550}$

For example a 5W LED lamp in place of a 16W CFL and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((16 - 5) / 1000) * 0.98 * 1.32 * 1.0
= 0.014 kW

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$
= $-\Delta kWh \times 0.00065$

Where:

_

⁵⁴⁸ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁴⁹ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁵⁰ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

Page 224 of 296

0.7 = Aspect ratio 551

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁵⁵²

0.75 = Assumed heating system efficiency ⁵⁵³

For example a 5W LED lamp in place of a 16W CFL:

 Δ MMBTU = -108 x 0.00065

= -0.070 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$35.554

Measure Life

The measure life is assumed to be 7 years. 555

Operation and Maintenance Impacts

	Baseline
	CFL
Replacement Cost	\$12 ⁵⁵⁶

⁵⁵¹ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.

⁵⁵² Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf. Measure life in source study is reduced by ~50% assuming existing equipment is at one half of its useful life. ⁵⁵⁶ Represents the full installed cost of a replacement fluorescent lamp. Replacement lamps can typically be purchased for ~\$5 (based on a review of online retailers performed 3/14/2013)

Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁵⁵³ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁵⁵⁴ Represents the full installed cost of an LED exit sign. LED exit signs can typically be purchased for ~\$25 (see http://www.exitlightco.com/Exit_Signs and

[&]quot;http://www.simplyexitsigns.com"). Assuming replacing exit sign requires 15 minutes of a common building laborer's time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately \$35.

⁵⁵⁵ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 225 of 296

Component Life (years)	1.14 ⁵⁵⁷
------------------------	---------------------

The calculated net present value of the baseline replacement costs are presented below ⁵⁵⁸:

	NPV of baseline Replacement Costs
Baseline	2013
CFL	\$62.59

including "http://www.exitlightco.com/" and "http://www.1000bulbs.com/"). Assuming lamp replacement requires 15 minutes of a common building laborer's time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately \$12. 557 Assumes rated life of fluorescent replacement lamp is 10,000 hours. Assuming annual exit sign operating hours of 8,760, estimated lamp life is 1.14 years.

558 Note: these values have have

Note, these values have been adjusted by the appropriate In Service Rate.

Solid State Lighting (LED) Recessed Downlight Luminaire

Unique Measure Code: CI_LT_TOS_SSLDWN_0113 and

CI_LT_RTR_SSLDWN_0113
Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of an ENERGY STAR qualified commercial LED recessed downlight in place of a standard efficiency lighting technology⁵⁵⁹. This measure could be either a lost-opportunity or retrofit installation.

Definition of Baseline Condition

The baseline condition is a standard efficiency downlight technology such as incandescent, compact fluorescent, or metal halide.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR Program Requirements for Luminaires v1.1 qualified commercial LED recessed downlight listed on the ENERGY STAR Qualified Light Fixtures list⁵⁶⁰.

Annual Energy Savings Algorithm

For lost-opportunity installations:

 $\Delta kWh = [(WattsEE * (WattsBASE_{typ}/WattsEE_{typ}) - WattsEE) / 1000] * ISR * HOURS * WHF_e$

= [((WattsEE * 3.08) - WattsEE) / 1000] * ISR * HOURS * WHF_e

For retrofit installations:

 $\Delta kWh = [(WattsBASE - WattsEE) / 1000] * ISR * HOURS * WHF_e$

http://www.energystar.gov/ia/partners/product_specs/program_reqs/Final_Luminaires_Program_Requirements.pdf?495a-8afe

⁵⁶⁰ The list can be found here:

http://downloads.energystar.gov/bi/qplist/Light%20Fixtures%20Product%20List.xls?204b-8496

⁵⁵⁹ See

Where:

WattsEE = Connected load of LED recessed downlight

= Actual Installed [W]

WattsBASE_{typ} = typical baseline wattage; assumed as 54.8W⁵⁶¹

 $WattsEE_{tvp}$ = typical wattage of the LED recessed downlight; assumed

as 17.8W⁵⁶²

WattsBASE = Connected load of the baseline light fixture

= Actual Installed [W]

 $ISR = 1.00^{563}$

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" below. Otherwise, use site specific annual operating hours information⁵⁶⁴.

 WHF_e = Waste heat factor(energy) to account for space cooling

energy saving due to the generation of reduced lighting

waste heat. = 1.14⁵⁶⁵

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = [(WattsBASE - WattsEE) / 1,000] \times ISR \times WHF_d \times CF$

Where:

 WHF_d

= Waste heat factor(demand) to account for space cooling demand saving due to the generation of reduced lighting

waste heat.

= 1.32 when used with CF_{PJM} and 1.36 when used with

CFccn 566

⁵⁶¹ Based on 2008-2010 Efficiency Vermont historical data of 835 installed measures

⁵⁶² Based on 2008-2010 Efficiency Vermont historical data of 835 installed measures

⁵⁶³ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012. Value from evaluation of 1.02 has been adjusted downward to 1.0 for consistency with the TRM's definition of ISR.

⁵⁶⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁵⁶⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial

EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 228 of 296

CF

= Summer Peak Coincidence Factor for measure

 See "Interior Non-CFL Lighting Operating Hours and Coincidence Factors by Building Type" table in the

"Reference Tables" section.

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = (- Δ kWh / WHFe) x Aspect Ratio x 0.003413 x Heating Fraction

 $/ \eta_{Heat}$

 $= -\Delta kWh \times 0.00065$

Where:

Aspect Ratio = 0.70^{567}

0.003413 = MMBtu/kWh unit conversion factor

Heating Fraction (lighting heat that contributes to space heating)

 $= 0.23^{568}$

 $\eta_{Heat} = 0.75^{569}$

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$80⁵⁷⁰ for lost-opportunity installations. Custom incremental costs should be calculated for retrofit installations.

Measure Life

The measure life is assumed to be 10 years⁵⁷¹.

⁵⁶⁶ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁶⁷ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

⁵⁶⁸ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for

Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). ⁵⁶⁹ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁵⁷⁰ Efficiency Vermont Technical Reference User Manual No. 2010-67a

⁵⁷¹ The ENERGY STAR specification for solid state recessed downlights requires luminaires to maintain >=70% initial light output for 35,000 hours in a commercial application. Measure life is therefore assumed to be 10 years (calculated as 35,000 hours divided by an approximate 3,500 annual operating hours).

Page 229 of 296

Operation and Maintenance Impacts

There are significant operation and maintenance savings associated with this measure. If the actual existing or baseline system component costs are unknown, use the following composite baseline component assumptions to calculate the O&M impacts⁵⁷²:

Assume 40% 26W Compact Fluorescent System

Lamp Life (hours): 10,000
Lamp Cost: \$9.70
Lamp Rep. Labor Cost: \$2.67
Lamp Rep. Recycle Cost: \$0.25
Ballast Life (hours): 40,000
Ballast Cost: \$16.00
Ballast Rep. Labor Cost: \$25.00
Ballast Rep. Disposal Cost: \$5.00

Assumed 60% Halogen PAR30/38

Lamp Life (hours): 2,500 Lamp Cost: \$10.00 Lamp Rep. Labor Cost: \$2.67

The calculated net present value of the baseline replacement costs is \$93.45.

Reference Tables

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type⁵⁷³

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50

⁵⁷² Efficiency Vermont Technical Reference User Manual No. 2010-67a

⁵⁷³ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 230 of 296

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

Delamping

Unique Measure Code(s): CI_LT_ERT_DELAMP_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the permanent removal of a lamp and the associated electrical sockets (or "tombstones") from a fixture.

Definition of Baseline Condition

The baseline conditions will vary dependent upon the characteristics of the existing fixture. For illustrative purposes, a baseline three lamp 4ft T8 Fixture with input wattage of 89W is assumed.

Definition of Efficient Condition

The efficient condition will vary depending on the existing fixture and the number of lamps removed. For illustrative purposes, a two lamp 4ft T8 Fixture on a three lamp ballast (67W) is assumed.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times WHFe$

Where:

WattsEE

WattsBASE = Actual Connected load of baseline fixture = Actual Connected load of delamped fixture

HOURS = Average hours of use per year

> = If annual operating hours are unknown, see table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" below. Otherwise, use site specific annual operating hours information. 574

= Waste Heat Factor for Energy to account for cooling WHFe

savings from efficient lighting.

⁵⁷⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

 $= 1.14^{575}$

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type 576

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

⁵⁷⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁷⁶ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 233 of 296

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) \times WHFd \times CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

 CF_{SSP}^{57}

CF = Summer Peak Coincidence Factor for measure

= See table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above)

For example, one lamp of a three lamp 4ft T8 Fixture (89W) is removed (leaving 67W) in an office and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((89 - 67) / 1000) x 1.32 x 0.63
= 0.018 kW

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

 Δ MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$ = $-\Delta kWh \times 0.00065$

Where:

0.7 = Aspect ratio ⁵⁷⁸

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating 579

0.75 = Assumed heating system efficiency ⁵⁸⁰

⁵⁸⁰ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁵⁷⁷ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁷⁸ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.
⁵⁷⁹ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
⁵⁸⁰ Typical heating system officiency of 75% consistent with current foderal standards for fossil

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$10.8 per fixture. 581

Measure Life

The measure life is assumed to be 15 years. 582

Operation and Maintenance Impacts

Delamping reduces the number of periodic lamp replacements required, saving \$1.25/year.

⁵⁸¹ Assumes delamping a single fixture requires 15 minutes of a common building laborer's time in Washington D.C.; Adapted from RSMeans Electrical Cost Data 2008.
⁵⁸² Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures,

GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 235 of 296

Occupancy Sensor - Wall box

Unique Measure Code(s): CI_LT_TOS_OSWALL_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure defines the savings associated with installing a wall mounted occupancy sensor that switches lights off after a brief delay when it does not detect occupancy.

Definition of Baseline Condition

The baseline condition is lighting that is not controlled with an occupancy sensor.

Definition of Efficient Condition

The efficient condition is lighting that is controlled with an occupancy sensor.

Annual Energy Savings Algorithm

 $\Delta kWh = kWconnected x HOURS x SVG x ISR x WHFe$

Where:

kWconnected= Assumed kW lighting load connected to control.

HOURS = Average hours of use per year before control

= If annual operating hours are unknown, see table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" below. Otherwise,

use site specific annual operating hours. 583

SVG = Percentage of annual lighting energy saved by lighting

control; determined on a site-specific basis or using

default below.

_

⁵⁸³ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 236 of 296

 $= 0.3^{584}$

ISR = In Service Rate or percentage of units rebated that get

installed = 0.74 ⁵⁸⁵

WHFe = Waste Heat Factor for Energy to account for cooling

savings from efficient lighting.

 $= 1.14^{586}$

Interior Non-CFL Operating Hours and Coincidence Factors by Building Type⁵⁸⁷

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86

⁵⁸⁴ Quantum Consulting, Inc., for Pacific Gas & Electric Company, Evaluation of Pacific Gas & Electric Company's 1997 Commercial Energy Efficiency Incentives Program: Lighting Technologies, March 1, 1999.

⁵⁸⁵ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁸⁶ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

⁵⁸⁷ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 237 of 296

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = kW$ connected x SVG x ISR x WHFd x CF

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{PJM} and 1.36 when used with

 CF_{SSP}^{588}

CF = Summer Peak Coincidence Factor for measure

= See table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above.

For example, a 400W connected load being controlled in an office and estimating PJM summer peak coincidence:

$$\Delta kW = 0.4 \times 0.3 \times 0.74 \times 1.32 \times 0.63$$

= 0.074 kW

Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

$$\Delta$$
MMBTU = (- Δ kWh / WHFe) x 0.70 x 0.003413 x 0.23 / 0.75

 $= -\Delta kWh \times 0.00065$

Where:

- 0.0

⁵⁸⁸ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 238 of 296

0.7 = Aspect ratio ⁵⁸⁹

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁵⁹⁰

0.75 = Assumed heating system efficiency ⁵⁹¹

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$55.592

Measure Life

The measure life is assumed to be 10 years. 593

Operation and Maintenance Impacts

n/a

_

⁵⁸⁹ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.
⁵⁹⁰ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
⁵⁹¹ Typical heating system efficiency of 75% consistent with current federal standards for fossil

Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁵⁹² Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

⁵⁹³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 239 of 296

Advanced Lighting Design - Commercial

Unique Measure Code(s): CI_LT_TOS_ADVLTNG_0113

Effective Date: January 2013

REGIONAL EVALUATION.

End Date: TBD

Measure Description

Advanced lighting design refers to the implementation of various lighting design principles aimed at creating a quality and appropriate lighting experience while reducing unnecessary light usage. This is often done by a professional in a new construction situation. Advanced lighting design uses techniques like maximizing task lighting and efficient fixtures to create a system of optimal energy efficiency and functionality to ultimately reduce the wattage required per square foot while maintaining acceptable lumen levels.

This measure characterization is intended for use in new construction or in existing buildings where significant lighting renovations are taking place and energy code requirements must be met.

Definition of Baseline Condition

The baseline condition assumes compliance with lighting power density requirements as mandated by the Maryland Building Performance Standards, Chapter 76 (2012 International Energy Conservation Code), Title 17 of the Delaware Code (2009 International Energy Conservation Code), and District of Columbia Construction Codes Supplement of 2008 (2006 International Energy Conservation Code). Because each jurisdiction has adopted unique lighting power density requirements, this measure entry presents three different baseline conditions to be used in each of the three relevant jurisdictions. For completeness, the lighting power density requirements for both the Building Area Method and the Space-by-Space Method are presented. 594

⁵⁹⁴ Energy code lighting power density requirements can generally be satisfied by using one of two methods. The Building Area Method simply applies a blanket LPD requirement to entire building based on the building type. Broadly speaking, as long as the total connected lighting wattage divided by the total floor space does not exceed to LPD requirement, the code is satisfied. The second method, the Space-by-Space Method, provides LPD requirements by space type based on the function of the particular space (e.g., "Hospital - Operating Room", "Library - Reading Room"). LPD requirements must be satisfied for each individual space in the building. This method usually allows a higher total connected wattage as compared to the Building Area Method.

Page 240 of 296

Definition of Efficient Condition

The efficient condition assumes lighting systems that achieve lighting power densities below the maximum lighting power densities required by the relevant jurisdictional energy codes as described above. Actual site lighting power densities should be determined on a case-by-case basis.

Annual Energy Savings Algorithm 595

 $\Delta kWh = [(LPDBASE - LPDEE) / 1000] \times AREA \times HOURS \times WHFe$

Where:

LPDBASE

= Baseline lighting power density for building or space type (W/ft²). See tables below for values by jurisdiction and method.

Building Area Method Baseline LPD Requirements, All Jurisdictions 596

	Lighting Power Density (W/ft ²) by Region		
Building Area Type	Washington, D.C.	Delaware	Maryland
Automotive Facility	0.9	0.9	0.9
Convention Center	1.2	1.2	1.2
Court House	1.2	1.2	1.2
Dining: Bar Lounge/Leisure	1.3	1.3	1.3
Dining: Cafeteria/Fast Food	1.4	1.4	1.4
Dining: Family	1.6	1.6	1.6
Dormitory	1.0	1.0	1.0
Exercise Center	1.0	1.0	1.0
Fire Station	1.0	1.0	0.8
Gymnasium	1.1	1.1	1.1

⁵⁹⁵ If the Space-by-Space Method is used, the total energy savings will be the sum of the energy savings for each individual space type.

⁵⁹⁶ IECC 2006, Table 505.5.2; IECC 2009, Table 505.5.2; ASHRAE 90.1-2007, Table 9.5.1; IECC 2012, Table C405.5.2(1). Note that the Maryland energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.5.1. As the IECC 2012 requirements are less stringent they are presented here. For convenience, the LPD are provided in Excel format in the "Mid-Atlantic TRM LPD Tables.xlsx" worksheet.

Page 241 of 296

	Lighting Power Density (W/ft ²) by Region		
Building Area Type	Washington, D.C.	Delaware	Maryland
Healthcare-Clinic	1.0	1.0	1.0
Hospital	1.2	1.2	1.2
Hotel	1.0	1.0	1.0
Library	1.3	1.3	1.3
Manufacturing Facility	1.3	1.3	1.3
Motel	1.0	1.0	1.0
Motion Picture Theatre	1.2	1.2	1.2
Multi-Family	0.7	0.7	0.7
Museum	1.1	1.1	1.1
Office	1.0	1.0	0.9
Parking Garage	0.3	0.3	0.3
Penitentiary	1.0	1.0	1.0
Performing Arts Theatre	1.6	1.6	1.6
Police Station	1.0	1.0	1.0
Post Office	1.1	1.1	1.1
Religious Building	1.3	1.3	1.3
Retail	1.5	1.5	1.4
School/University	1.2	1.2	1.2
Sports Arena	1.1	1.1	1.1
Town Hall	1.1	1.1	1.1
Transportation	1.0	1.0	1.0
Warehouse	0.8	0.8	0.6
Workshop	1.4	1.4	1.4

Page 242 of 296

Space-by-Space Method Baseline LPD Requirements, DC and DE Only⁵⁹⁷

	Lighting Power Density (W/ft²) by Region		
Common Space Types	Washington, D.C.	Delaware	Maryland
Atrium	N/A	N/A	N/A
First Three Floors	0.6	0.6	N/A
Each Additional Floor	0.2	0.2	N/A
First 40 feet in height	N/A	N/A	0.03 per ft. ht.
Above 40 feet in height	N/A	N/A	0.02 per ft. ht.
Audience/Seating Area	0.9	0.9	N/A
For Auditorium	N/A	N/A	0.9
For Performing Arts Theater	2.6	2.6	2.6
For Motion Picture Theater	1.2	1.2	1.2
Classroom/Lecture/Training	1.4	1.4	1.3
Conference/Meeting/Multipurpose	1.3	1.3	1.2
Corridor/Transition	N/A	N/A	0.7
Corridor/Transition	0.5	0.5	N/A
Dining Area	0.9	0.9	N/A
For Bar Lounge/Leisure Dining	1.4	1.4	1.4
For Family Dining	2.1	2.1	1.4
Dressing/Fitting Room Performing Arts Theater	N/A	N/A	1.1
Dressing/Locker/Fitting Room	0.6	0.6	N/A
Electrical/Mechanical	1.5	1.5	1.1

_

⁵⁹⁷ ASHRAE 90.1-2007. Table 9.6.1; IECC 2012, Table C405.5.2(2). Note that the Maryland energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.6.1. As the IECC 2012 requirements are less stringent they are presented here. To provide a clear, uniform presentation of requirements, the tables from the respective energy codes have been restructured. An "N/A" for a given space type indicates that no requirement is presented for that space type in that jurisdiction's energy code. For convenience, the LPD are provided in Excel format in the "Mid-Atlantic TRM LPD Tables.xlsx" worksheet.

Page 243 of 296

1.2	1.2	1.2
1.4	1.4	N/A
N/A	N/A	1.3
N/A	N/A	1.8
1.3	1.3	1.1
N/A	N/A	N/A
3.3	3.3	3.3
1.1	1.1	1
N/A	N/A	0.8
1.2	1.2	0.8
N/A	N/A	N/A
1.1	1.1	1.1
1.1	1.1	1
0.9	0.9	1
1.7	1.7	1.6
0.6	0.6	0.7
N/A	N/A	0.8
0.8	0.8	N/A
0.3	0.3	N/A
1.9	1.9	1.6
ypes		
N/A	N/A	N/A
0.7	0.7	0.7
N/A	N/A	N/A
1.5	1.5	1.5
N/A	N/A	N/A
0.7	0.7	0.9
1.3	1.3	1.5
	1.4 N/A N/A 1.3 N/A 3.3 1.1 N/A 1.2 N/A 1.1 1.1 0.9 1.7 0.6 N/A 0.8 0.3 1.9 ypes N/A 0.7 N/A 1.5 N/A 0.7	1.4 1.4 N/A N/A N/A N/A 1.3 1.3 N/A N/A 3.3 3.3 1.1 1.1 N/A N/A 1.2 1.2 N/A N/A 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.7 1.7 0.6 0.6 N/A N/A 0.3 0.3 1.9 1.9 Types N/A N/A N/A N/A N/A N/A N/A N/

Page 244 of 296

Court House/Police Station/Penitentiary	N/A	N/A	N/A
Courtroom	1.9	1.9	1.9
Confinement Cells	0.9	0.9	1.1
Judges' Chambers	1.3	1.3	1.3
Penitentiary Audience/Seating Area	0.7	0.7	0.5
Penitentiary Classroom/Lecture/Training	1.3	1.3	1.3
Penitentiary Dining Area	1.3	1.3	1.1
Dormitory	N/A	N/A	N/A
Living Quarters	1.1	1.1	1.1
Fire Stations	N/A	N/A	N/A
Engine Room	0.8	0.8	0.8
Sleeping Quarters	0.3	0.3	0.3
Gymnasium/Exercise Center	N/A	N/A	N/A
Exercise Area	0.9	0.9	0.9
Exercise Center Audience/Seating Area	0.3	0.3	N/A
Gymnasium Audience/Seating Area	0.4	0.4	0.4
Playing Area	1.4	1.4	1.4
Hospital	N/A	N/A	N/A
Active Storage	0.9	0.9	N/A
Corridor/Transition	1.0	1.0	1.0
Emergency	2.7	2.7	2.7
Exam/Treatment	1.5	1.5	1.7
Laundry-Washing	0.6	0.6	0.6
Lounge/Recreation	0.8	0.8	0.8
Medical Supply	1.4	1.4	1.4
Nursery	0.6	0.6	0.9
Nurses' Station	1.0	1.0	1.0
Operating Room	2.2	2.2	2.2
Patient Room	0.7	0.7	0.7
		l	l .

Page 245 of 296

	1 10	1.0	1.0
Pharmacy	1.2	1.2	1.2
Physical Therapy	0.9	0.9	0.9
Public and Staff Lounge	N/A	N/A	0.8
Radiology	0.4	0.4	1.3
Recovery	0.8	0.8	1.2
Hotel/Motel	N/A	N/A	N/A
Dining Area	1.3	1.3	1.3
Guest Rooms	1.1	1.1	1.1
Lobby	1.1	1.1	2.1
Motel Dining Area	1.2	1.2	1.2
Motel Guest Rooms	1.1	1.1	1.1
Library	N/A	N/A	N/A
Card File and Cataloging	1.1	1.1	1.1
Reading Area	1.2	1.2	1.2
Stacks	1.7	1.7	1.7
Manufacturing	N/A	N/A	N/A
Control Room	0.5	0.5	N/A
Corridor/Transition	0.5	0.5	0.4
Detailed Manufacturing	2.1	2.1	1.3
Equipment Room	1.2	1.2	1.0
Extra High Bay (>50 ft. Floor to Ceiling Height)	N/A	N/A	1.1
High Bay (≥ 25 ft. Floor to Ceiling Height)	1.7	1.7	1.2
Low Bay (< 25 ft. Floor to Ceiling Height)	1.2	1.2	1.2
Museum	N/A	N/A	N/A
General Exhibition	1.0	1.0	1.0
Inactive Storage	0.8	0.8	N/A
Restoration	1.7	1.7	1.7
Parking Garage	N/A	N/A	N/A
Garage Area	0.2	0.2	0.2
	•	•	

Page 246 of 296

Post Office	N/A	N/A	N/A
Sorting Area	1.2	1.2	0.9
Religious Buildings	N/A	N/A	N/A
Audience/Seating Area	1.7	1.7	2.4
Fellowship Hall	0.9	0.9	0.6
Worship Pulpit, Choir	2.4	2.4	2.4
Retail	N/A	N/A	N/A
Dressing/Fitting Area	N/A	N/A	0.9
Mall Concourse	1.7	1.7	1.6
Sales Area	1.7	1.7	1.6
Sports Arena	N/A	N/A	N/A
Audience/Seating Area	0.4	0.4	0.4
Court Sports Arena	2.3	2.3	N/A
Court Sports Area - Class 4	N/A	N/A	0.7
Court Sports Area - Class 3	N/A	N/A	1.2
Court Sports Area - Class 2	N/A	N/A	1.9
Court Sports Area - Class 1	N/A	N/A	3.0
Indoor Playing Field Area	1.4	1.4	N/A
Ring Sports Arena	2.7	2.7	2.7
Transportation	N/A	N/A	N/A
Airport/Train/Bus - Baggage Area	1.0	1.0	1.0
Airport - Concourse	0.6	0.6	0.6
Audience/Seating Area	0.5	0.5	N/A
Terminal - Ticket Counter	1.5	1.5	1.5
Warehouse	N/A	N/A	N/A
Fine Material Storage	1.4	1.4	1.4

LPDEE = Efficient lighting power density (W/ft^2)

Page 247 of 296

= Actual calculated

= Building or space area (ft^2) AREA

HOURS = Average hours of use per year (hours)

= If annual operating hours are unknown, see table

"Interior Non-CFL Operating Hours and Coincidence Factors

by Building Type" below. Otherwise, use site specific

annual operating hours information. 598

= Waste Heat Factor for Energy to account for cooling WHFe

savings from efficient lighting.

 $= 1.14^{599}$

Interior Non-CFL Operating Hours and Coincidence Factors by Building **Type**⁶⁰⁰

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Education	2,456	0.42	0.50
Grocery	6,019	0.90	1.00
Lodging - Common Area	7,884	0.90	1.00
Lodging - Guest Room	914	0.09	0.11
Manufacturing	4,781	0.67	0.78
Medical	4,007	0.65	0.76
Municipal	3,116	0.43	0.50
Office	3,642	0.63	0.74
Other	4,268	0.62	0.73
Public Assembly	3,035	0.57	0.66

⁵⁹⁸ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.
599 EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial

Prescriptive, Navigant, 2012.

⁶⁰⁰ Annual operating hours and PJM coincidence factors, with the exception of those for the "Lodging" building type were derived from the C&I Lighting Load Shape Project FINAL Report, KEMA, 2011. "Lodging" values adopted from Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010. Additional discussion on building type weighting methodology can be found in "Appendix: Weighting and Building Type Classification". Summer system peak coincidence factors derived by multiplying the CF_{PJM} values by the "Coincidence Factor Ratio" from Table 28 of the EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

Page 248 of 296

Building Type	HOURS	CF _{PJM}	CF _{SSP}
Religious	2,648	0.36	0.42
Restaurant	4,089	0.73	0.86
Retail	4,103	0.72	0.84
Service	3,521	0.67	0.78
University/College	3,416	0.56	0.65
Warehouse	4,009	0.62	0.72

Note: CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

For example, assuming a 15,000 ft² office building in DE using the Building Area Method with an LPDEE of 0.75:

$$\Delta$$
kWh = [(1.0 - 0.75) / 1000] x 15,000 x 3,642 x 1.14
= 15,570 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = [(LPDBASE - LPDEE) / 1000] \times AREA \times WHFd \times CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling

savings from efficient lighting

= 1.32 when used with CF_{P,IM} and 1.36 when used with

 CF_{SSP}^{601}

CF = Summer Peak Coincidence Factor for measure

= See table "Interior Non-CFL Lighting Operating Hours and

Coincidence Factors by Building Type" above

For example, assuming a 15,000 ft² office building in DE using the Building Area Method with an LPDEE of 0.75 and estimating PJM summer peak coincidence:

$$\Delta kWh = [(1.0 - 0.75) / 1000] \times 15,000 \times 1.32 \times 0.63$$

٠,

⁶⁰¹ EmPOWER Maryland 2011 Evaluation Report Chapter 2: Commercial and Industrial Prescriptive, Navigant, 2012.

= 3.12 kW

Annual Fossil Fuel Savings Algorithm

REGIONAL EVALUATION.

Note: Negative value denotes increased fossil fuel consumption.

 Δ MMBTU = $(-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75$ = $-\Delta kWh \times 0.00065$

Where:

0.7 = Aspect ratio 602

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating 603

0.75 = Assumed heating system efficiency ⁶⁰⁴

For example, assuming a 15,000 ft² office building in DE using the Building Area Method with an LPDEE of 0.75:

 $\Delta kWh = -15,570 \times 0.00065$

= 10.1 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs will vary greatly from project to project depending on the advanced lighting design principles and lighting technologies used. Incremental costs should be estimated on a case-by-case basis.

Measure Life

The measure life is assumed to be 15 years. 605

_

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁶⁰⁵ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 250 of 296

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of the efficient and baseline replacement components, there may be significant operation and maintenance impacts associated with this measure. Actual operation and maintenance costs should be estimated on a case-by-case basis.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf. Assumes Advanced Lighting Design lifetime will be consistent with that of the "Fluorescent Fixture" measure from the reference document. This measure life assumes that the most common implementation of this measure will be for new construction or major renovation scenarios where new fixtures are installed. In such cases, adopting the fixture lifetime for the LPD reduction measure seems most appropriate.

LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting - Commercial

Unique Measure Code(s): CI_LT_TOS_LEDODPO_0113 and

CI_LT_RTR_LEDODPO_0113 Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of an LED outdoor pole/arm- or wall-mounted luminaire for parking lot, street, or general area illumination in place of a high-intensity discharge light source. Eligible applications include new and replacement luminaires.

Definition of Baseline Condition

The baseline condition is defined as an outdoor pole/arm- or wall-mounted luminaire with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps. For the purposes of this characterization, standard metal halide fixtures are the assumed baseline technology.

Definition of Efficient Condition

The efficient condition is defined as an LED outdoor pole/arm- or wall-mounted luminaire. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List⁶⁰⁶.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) x HOURS$

Where:

WattsBASE = Actual Connected load of baseline fixture

= If the actual baseline fixture wattage is unknown, use the default values presented in the "Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and

Efficient Wattage" table below.

WattsEE = Actual Connected load of the LED fixture

⁶⁰⁶ DesignLights Consortium Qualified Products List

http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php

Page 252 of 296

= If the actual LED fixture wattage is unknown, use the default values presented in the "Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage" table below based on the based on the appropriate baseline description.

Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage⁶⁰⁷

Measure Category	Baseline Description	WattsBASE	Efficient Description	WattsEE
LED Outdoor Area Fixture replacing up to 175W HID	175W or less base HID	171	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	99
LED Outdoor Area Fixture replacing 176-250W HID	176W up to 250W base HID	288	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	172
LED Outdoor Area Fixture replacing 251-400W HID	251W up to 400W base HID	452	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	293

Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixtures typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" supporting workbook.

⁶⁰⁷ Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group was weighed based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18. 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version, Massachusetts Electric and Gas Energy

Page 253 of 296

Measure Category	Baseline Description	WattsBASE	Efficient Description	WattsEE
LED Outdoor Area Fixture replacing 401-1000W HID	401W up to 1000W base HID	1075	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	663

HOURS

= Average hours of use per year

= If annual operating hours are unknown, assume 3,338 ⁶⁰⁸. Otherwise, use site specific annual operating hours information. ⁶⁰⁹

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta kWh = ((288 - 172) / 1000) \times 3,338$$

= 387 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) \times CF$

Where:

CF = Summer Peak Coincidence Factor for measure

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta kW = ((288 - 172) / 1000) \times 0$$

= 0 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

-

⁶⁰⁸ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey.

⁶⁰⁹ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁶¹⁰It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.

Page 254 of 296

n/a

Incremental Cost⁶¹¹

Measure Category	Installed Cost	Incremental Cost			
LED Outdoor Pole/Arm Area and Roadway Luminaires					
Fixture replacing up to 175W HID	\$460	\$195			
Fixture replacing 176-250W HID	\$620	\$310			
Fixture replacing 251+ HID	\$850	\$520			
LED Wall-Mounted Area Luminaires					
All Fixtures	\$250	\$120			

Measure Life

The measure life is assumed to be 18 years. 612

Operation and Maintenance Impacts⁶¹³

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings and the component cost and lifetime assumptions are presented in the table below.

61

⁶¹¹ Efficiency Maine Technical Reference User Manual No.2010-1, 2010.

⁶¹² The average rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 11/21/2012

<http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php> is approximately 70,000 hours. For the purposes of this characterization, it is assumed the typical equipment will operate for 60,000 hours. Assuming average annual operating hours of 3,338 (Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 18 years.
613 Component information for the <175W HID and 176-250W HID categories adopted from Efficiency Vermont TRM User Manual No. 2012-77a. The remaining categories are based on a review of pricing for available products from http://1000bulbs.com. Accessed on 11/22/2012.</p>
NPV O&M Savings calculated assuming a 5% discount rate; detailed calculation presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" workbook.

Page 255 of 296

Measure Category	Baseline Description	Lamp Life (Hours)	Lamp Cost	Lamp Rep. Labor/Disp osal Cost	Ballast Life (Hours)	Ballast Cost	Ballast Rep. Labor/Dis posal Cost	NPV O&M Savings
LED Outdoor Area Fixture replacing up to 175W HID	175W or less base HID	10000	\$31.00	\$2.92	40000	\$95.85	\$27.50	\$180.37
LED Outdoor Area Fixture replacing 176- 250W HID	176W up to 250W base HID	10000	\$21.00	\$2.92	40000	\$87.75	\$27.50	\$147.44
LED Outdoor Area Fixture replacing 251- 400W HID	251W up to 400W base HID	10000	\$11.00	\$2.92	40000	\$60.46	\$27.50	\$114.52
LED Outdoor Area Fixture replacing 401- 1000W HID	401W up to 1000W base HID	10000	\$23.00	\$2.92	40000	\$100.09	\$27.50	\$154.03

LED Parking Garage/Canopy Lighting -Commercial

Unique Measure Code(s): CI_LT_TOS_LEDODPG_0113 and

CI LT RTR LEDODPG 0113 Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of an LED parking garage or canopy fixture in place of a high-intensity discharge light source. Eligible applications include new and replacement luminaires.

Definition of Baseline Condition

The baseline condition is defined as an parking garage or canopy fixture with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps. For the purposes of this characterization, standard metal halide fixtures are the assumed baseline technology.

Definition of Efficient Condition

The efficient condition is defined as an LED parking garage or canopy fixture. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List⁶¹⁴. If the product is not approved by DesignLights Consortium, WattsEE values may be assigned based upon fixture rating as obtained from the corresponding LM-79 test report.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) \times HOURS \times ISR$

Where:

WattsBASE = Actual Connected load of baseline fixture

= If the actual baseline fixture wattage is unknown, use the default values presented in the "Parking Garage or Canopy Fixture Baseline and Efficient Wattage" table below.

⁶¹⁴ DesignLights Consortium Qualified Products List

http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php

Page 257 of 296

WattsEE

= Actual Connected load of the LED fixture

= If the actual LED fixture wattage is unknown, use the default values presented in the "Parking Garage or Canopy Fixture Baseline and Efficient Wattage" table below based on the based on the appropriate baseline description.

Parking Garage or Canopy Fixture Baseline and Efficient Wattage⁶¹⁵

Measure Category	Baseline Description	WattsBASE	Efficient Description	WattsEE
LED Parking Garage/Canopy Fixture replacing up to 175W HID	175W or less base HID	171	DLC Qualified LED Parking Garage and Canopy Luminaires	94
LED Parking Garage/Canopy Fixture replacing 176-250W HID	176W up to 250W base HID	288	DLC Qualified LED Parking Garage and Canopy Luminaires	162
LED Parking Garage/Canopy Fixture replacing 251 and above HID	251W and above base HID	452	DLC Qualified LED Parking Garage and Canopy Luminaires	248

HOURS = Average hours of use per year

615 Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group were weightings based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18. 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version,

Massachusetts Electric and Gas Energy

Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixture typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" supporting workbook.

Page 258 of 296

= If annual operating hours are unknown, assume 3,338 for canopy applications and 8,760 for parking garage applications⁶¹⁶. Otherwise, use site specific annual operating hours information.⁶¹⁷

ISR

= In Service Rate or percentage of units rebated that get installed

 $= 1.00^{618}$

For example, a 250W parking garage metal halide fixture is replaced with an LED fixture:

$$\Delta$$
kWh = ((288 - 162) / 1000) x 8,760 x 1.00

= 1104 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBASE - WattsEE) / 1000) \times ISR \times CF$$

Where:

CF

Summer Peak Coincidence Factor for measure
 0 for canopy applications and 1.0 for parking garage applications 619

For example, a 250W parking garage metal halide fixture is replaced with an LED fixture:

$$\Delta$$
kW = ((288 - 162) / 1000) * 1.00 * 1.00
= 0.13 kW

S Efficiency Verment To

⁶¹⁶ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey. Parking garages typically require artificial illumination 24 hours per day.

⁶¹⁷ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁶¹⁸ Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the "Equipment" category ISR from the EmPOWER Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.

⁶¹⁹ It is assumed that efficient canopy lighting, when functioning properly, will never result in coincident peak demand savings. Parking garages typically require artificial illumination 24 hours per day and will therefore exhibit 100% peak coincidence.

Annual Fossil Fuel Savings Algorithm

MEASUREMENT & VERIFICATION FORUM

n/a

Annual Water Savings Algorithm

REGIONAL EVALUATION.

n/a

Incremental Cost⁶²⁰

_		
Measure Category	Installed Cost	Incremental Cost
Average of All Categories	\$585	\$343

Measure Life

The measure life is assumed to be 21 years for canopy applications and 8 years for parking garage applications. 621

Operation and Maintenance Impacts⁶²²

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings and the component cost and lifetime assumptions are presented in the table below.

⁶²⁰ Efficiency Maine Technical Reference User Manual No.2010-1, 2010.

⁶²¹ The average rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 11/21/2012

http://www.designlights.org/solidstate.about.OualifiedProductsList Publicv2.php> exceeds 80,000 hours. For the purposes of this characterization, it is assumed the typical equipment will operate for 70,000 hours. Assuming average annual operating hours of 3,338 for canopy applications (Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 21 years. Assuming average annual operating hours of 8,760 for parking garage applications, the estimated measure life is 8 years.

⁶²² Component information for the <175W HID and 176-250W HID categories adopted from Efficiency Vermont TRM User Manual No. 2012-77a. The remaining category is based on a review of pricing for available products from http://1000bulbs.com. Accessed on 11/22/2012. NPV O&M Savings calculated assuming a 5% discount rate; detailed calculation presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" workbook.

Page 260 of 296

Measure Category	Baseline Description	Lamp Life (Hours)	Lamp Cost	Lamp Rep. Labor/Disp osal Cost	Ballast Life (Hours)	Ballast Cost	Ballast Rep. Labor/Dis posal Cost	NPV O&M Savings (Canopy/Pa rking Garage)
LED Parking Garage/Canopy Fixture replacing up to 175W HID	175W or less base HID	10000	\$31.00	\$2.92	40000	\$95.85	\$27.50	\$194.46 / \$156.09
LED Parking Garage/Canopy Fixture replacing 176- 250W HID	176W up to 250W base HID	10000	\$21.00	\$2.92	40000	\$87.75	\$27.50	\$142.93 / \$133.33
LED Parking Garage/Canopy Fixture replacing 251 and above HID	251W and above base HID	10000	\$11.00	\$2.92	40000	\$60.46	\$27.50	\$94.81 / \$94.78

Page 261 of 296

Heating Ventilation and Air Conditioning (HVAC) End Use

High Efficiency Unitary AC - Existing

Unique Measure Code(s): CI_HV_TOS_UNIA/C_0113

Effective Date: January 2013

End Date: TBD

Measure Description

This measure documents savings associated with the installation of new split or packaged unitary air conditioning systems meeting defined efficiency criteria.

Definition of Baseline Condition

The baseline condition is a split or packaged unitary air conditioning system meeting minimum efficiency standards as presented in the 2009 International Energy Conservation Code (IECC 2009) (see table "Baseline and Efficient Efficiency Levels by Unit Capacity" below)⁶²³.

Definition of Efficient Condition

The efficient condition is a split or packaged unitary air conditioning system meeting minimum Consortium for Energy Efficiency (CEE) Tier 1 or Tier 2^{624} efficiency standards as defined below (see table "Baseline and Efficient Levels by Unit Capacity" below).

Baseline and Efficient Levels by Unit Capacity

Equipment Type	Size Category	Subcategory	Baseline Condition (IECC 2009)	Efficient Condition (CEE Tier 1)	Efficient Condition (CEE Tier 2)
Air Conditioners, Air Cooled	<65,000 Btu/h	Split system	13.0 SEER	14.0 SEER 12.0 EER	15.0 SEER 12.5 EER
		Single package	13.0 SEER	14.0 SEER 11.6 EER	15.0 SEER 12.0 EER

623 Integrated Energy Efficiency Ratio (IEER) requirements have been incorporated from ASHRAE 90.1-2007, "Energy Standard for Buildings Except Low-Rise Residential Buildings", 2008 Supplement. IECC 2009 does not present IEER requirements.

624 CEE Commercial Unitary AC and HP Specification, Effective January 6, 2012: http://www.cee1.org/files/CEE_CommHVAC_UnitarySpec2012.pdf

Page 262 of 296

Equipment Type	Size Category	Subcategory	Baseline Condition (IECC 2009)	Efficient Condition (CEE Tier 1)	Efficient Condition (CEE Tier 2)
	≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	11.2 EER 11.4 IEER	11.7 EER 13.0 IEER	12.2 EER 14.0 IEER
	≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	11.0 EER 11.2 IEER	11.7 EER 12.5 IEER	12.2 EER 13.2 IEER
	≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	10.0 EER 10.1 IEER	10.5 EER 11.3 IEER	10.8 EER 12.3 IEER
	≥760,000 Btu/h	Split system and single package	9.7 EER 9.8 IEER	9.9 EER 11.1 IEER	10.4 EER 11.6 IEER

Note: All table baseline and efficient ratings assume electric resistance heating section type (or none). Subtract 0.2 from each baseline efficiency rating value if unit has heating section other than electric resistance.

Annual Energy Savings Algorithm

For units with capacities less than 65,000 Btu/h, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

 $\Delta kWh = (Btu/hour/1000) \times [(1/SEERBASE - 1/SEEREE)] \times HOURS$

For units with capacities greater than or equal to 65,000 Btu/h, the energy savings are calculated using the Energy Efficiency Ratio (EER) as follows:

 $\Delta kWh = (Btu/hour/1000) \times [(1/EERBASE - 1/EEREE)] \times HOURS$

Where:

Btu/hour = Size of equipment in Btu/hour

= Actual Installed

SEEREE = SEER Efficiency of efficient unit

= Actual Installed

SEERBASE = SEER Efficiency of baseline unit

= Based on IECC 2009 for the installed capacity. See table

above.

EEREE = EER Efficiency of efficient unit

= Actual Installed

EERBASE = EER Efficiency of baseline unit

= Based on IECC 2009 for the installed capacity. See table

above.

HOURS = Full load cooling hours

Page 263 of 296

= If actual full load cooling hours are unknown, assume 1014 for units <135 kBtu/h and 1823 for units \geq 135 kBtu/h⁶²⁵. Otherwise, use site specific full load cooling hours information.

For example, a 5 ton unit with SEER rating of 14.0:

$$\Delta$$
kWh = (60,000/1000) x (1/13 - 1/14) x 1014

= 334 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (Btu/hour/1000) \times [(1/EERBASE - 1/EEREE)] \times CF$

Where:

EERbase = EER Efficiency of baseline unit

= Based on IECC 2009 for the installed capacity. See table

above.

EERee = EER Efficiency of efficient unit

= Actual installed

CF_{PIM} =PJM Summer Peak Coincidence Factor (June to August

weekdays between 2 pm and 6 pm) valued at peak weather

= 0.360 for units <135 kBtu/h and 0.567 for units \ge 135

kBtu/h⁶²⁶

CF_{SSP} = Summer System Peak Coincidence Factor (hour ending

5pm on hottest summer weekday)

= 0.588 for units <135 kBtu/h and 0.874 for units ≥135

kBtu/h⁶²⁷

For example, a 5 ton unit with EER rating of 12 and estimating PJM summer peak coincidence: 628

$$\Delta kW = (60,000/1000) * (1/10.8 - 1/12) * 0.360$$

_

⁶²⁵ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁶²⁶ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁶²⁷ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

 $^{^{628}}$ Assumes baseline unit with 13 SEER converted to EER using the following estimate: EER = SEER/1.2

= 0.20 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost 629

Size Category	Efficient Condition (CEE Tier 1) ⁶³⁰	Efficient Condition (CEE Tier 2) ⁶³¹				
<=65,000 Btu/h	\$100/ton	\$140/ton				
>65,000 Btu/h	\$120/ton	\$160/ton				

Measure Life

The measure life is assumed to be 15 years. 632

Operation and Maintenance Impacts

n/a

Values and Summary Documentation for 2008 Database for Energy-Efficient Resources, California Public Utilities Commission.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁶²⁹ In all cases, incremental costs are presented relative to the baseline efficiencies presented in the Baseline and Efficient Levels by Unit Capacity Table for the relevant size categories. 630 Based on personal communication with VT equipment distributors and a review of Cost

⁶³¹ CEE Tier 2 incremental costs are estimated by multiplying the ratio of the incremental costs for CEE Tier 2 and Tier 1 units from the NEEP Incremental Cost Study, Navigant, 2011, by the incremental cost estimates for Tier 1. This estimate should be revisited in the future once adequate program data is collected.

⁶³² Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 265 of 296

Variable Frequency Drive (VFD)

Unique Measure Code(s): CI_MO_TOS_VFDRIVE_0510

Effective Date: March 2011

End Date:

Measure Description

This measure defines savings associated with installing a Variable Frequency Drive on a motor of 10 HP or less for the following HVAC applications: supply fans, return fans, exhaust fans, chilled water pumps, and boiler feedwater pumps. The fan or pump speed will be controlled to maintain the desired system pressure. The application must have a load that varies and proper controls (Two -way valves, VAV boxes) must be installed.

Definition of Baseline Condition

The baseline condition is a motor, 10HP or less, without a VFD control.

Definition of Efficient Condition

The efficient condition is a motor, 10HP or less, with a VFD control.

Annual Energy Savings Algorithm

 $\Delta kWh = [(HP \times 0.746) / nBASE] \times HOURS \times ESF$

Where:

HP = Motor Horse Power

= Actual controlled motor horse power

0.746 = kWh per HP conversion factor nBASE = Efficiency of baseline motor

= Actual efficiency

HOURS = Annual hours of operation

= If actual operating hours are unknown, see table "VFD Operating Hours by Application and Building Type" below. Otherwise, use site specific operating hours information.

- Eparam Savings Factor (see table "Eparam and Demand")

ESF = Energy Savings Factor (see table "Energy and Demand

Savings Factors" below)

For example, a 10HP motor with VFD used on supply fan application in an office (assume 90% motor efficiency and constant volume baseline control):

 Δ kWh = [(10 * 0.746) / 0.9] * 3,748 * 0.717 = 22,280 kWh

VFD Operating Hours by Application and Building Type⁶³³

The operating floars by A	•	Chilled	5 Type
	Fan Motor	Water	Heating
Facility Type	Hours	Pumps	Pumps
Auto Related	4,056	1,878	6,000
Bakery	2,854	1,445	6,000
Banks, Financial Centers	3,748	1,767	6,000
Church	1,955	1,121	6,000
College - Cafeteria	6,376	2,713	6,000
College -			
Classes/Administrative	2,586	1,348	6,000
College - Dormitory	3,066	1,521	6,000
Commercial Condos	4,055	1,877	6,000
Convenience Stores	6,376	2,713	6,000
Convention Center	1,954	1,121	6,000
Court House	3,748	1,767	6,000
Dining: Bar Lounge/Leisure	4,182	1,923	6,000
Dining: Cafeteria / Fast Food	6,456	2,742	6,000
Dining: Family	4,182	1,923	6,000
Entertainment	1,952	1,120	6,000
Exercise Center	5,836	2,518	6,000
Fast Food Restaurants	6,376	2,713	6,000
Fire Station (Unmanned)	1,953	1,121	6,000
Food Stores	4,055	1,877	6,000
Gymnasium	2,586	1,348	6,000
Hospitals	7,674	3,180	6,000
Hospitals / Health Care	7,666	3,177	6,000
Industrial - 1 Shift	2,857	1,446	6,000
Industrial - 2 Shift	4,730	2,120	6,000
Industrial - 3 Shift	6,631	2,805	6,000
Laundromats	4,056	1,878	6,000
Library	3,748	1,767	6,000
Light Manufacturers	2,857	1,446	6,000
Lodging (Hotels/Motels)	3,064	1,521	6,000
Mall Concourse	4,833	2,157	6,000
Manufacturing Facility	2,857	1,446	6,000
Medical Offices	3,748	1,767	6,000
Motion Picture Theatre	1,954	1,121	6,000

 $^{^{633}}$ UI and CL&P Program Savings Documentation for 2009 Program Year, October 2008.

Northeast Energy Efficiency Partnerships 91 Hartwell Avenue Lexington, MA 02421 P: 781.860.9177 www.neep.org

Multi-Family (Common Areas)	7,665	3,177	6,000
Museum	3,748	1,767	6,000
Nursing Homes	5,840	2,520	6,000
Office (General Office Types)	3,748	1,767	6,000
Office/Retail	3,748	1,767	6,000
Parking Garages & Lots	4,368	1,990	6,000
Penitentiary	5,477	2,389	6,000
Performing Arts Theatre	2,586	1,348	6,000
Police / Fire Stations (24 Hr)	7,665	3,177	6,000
Post Office	3,748	1,767	6,000
Pump Stations	1,949	1,119	6,000
Refrigerated Warehouse	2,602	1,354	6,000
Religious Building	1,955	1,121	6,000
Residential (Except Nursing			
Homes)	3,066	1,521	6,000
Restaurants	4,182	1,923	6,000
Retail	4,057	1,878	6,000
School / University	2,187	1,205	6,000
Schools (Jr./Sr. High)	2,187	1,205	6,000
Schools			
(Preschool/Elementary)	2,187	1,205	6,000
Schools			
(Technical/Vocational)	2,187	1,205	6,000
Small Services	3,750	1,768	6,000
Sports Arena	1,954	1,121	6,000
Town Hall	3,748	1,767	6,000
Transportation	6,456	2,742	6,000
Warehouse (Not Refrigerated)	2,602	1,354	6,000
Waste Water Treatment Plant	6,631	2,805	6,000
Workshop	3,750	1,768	6,000

Energy and Demand Savings Factors 634

HVAC Fan VFD Savings Factors					
Baseline ESF DSF					
Constant Volume	0.717	0.466			
AF/BI	0.475	0.349			
AF/BI IGV	0.304	0.174			
FC	0.240	0.182			
FC IGV	0.123	0.039			

 $^{^{634}}$ UI and CL&P Program Saving Documentation for 2009 Program Year; energy and demand savings constants were derived using a temperature BIN spreadsheet and typical heating, cooling and fan load profiles.

HVAC Pump VFD Savings Factors							
System	ESF	DSF					
Chilled Water Pump	0.580	0.401					
Hot Water Pump	0.646	0.000					

AF/BI = Air foil / backward incline AF/BI IGV = AF/BI Inlet guide vanes FC = Forward curved FC IGV = FC Inlet guide vanes

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = [(HP \times 0.746) / \eta BASE] \times DSF \times CF$$

Where:

DSF = Demand Savings Factor (see table "Energy and Demand

Savings Factors" above)

CF = Summer Peak Coincidence Factor for measure

= 0.55 (pumps) and 0.28 (fans) ⁶³⁵

For example, a 10HP motor with VFD used on supply fan application in an office (assume 90% motor efficiency and constant volume baseline control):

$$\Delta$$
kW = [(10 /* 0.746)/ 0.9] * 0.466 * 0.28
= 1.08 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure varies by controlled motor hp. See table "VFD Incremental Costs" below.

 $^{^{635}}$ UI and CL&P Program Saving Documentation for 2009 Program Year, Table 1.1.1; HVAC - Variable Frequency Drives - Pumps.

Page 269 of 296

VFD Incremental Costs⁶³⁶

HP	Fan	Pump
5	\$920	\$1,710
7.5	\$1,310	\$2,100
10	\$1,320	\$2,150

Measure Life

The measure life is assumed to be 15 years for HVAC applications. 637

Operation and Maintenance Impacts

n/a

 $^{^{636}}$ UI and CL&P Program Savings Documentation for 2009 Program Year, October 2008. 637 Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

Page 270 of 296

Electric Chillers

Unique Measure Code: CI_HV_TOS_ELCHIL_0711, CI_HV_RTR_ELCHIL_0711,

Effective Date: July 2011

End Date:

Measure Description

This measure relates to the installation of a new high-efficiency electric water chilling package in place of a standard efficiency electric water chilling package. This measure could relate to either a lost-opportunity or retrofit installation.

Definition of Baseline Condition

Lost-Opportunity: The baseline condition is a standard efficiency water chilling package equal to the requirements presented in the International Energy Conservation Code 2009 (IECC 2009), Table 503.2.3(7).

Retrofit: The baseline condition is an existing water chilling package.

Definition of Efficient Condition

The efficient condition is a high-efficiency electric water chilling package exceeding the requirements presented in the International Energy Conservation Code 2009 (IECC 2009), Table 503.2.3(7).

Annual Energy Savings Algorithm

ΔkWh = TONS * (IPLVbase - IPLVee) * HOURS

Where:

TONS = Total installed capacity of the water chilling

package[tons] = Actual Installed

IPLVbase = Integrated Part Load Value (IPLV)⁶³⁸ of the baseline

equipment [kW/ton]

= For lost-opportunity: Varies by equipment type and capacity. See "Lost-Opportunity Baseline Equipment

⁶³⁸ Integrated Part Load Value (IPLV) is an HVAC industry standard single-number metric for reporting part-load performance.

Page 271 of 296

Efficiency" table in the "Reference Tables" section

below⁶³⁹

= For retrofit: the actual IPLV of the existing equipment

IPLVee = Integrated Part Load Value (IPLV) of the efficient

equipment [kW/ton]

= Actual Installed

HOURS = Full load cooling hours

= If actual full load cooling hours are unknown, assume values presented in table "Default Electric Chiller Full Load Cooling Hours" in the "Reference Tables" section below. Otherwise, use site specific full load cooling hours

information.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = TONS \times (Full_Loadbase - Full_Loadbee) \times CF$

Where:

Full_Loadbase = Full load efficiency of the baseline equipment [kW/ton]

= For lost-opportunity: Varies by equipment type and capacity. See "Lost-Opportunity Baseline Equipment Efficiency" table in the "Reference Tables" section below⁶⁴⁰

= For retrofit: the actual full load efficiency of the

existing equipment

Full Loadee = Full load efficiency of the efficient equipment

= Actual Installed [kW/ton]

 CF_{PIM} = PJM Summer Peak Coincidence Factor (June to August

weekdays between 2 pm and 6 pm) valued at peak weather

 $= 0.808^{647}$

CF_{SSP} = Summer System Peak Coincidence Factor (hour ending

5pm on hottest summer weekday)

 $= 0.923^{642}$

639 Baseline efficiencies based on International Energy Conservation Code 2009, Table 503.2.3(7) Water Chilling Packages, Efficiency Requirements.

⁶⁴⁰ Baseline efficiencies based on International Energy Conservation Code 2009, Table 503.2.3(7) Water Chilling Packages, Efficiency Requirements.

⁶⁴¹ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

⁶⁴² Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 272 of 296

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be custom.

Measure Life

The measure life is assumed to be 23 years⁶⁴³.

Operation and Maintenance Impacts

n/a

Reference Tables

Lost-Opportunity Baseline Equipment Efficiency⁶⁴⁴

Equipment			Pat	h Aª	Pat	h B ^a
Туре	Size Category	Units	Full Load	IPLV	Full Load	IPLV
Air-Cooled	<150 tons	EER	≥9.562	≥12.500	NA	NA
Chillers	≥150 tons	EER	≥9.562	≥12.750	NA	NA
Water Cooled,	<75 tons	kW/ton	≤0.780	≤0.630	≤0.800	≤0.600
Electrically	≥75 tons and <150 tons	kW/ton	≤0.775	≤0.615	≤0.790	≤0.586
Operated, Positive	≥150 tons and <300 tons	kW/ton	≤0.680	≤0.580	≤0.718	≤0.540
Displacement	≥300 tons	kW/ton	≤0.620	≤0.540	≤0.639	≤0.490
Water Cooled,	<150 tons	kW/ton	≤0.634	≤0.596	≤0.639	≤0.450
Electrically	≥150 tons and <300 tons	kW/ton	≤0.634	≤0.596	≤0.639	≤0.450
Operated,	≥300 tons and <600 tons	kW/ton	≤0.576	≤0.549	≤0.600	≤0.400
Centrifugal	≥600 tons	kW/ton	≤0.570	≤0.539	≤0.590	≤0.400

a. Compliance with IECC 2009 can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B.

⁶⁴³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007, "http://www.ctsavesenergy.org/files/Measure Life Report 2007.pdf"

⁶⁴⁴ Baseline efficiencies based on International Energy Conservation Code 2009, Table 503.2.3(7) Water Chilling Packages, Efficiency Requirements.

Default Electric Chiller Full Load Cooling Hours⁶⁴⁵

Building Type	System Type ^a	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Community College	CAV w/ economizer	752	781	836	777	897	833	952
Community College	CAV w/o economizer	1,010	1,048	1,121	1,044	1,202	1,117	1,274
Community College	VAV w/ economizer	585	607	649	605	695	647	736
High School	CAV w/ economizer	428	440	463	439	489	462	511
High School	CAV w/o economizer	819	830	851	829	875	850	896
High School	VAV w/ economizer	306	316	336	315	359	335	379
Hospital	CAV w/ economizer	1,307	1,341	1,406	1,338	1,479	1,403	1,543
Hospital	CAV w/o economizer	2,094	2,135	2,213	2,130	2,302	2,210	2,379
Hospital	VAV w/ economizer	1,142	1,165	1,208	1,162	1,257	1,206	1,300
Hotel	CAV w/ economizer	2,972	2,972	2,971	2,972	2,971	2,971	2,971
Hotel	CAV w/o economizer	3,166	3,165	3,163	3,165	3,161	3,163	3,159

⁶⁴⁵ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using cooling degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 274 of 296

Building Type	System Type ^a	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Hotel	VAV w/ economizer	2,953	2,958	2,967	2,957	2,977	2,966	2,986
Large Retail	CAV w/ economizer	987	1,011	1,057	1,009	1,109	1,055	1,155
Large Retail	CAV w/o economizer	1,719	1,730	1,750	1,729	1,772	1,749	1,792
Large Retail	VAV w/ economizer	817	838	877	835	921	875	959
Office Building	CAV w/ economizer	700	710	729	709	750	728	768
Office Building	CAV w/o economizer	2,162	2,193	2,252	2,189	2,318	2,249	2,377
Office Building	VAV w/ economizer	670	685	716	684	749	714	779
University	CAV w/ economizer	796	822	871	819	925	868	974
University	CAV w/o economizer	1,103	1,135	1,198	1,132	1,267	1,194	1,329
University	VAV w/ economizer	626	645	682	643	724	680	760

a. "CAV" refers to constant air volume systems whereas "VAV" refers to variable air volume systems.

Page 275 of 296

Gas Boiler

Unique Measure Code: CI_HV_TOS_GASBLR_0113 and

CI_HV_RTR_GASBLR_0113 Effective Date: January 2013

End Date: TBD

Measure Description

This measure relates to the installation of a high efficiency gas boiler in the place of a standard efficiency gas boiler. This measure could be either a lost-opportunity or retrofit installation.

Definition of Baseline Condition

Lost-Opportunity: The baseline condition is a gas boiler with efficiency equal to the current federal standards. See the "Lost-Opportunity Baseline Equipment Efficiency" table in the "Reference Tables" section.

Retrofit: The baseline condition is an existing gas boiler.

Definition of Efficient Condition

The efficient condition is a high-efficiency gas boiler of at least 85% AFUE for units <300 kBtu/h and 85% E_t for units >300 kBtu/h. See the "Lost-Opportunity Baseline Equipment Efficiency" table in the "Reference Tables" section.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = CAP x HOURS x (1/EFF_{base} - 1/EFF_{ee}) / 1,000,000

Where:

CAP = Equipment capacity [Btu/h]

= Actual Installed

HOURS = Full Load Heating Hours

Page 276 of 296

= See "Heating Full Load Hours" table in the "Reference Tables" section below⁶⁴⁶

 EFF_{base} = The efficiency of the baseline equipment; Can be

expressed as thermal efficiency (E_t) , combustion efficiency

 (E_c) , or Annual Fuel Utilization Efficiency (AFUE), depending on equipment type and capacity.

= For lost-opportunity: See "Lost-Opportunity Baseline Equipment Efficiency" table in the "Reference Tables"

section below⁶⁴⁷

= For retrofit: the actual efficiency of the existing

equipment

 EFF_{ee} = The efficiency of the efficient equipment; Can be

expressed as thermal efficiency (E_t) , combustion efficiency

 (E_c) , or Annual Fuel Utilization Efficiency (AFUE), depending on equipment type and capacity.

= Actual Installed

1,000,000 = Btu/MMBtu unit conversion factor

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure varies by size category and efficiency level. See the "Lost-Opportunity Incremental Costs" table in the "Reference Tables" section below.

Measure Life

The measure life is assumed to be 20 years⁶⁴⁸.

Operation and Maintenance Impacts

n/a

Reference Tables

Lost-Opportunity Baseline Equipment Efficiency⁶⁴⁹

 ⁶⁴⁶ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.
 647 Baseline efficiencies based on the Energy Independence and Security Act of 2007 and the International Energy Conservation Code 2009, Table 503.2.3(5) Boilers, Gas- and Oil-Fired, Minimum Efficiency Requirements.

⁶⁴⁸ Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

Page 277 of 296

Equipment Type	Size Category	Subcategory or Rating Condition	Minimum Efficiency
	<300,000 Btu/h	Hot water	82% AFUE
	<300,000 Btu/11	Steam	80% AFUE
	>-200,000	Hot water	80% E _t
	>=300,000 Btu/h and <=2,500,000 Btu/h	Steam - all, except natural draft	79.0% E _t
Boilers, Gas-fired	Dta/II	Steam - natural draft	77.0% E _t
		Hot water	82.0% E _c
	>2,500,000 Btu/h	Steam - all, except natural draft	79.0% E _t
		Steam - natural draft	77.0% E _t

Lost-Opportunity Incremental Costs⁶⁵⁰

Size Category	Incremer	Incremental Cost					
(kBtu/h)	>=85% and <90% Efficiency >=90% Efficiency		Efficiency Metric				
<300	\$934	\$1481	AFUE				
300	\$572	\$3,025	E _t				
500	\$1,267	\$3,720	E _t				
700	\$1,962	\$4,414	E _t				
900	\$2,657	\$5,109	E _t				
1,100	\$3,352	\$5,804	E _t				
1,300	\$4,047	\$6,499	E _t				

⁶⁴⁹ Baseline efficiencies based on current federal standards:

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/74fr36312.pdf.

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html VEIC believes it is reasonable to assume that the cost provided from this study for an 85% unit is appropriate for units in the 85-90% AFUE range and the cost for the 91% unit can be used for 91+% units. This is based on the observation that most of the products available in the 85-90 range are in the lower end of the range, as are those units available above 91% AFUE. For units >= 300 kBtu/h costs adopted from the Northeast Energy Efficiency Partnerships Incremental Cost Study Report, Navigant, 2011.

⁶⁵⁰ For units <300 kBtu/h, costs derived from Page E-13 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

Page 278 of 296

1,500	\$4,742	\$7,194	E _t
1,700	\$5,436	\$7,889	E _t
2,000	\$6,479	\$8,931	E _t
>=2200	\$7,174	\$9,626	E _t

Heating Full Load Hours⁶⁵¹

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

⁶⁵¹ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 279 of 296

Gas Furnace

Unique Measure Code: CI_HV_TOS_GASFUR_0711,

CI_HV_RTR_GASFUR_0711

Effective Date: Fnd Date:

Measure Description

This measure relates to the installation of a high efficiency gas furnace with capacity less than 225,000 Btu/h with an electronically commutated fan motor (ECM) in the place of a standard efficiency gas furnace. This measure could be either a lost-opportunity or retrofit installation.

Definition of Baseline Condition

Lost-Opportunity: The baseline condition is a gas furnace with an Annual Fuel Utilization Efficiency (AFUE) of 80% with a standard efficiency furnace fan.

Retrofit: The baseline condition is an existing gas furnace.

Definition of Efficient Condition

The efficient condition is a high-efficiency gas furnace with an AFUE of 90% or higher. This characterization only applies to furnaces with capacities less than 225,000 Btu/h with an electronically commutated fan motor (ECM).

Annual Energy Savings Algorithm⁶⁵²

 $\Delta kWh = 733 kWh^{653}$

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0.19 \ kW^{654}$

Annual Fossil Fuel Savings Algorithm

_

 $^{^{652}}$ Energy and Demand Savings come from the ECM furnace fan motor. These motors are also available as a separate retrofit on an existing furnace.

⁶⁵³ Deemed savings from ECM Furnace Impact Assessment Report. Prepared by PA Consulting for the Wisconsin Public Service Commission 2009. Based on in depth engineering analysis and interviews taking into account the latest research on behavioral aspects of furnace fan use.
654 Efficiency Vermont Technical Reference User Manual No. 2010-67a. Measure Number I-A-6-a.

Page 280 of 296

 Δ MMBtu = CAP x HOURS x [(1/AFUE_{base}) - (1/AFUE_{ee})] / 1,000,000

Where:

CAP = Capacity of the high-efficiency equipment [Btu/h]

= Actual Installed

HOURS = Full Load Heating Hours

= See "Heating Full Load Hours" table in the "Reference

Tables" section below⁶⁵⁵

 $AFUE_{base}$ = Annual Fuel Utilization Efficiency of the baseline

equipment

= For lost-opportunity: 0.80⁶⁵⁶

= For retrofit: the actual AFUE of the existing equipment

 $AFUE_{ee}$ = Annual Fuel Utilization Efficiency of the efficient

equipment

= Actual Installed.

1,000,000 = Btu/MMBtu unit conversion factor

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$0.009 per Btu/h⁶⁵⁷.

Measure Life

The measure life is assumed to be 18 years⁶⁵⁸.

⁶

⁶⁵⁵ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory. 656 Baseline efficiencies based on International Energy Conservation Code 2009, Table 503.2.3(4) Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters, Minimum Efficiency Requirements. Review of GAMA shipment data indicates a more suitable market baseline is 80% AFUE. The baseline unit is non-condensing.

⁶⁵⁷ Incremental Cost based on analysis of proprietary vendor data from models from Gibson and Frigadaire, and from DOE "Energy Conservation Program for Certain Industrial Equipment: Test Procedures and Energy Conservation Standards for Commercial Heating, Air-Conditioning, and Water Heating Equipment Final Rule Technical Support Document". September 14, 2009.
658 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007, "http://www.ctsavesenergy.org/files/Measure Life Report 2007.pdf"

Operation and Maintenance Impacts

n/a

Reference Tables

Heating Full Load Hours⁶⁵⁹

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

_

⁶⁵⁹ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory

Page 282 of 296

Dual Enthalpy Economizer

Unique Measure Code: CI_HV_RTR_DEECON_0711

Effective Date: July 2011

End Date:

Measure Description

This measure involves the installation of a dual enthalpy economizer to provide free cooling during the appropriate ambient conditions. This measure applies only to retrofits.

Definition of Baseline Condition

The baseline condition is the existing HVAC system, without dual enthalpy economizer controls.

Definition of Efficient Condition

The efficient condition is the HVAC system with dual enthalpy economizer controls.

Annual Energy Savings Algorithm

ΔkWh = TONS * SF

Where:

TONS = Actual Installed

SF = Savings factor for the installation of dual enthalpy

economizer control [kWh/ton],

= See "Savings Factors" table in "Reference Tables"

section below⁶⁶⁰

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0 \ kW^{661}$

_

 ⁶⁶⁰ kWh/ton savings from "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, scaled based on enthalpy data from New York City and Mid-Atlantic cities from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.
 661 Demand savings are assumed to be zero because economizer will typically not be operating

bemand savings are assumed to be zero because economizer will typically not be operating during the peak period.

Page 283 of 296

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$400 for a dry bulb economizer baseline and \$800 for a fixed damper baseline 662.

Measure Life

The measure life is assumed to be 10 years⁶⁶³.

Operation and Maintenance Impacts

n/a

Reference Tables

Savings Factors⁶⁶⁴

Savings Factors (kWh/ton)	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	26	22	25	29	25	27	25
Big Box Retail	144	125	143	165	141	155	139
Fast Food	37	32	37	42	36	40	36
Full Service Restaurant	29	25	29	34	29	32	28
Light Industrial	24	21	23	27	23	25	23
Primary School	40	34	39	45	39	43	39
Small Office	177	153	175	201	173	189	171
Small Retail	90	78	89	103	88	97	87
Religious	6	5	6	6	6	6	6
Warehouse	2	2	2	2	2	2	2
Other	58	50	57	66	57	62	56

. .

 $^{^{662}}$ Cost ranges from \$250-\$400 when going from a dry bulb economizer baseline; only one source gives cost of going from a fixed damper baseline (\$800)

⁶⁶³ General agreement among sources; Recommended value from Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

⁶⁶⁴ kWh/ton savings from NY Standard Approach Model, with scaling factors based on enthalpy data from NYC and Mid-Atlantic cities.

Page 284 of 296

Page 285 of 296

Refrigeration End Use

Efficient Freezer

Unique Measure Code(s): CI_RF_TOS_FREEZER_0510

Effective Date: March 2011

End Date:

Measure Description

This measure describes the installation of an ENERGY STAR qualified, high-efficiency packaged commercial reach-in freezer, typically used by foodservice establishments.

Definition of Baseline Condition

The baseline condition is a standard-efficiency packaged commercial reach-in freezer.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified, high-efficiency packaged commercial reach-in freezer.

Annual Energy Savings Algorithm

 Δ kWh = (kWhBASEdailymax - kWhEEdailymax) x 365

Where:

kWhBASEdailymax ⁶⁶⁵ = 0.40V+1.38 (solid door) = 0.75V+4.10 (glass door)

kWhEEdailymax 666

Solid Door Cabinets:

0<V<15: <=0.250V+1.250 15<=V<30: <=0.400V-1.000 30<=V<50: <=0.163V+6.125 50<=V: <=0.158V+6.333

⁶⁶⁵ Nadel, S. Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, 12/2002.

⁶⁶⁶ High Efficiency Specifications for Commercial Refrigerators and Freezers, Consortium for Energy Efficiency, 1/1/2010.

Glass Door Cabinets:

0<V<15: <=0.607V+0.893 15<=V<30: <=0.733V-1.000 30<=V<50: <=0.250+13.5000 50<=V: <=0.450V+3.500

Chest Configuration: Solid or Glass Door Cabinets: <=0.270V+0.130

V = Association of Home Appliances Manufacturers (AHAM) volume

For example, for a 50 ft² solid door refrigeration unit:

$$\Delta$$
kWh = ((0.4*50+1.38)-(0.158*50+6.333))*365
= 2608.7 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/HOURS) \times CF$

Where:

HOURS = Full load hours

= 5858 ⁶⁶⁷

CF = Summer Peak Coincidence Factor for measure

 $= 0.772^{668}$

For example, for a 50 ft² solid door refrigeration unit:

$$\Delta$$
kW = (2608.7 / 5858) * 0.772
= 0.34 kW

Annual Fossil Fuel Savings Algorithm

⁶⁶⁷ Efficiency Vermont Estimate, Derived from Washington Electric Coop data by West Hill Energy Consultants.

⁶⁶⁸ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

Page 287 of 296

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost 669

The incremental cost for this measure is assumed to be:

0<V<=32: \$150 32<V<=60: \$200 60<=V<80: \$250.

Measure Life

The measure life is assumed to be 9 years. 670

Operation and Maintenance Impacts

n/a

⁶⁶⁹ Nadel, S. Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, 12/2002.

670 Energy Savings Potential for Commercial Refrigeration Equipment, Arthur D. Little, Inc.,

^{1996.}

Page 288 of 296

Hot Water End Use

C&I Heat Pump Water Heater

Unique Measure Code(s): CI_WT_TOS_HPCIHW_0510

Effective Date: May 2010

End Date:

Measure Description

This measure relates to the installation of a Heat Pump water heater in place of a standard electric water heater. This measure could relate to either a retrofit or a new installation.

Definition of Baseline Condition

The baseline condition is a standard electric water heater.

Definition of Efficient Condition

The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

$$\Delta kWH = (kBtu_req / 3.413) x ((1/EFbase) - (1/EFee))$$

Where:

kBtu_req (Office) = Required annual heating output of office (kBtu) = 6,059 ⁶⁷¹ kBtu_req (School) = Required annual heating output of school (kBtu) = 22,191 ⁶⁷²

Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.

Water heating requirement equation adopted from FEMP Federal Technology Alert: Commercial Heat Pump Water Heater, 2000.

Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.

Water heating requirement equation adopted from FEMP Federal Technology Alert: Commercial Heat Pump Water Heater, 2000.

⁶⁷¹ Assumes an office with 25 employees; According to 2003 ASHRAE Handbook: HVAC Applications, Office typically uses 1.0 gal/person per day.

⁶⁷² Assumes an elementary school with 300 students; According to 2003 ASHRAE Handbook: HVAC Applications, Elementary School typically uses 0.6 gal/person per day of operation. Assumes 37 weeks of operation.

Page 289 of 296

3.413 = Conversion factor from kBtu to kWh

EFee = Energy Factor of Heat Pump domestic water

heater = 2.0 ⁶⁷³

EFbase = Energy Factor of baseline domestic water heater

 $= 0.904^{674}$

 Δ kWH Office = (6,059 / 3.413) * ((1/0.904) - (1/2.0))

= 1076.2 kWh

 Δ kWH School = (22,191 / 3.413) * ((1/0.904) - (1/2.0))

= 3941.4 kWh

If the deemed "kBtu_req" estimates are not applicable, the following equation can be used to estimate annual water heating energy requirements:

kBtu req = $GPD \times 8.33 \times 1.0 \times WaterTempRise \times 365$

Where:

GDP = Average daily hot water requirements

(gallons/day)

= Actual usage (Note: days when the building is unoccupied must be included in the averaging

calculation)

8.33 = Density of water (lb/gallon)

1.0 = Specific heat of water (Btu/lb-°F)

WaterTempRise = Difference between average temperature of water

delivered to site and water heater setpoint (°F)

365 = Days per year

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours (Office) = Run hours in office

⁶⁷³ Efficiencies based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_heaters/WaterHeaterDraftCriteriaAnalysis.pdf
⁶⁷⁴ Ihid

Page 290 of 296

= 5885 ⁶⁷⁵

Hours (School) = Run hours in school

 $= 2218^{676}$

CF (Office) = Summer Peak Coincidence Factor for office

> measure $= 0.630^{677}$

CF (School) = Summer Peak Coincidence Factor for school

> measure $= 0.580^{678}$

ΔkW Office = (1076.2 / 5885) * 0.630

= 0.12 kW

ΔkW School = (3941.4 / 3.413) * 0.580

= 1.03 kW

If annual operating hours and CF estimates are unknown, use deemed HOURS and CF estimates above. Otherwise, use site specific values.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$925.679

Measure Life

The measure life is assumed to be 10 years. 680

Operation and Maintenance Impacts

n/a

⁶⁷⁵ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. ⁶⁷⁶ Ibid.

⁶⁷⁷ Ibid.

⁶⁷⁹ Cost based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_hea ters/WaterHeaterDraftCriteriaAnalysis.pdf

⁶⁸⁰ Vermont Energy Investment Corporation "Residential Heat Pump Water Heaters: Energy Efficiency Potential and Industry Status" November 2005.

Plug Load End Use

"Smart-Strip" plug outlets

Unique Measure Code: CI_PL_TOS_SMARTS_0711

Effective Date: July 2011

End Date:

Measure Description

This measure relates to the installation of a "smart-strip" plug outlet in place of a standard "power strip," a device used to expand a single wall outlet into multiple outlets. This measure is assumed to be a lost-opportunity installation.

Definition of Baseline Condition

The baseline condition is a standard "power strip". This strip is simply a "plug multiplier" that allows the user to plug in multiple devices using a single wall outlet. Additionally, the baseline unit has no ability to control power flow to the connected devices.

Definition of Efficient Condition

The efficient condition is a "smart-strip" plug outlet that functions as both a "plug multiplier" and also as a plug load controller. The efficient unit has the ability to essentially disconnect controlled devices from wall power when the "smart strip" detects that a controlling device, or master load, has been switched off. The efficient device effectively eliminates standby power consumption (phantom power) for all controlled devices⁶⁸¹ when the master load is not in use.

Annual Energy Savings Algorithm

 Δ kWh = 24 kWh⁶⁸²

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0 \ kW^{683}$

Annual Fossil Fuel Savings Algorithm

n/a

-

⁶⁸¹ Most "smart-strips" have one or more uncontrolled plugs that can be used for devices where a constant power connection is desired such as fax machines and wireless routers.

⁶⁸² Deemed savings from "State of Ohio Energy Efficiency Technical Reference Manual", Vermont Energy Investment Corporation, August 2010.

⁶⁸³ Deemed savings from "State of Ohio Energy Efficiency Technical Reference Manual", Vermont Energy Investment Corporation, August 2010.

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$16 for a 5-plug \$26 for a 7-plug⁶⁸⁴.

Measure Life

The measure life is assumed to be 4 years⁶⁸⁵.

Operation and Maintenance Impacts

n/a

 ⁶⁸⁴ NYSERDA Measure Characterization for Advanced Power Strips
 ⁶⁸⁵ David Rogers, Power Smart Engineering, "Smart Strip Electrical Savings and Usability," October 2008

APPENDIX

A. Supporting Calculation Work Sheets

- 1. A1_MidAtlantic CFL adjustments v3.xls
- 2. A2_ESTAR Integrated Screw SSL Lamp.xls
- 3. A3_Dehumidifier calcs.xls
- 4. A4_Calculation of Equivalent Annual Savings for Retrofit Measures
- 5. A5 Freezer default calcs
- B. Recommendation for Process and Schedule for Maintenance and Update of TRM Contents
- C. Description of Unique Measure Codes

Residential Lighting Markdown Impact Evaluation (2009)

(CT, MA, RI, VT)

Table 5-21: Calculation of First-Year and Lifetime Installation Rates

Measure	Markdow	Measure	
	n	Life	Both
Total number of products	1,202	168	1,370
Number of products ever installed ^a	921	129	1,050
First-year installation rate	76.60%	76.80%	76.60%
Number of products likely to be installed in future ^b	250	37	287
Lifetime number of products to be installed ^c	1,171	166	1,337
Lifetime installation rate	97.40%	99.10%	97.60%

Initial Install Rate (From Empower Study)	0.88
Lifetime Install Rate (from 2009 RLW study)	0.97
Therefore 'future install'	0.09

initial product life (based on Jump et al report) 5.2 yrs

Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs Table 6-7: Reasons for Not Installing Products Purchased through the RLP (p67)

% of future installs to replace CFLs (bought as spares) 57% % of future installs to replace incandescents 43%

To reflect additional future savings from units replacing CFLs in future Measure Life 5.5 yrs

To account for additional installs replacing incandescents - assume installed in first year.

Install Rate 0.92 p59

B. Process and Schedule for Maintenance and Update of TRM Contents

TRM Update Process

Once a TRM has been developed, it is vital that it is kept up to date, amended, and maintained in a timely and effective manner. There are three main points in time when a TRM is most likely to require changes:

- 1. New measure additions As new technologies become cost effective, they will need to be characterized and added to the manual.
- 2. Existing measure updates Updates will be required for a number of reasons. Examples include: the federal standard for efficiency of a measure is increased; the qualification criteria are altered; the measure cost falls; or a new evaluation provides a better value of an assumption for a variable. In such cases, the changes must be flagged and appropriate changes made to the TRM.
- 3. Retiring existing measures When the economics of a measure become such that it is no longer cost effective, or the free rider rate is so high that it is not worth supporting, the measure should be retired.

It is important to maintain a record of changes made to the TRMs over time. It is therefore recommended to establish and maintain a Master Manual, containing all versions of each TRM in chronological order, and an abridged User Manual, in which only the current versions of active measures are included. Archived older information can be made available on a website or other accessible location.

A process for update of the mid-Atlantic TRM was developed by the subcommittee, informed by research and best practices from other TRM efforts. A summary of the research and the resulting update process are publicly available as a Regional Evaluation Measurement and Verification Forum project: Mid-Atlantic TRM Update Process Guidelines and Attachment 1

C. Description of Unique Measure Codes

Each measure included in the TRM has been assigned a unique identification code. The code consists of a string of five descriptive categories connected by underscores, in the following format:

Sector_End Use_Program Type_Measure_MonthYear

A description of the abbreviations used in the codes is provided in the tables below:

SECTOR	
RS	Residential

CI	C	
CI END USE	Commercial & Industrial	
RF	Lighting	
	Refrigeration	
HV	Heating, Ventilation, Air Conditioning	
WT	Hot Water	
LA	Laundry	
SL	Shell (Building)	
MO Motors and Drives		
PROGRAM TYPE		
TOS	Time of Sale	
RTR	Retrofit	
ERT	Early Retirement	
INS	Direct Install	
MEASURE		
CFLSCR	Compact Fluorescent Screw-In	
CFLFIN	Compact Fluorescent Fixture, Interior	
CFLFEX	Compact Fluorescent Fixture, Exterior	
REFRIG	Refrigerator	
FANMTR	Furnace Fan Motor	
RA/CES	Window Air Conditioner Energy Star	
RA/CT1	Window Air Conditioner Tier 1	
CENA/C	Central Air Conditioner	
SHWRHD	Low Flow Showerhead	
FAUCET	Low Flow Faucet	
HWWRAP	Water Tank Wrap	
HPRSHW	Heat Pump Water Heater, Residential	
CWASHES	Clothes Washer, Energy Star	
CWASHT3	Clothes Washer, Tier 3	
WINDOW	Window, Energy Star	
HPT8	High Performance T8 Lighting	
T5	T5 Lighting	
MHFIN	Metal Halide Fixture, Interior	
MHFEX	Metal Halide Fixture, Exterior	
SODIUM	High Pressure Sodium Lighting	
LECEXI	LED Exit Sign	
DELAMP	Delamping	
OSWALL	Occupancy Sensor, Wall box	
UNIA/C	Unitary Air Conditioning system	
EMOTOR	Efficient Motor	
VFDRIVE	Variable Frequency Drive	
FREEZER	Freezer	
HPCIHW	Heat Pump Water Heater, Commercial	